SxX8BBS Series

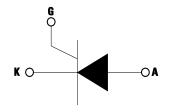
EV Series 0.8 Amp Sensitive SCRs

Main Features

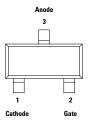
Symbol	Value	Unit
I _{T(RMS)}	0.8	А
V_{DRM}/V_{RRM}	600	V
I _{GT}	200	μΑ

Description

This new sensitive SCR component series offers 600V V_{DRM} and 0.8A $I_{\text{T(RMS)}}$ capability in the smallest package size in the industry, SOT23. It is specifically designed for GFCI (Ground Fault Circuit Interrupter) applications. All SCRs junctions are glass-passivated to ensure long term reliability and parametric stability.


Features

- Very compact SOT23 SMT package
- Surge current capability up to 12A @ 60Hz
- Blocking voltage (V_{DRM} / V_{RRM}) capability - up to 600V
- High dv/dt noise immunity
- Improved turn-off time (t_q) < 25 µsec
- Sensitive gate for direct microprocessor interface
- RoHS compliant and Halogen-Free


Applications

The SxX8BBS series is specifically designed for GFCI (Ground Fault Circuit Interrupter) and applications.

Schematic Symbol

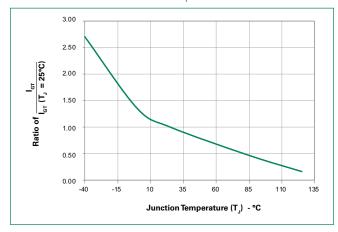
Pin out

Absolute Maximum Ratings

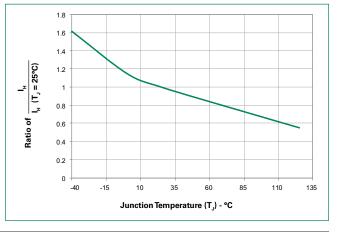
Symbol	Parameter			Value	Unit
V_{DSM}/V_{RSM}	Peak non-repetitive blocking voltage	Pw=100µs		700	V
I _{T(RMS)}	RMS on-state current (full sine wave)		$T_{\rm C} = 80^{\circ}{\rm C}$	0.8	А
I _{T(AV)}	Average on-state current		$T_{\rm C} = 80^{\circ}{\rm C}$	0.51	А
	Non repetitive surge peak on-state current		f= 50Hz	10	А
TSM	(Single cycle, T_J initial = 25°C)		f= 60Hz	12	А
2 _†	I²t Value for fusing	$t_p = 10 \text{ ms}$	f= 50 Hz	0.5	A ² s
1-1		$t_{p} = 8.3 \text{ ms}$	f= 60 Hz	0.6	A ² s
di/dt	Critical rate of rise of on-state current $I_{\rm G}$ = 10mA	60 Hz	$T_J = 125^{\circ}C$	80	A/µs
I _{GM}	Peak Gate Current	$t_{p} = 20 \ \mu s$	$T_J = 125^{\circ}C$	1.0	А
$P_{G(AV)}$	Average gate power dissipation	_	$T_J = 125^{\circ}C$	0.1	W
T _{stg}	Storage junction temperature range	_	_	-40 to 150	°C
T,	Operating junction temperature range	_	_	-40 to 125	°C

Electrical Characteristics ($T_1 = 25$ °C, unless otherwise specified)

Symbol	Description	Test Conditions	Limit	Value	Unit
Symbol	Description	lest conditions	Lillie	value	Oiiit
	DC Gate Trigger Current	V - 6V P - 100 O	MIN.	50	μΑ
I _{GT}	DC date mgger current	$V_D = 6V, R_L = 100 \Omega$	MAX.	200	μΑ
$V_{\rm GT}$	DC Gate Trigger Voltage	$V_D = 6V$, $R_L = 100 \Omega$	MAX.	0.8	V
V_{GRM}	Peak Reverse Gate Voltage	$I_{RG} = 10 \mu A$	MIN.	8	V
l _H	Holding Current	Initial Current = 20mA	MAX.	10	mA
(dv/dt)s	Critical Rate-of-Rise of Off-State Voltage	$T_J = 125^{\circ}\text{C}$ $V_D = 67\%V_{DRM}/V_{RRM}$ Exp. Waveform, $R_{GK} = 1 \text{ k}\Omega$	MIN.	50	V/µs
$V_{\rm GD}$	Gate Non-Trigger Voltage	$V_{D} = V_{DRM'} R_{GK} = 1 k\Omega$ $T_{J} = 125^{\circ}C$	MIN.	0.2	V
t _q	Turn-Off Time	I _T =0.5A	MAX.	25	μs
t_{gt}	Turn-On Time	$I_{\rm g}$ =10mA,Pw= 15 μ sec, $I_{\rm T}$ = 1.6A(pk)	TYP.	2.0	μs


Static Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Description	Test Conditions	Limit	Value	Unit
V_{TM}	Peak On-State Voltage	$I_{TM} = 1.6A (pk)$	MAX.	1.70	V
1 //	V _{DRM} /V _{RRM}	$T_J = 25^{\circ}C$	MAX.	5	μΑ
DRM ^{/ I} RRM		T ₁ = 125°C	MAX.	100	μΑ


Thermal Resistances

Symbol	Description	Value	Unit
$R_{\Theta(JC)}$	Junction to case (AC)	45	°C/W
$R_{\Theta(J-A)}$	Junction to ambient	220	°C/W

Figure 1:Normalized DC Gate Trigger Current vs.
Junction Temperature

Figure 2:Normalized DC Holding Current vs.
Junction Temperature

SxX8BBS Series

EV Series 0.8 Amp Sensitive SCRs

Figure 3:Normalized DC Gate Trigger Voltage vs. Junction Temperature

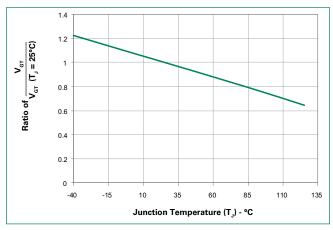
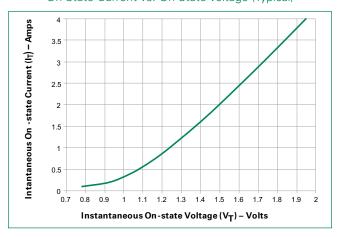
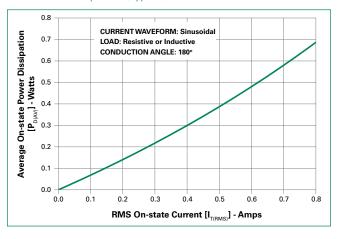




Figure 4:
On-State Current vs. On-State Voltage (Typical)

Figure 5:Power Dissipation (Typical) vs. RMS On-State Current

Figure 6:Maximum Allowable Case Temperature vs. On-State Current

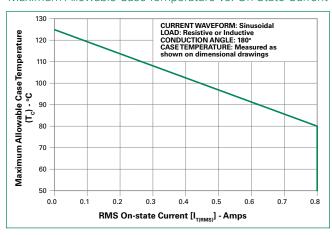
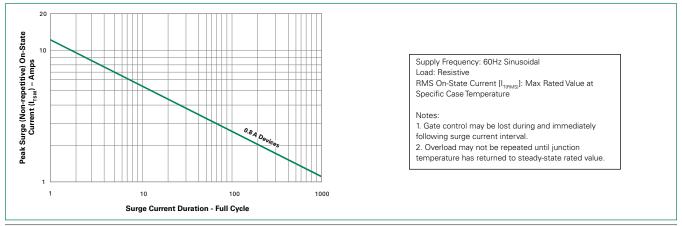



Figure 7: Surge Peak On-State Current vs. Number of Cycles

SxX8BBS SeriesEV Series 0.8 Amp Sensitive SCRs

Figure 8: Static dv/dt vs. RGK vs. Junction Temperature

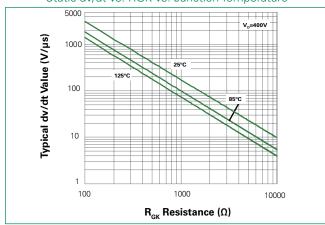
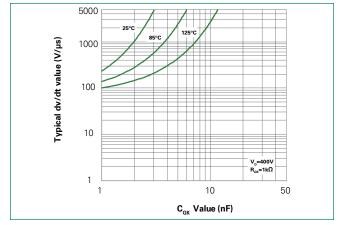
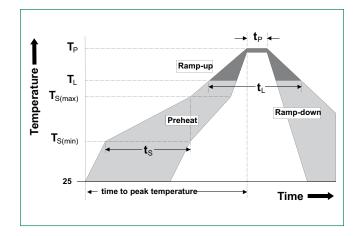




Figure 9: Static dv/dt vs. CGK vs. Juntion Temperature

Soldering Parameters

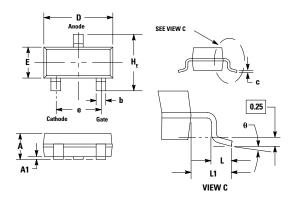
Reflow Condition Pb – Free assembly				
nellow Collation		ru – mee assembly		
	- Temperature Min (T _{s(min)})	150°C		
Pre Heat	-Temperature Max (T _{s(max)})	200°C		
	-Time (min to max) (t _s)	60 – 120 secs		
Average ram	p up rate (Liquidus Temp) (T _L) to peak	3°C/second max		
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max		
Reflow	- Temperature (T _L) (Liquidus)	217°C		
nellow	-Time (min to max) (t _s)	60 – 150 seconds		
Peak Tempera	ature (T _P)	260 ^{+0/-5} °C		
Time within	5°C of actual peak Temperature (t _p)	30 seconds		
Ramp-down Rate		6°C/second max		
Time 25°C to peak Temperature (T _p)		8 minutes Max.		
Do not exceed		260°C		

SxX8BBS Series

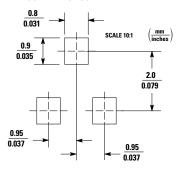
EV Series 0.8 Amp Sensitive SCRs

Physical Specifications

Terminal Finish	100% Matte Tin-plated.
Body Material	UL Recognized compound meeting flammability rating V-0.
Lead Material	Copper Alloy


Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.


Reliability/Environmental Tests

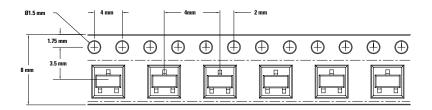
Test	Specifications and Conditions
HTRB (AC Blocking)	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ V _{DRM} @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -55°C to +150°C; 15-min dwell-time
H3TRB	EIA / JEDEC, JESD22-A101 1008 hours; 160V - DC: 85°C; 85% rel humidity
UHAST	ESD22-A118, 96hours, 130°C, 85%RH
Resistance to Solder Heat	MIL-STD-750 Method 2031, 260°C, 10s
Solderability	ANSI/J-STD-002, category 3, Test A
Moisture Sensitivity Level	Level 1, JEDEC-J-STD-020D

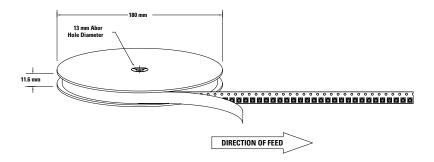
Dimensions - SOT-23

SOLDERING FOOTPRINT

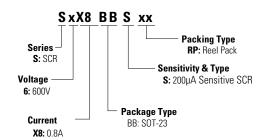
Millimeters Inches Dimensions Min Min Max Тур Max Тур Α 0.04 0.04 0.04 0.89 1.02 1.12 Α1 0.00 0.00 0.01 0.01 0.10 0.15 0.02 0.02 0.02 0.38 b 0.46 0.51 0.00 0.01 0.01 0.08 0.13 0.18 C D 0.11 0.11 0.12 2.80 2.90 3.04 Ε 0.05 0.05 0.06 1.30 1.40 1.19 0.07 0.08 0.08 1.78 1.91 2.06 L 0.02 0.02 0.02 0.40 0.49 0.60 L1 0.01 0.02 0.03 0.36 0.53 0.74 Н 0.08 0.09 2.30 0.10 2.10 2.64 0° 10° 0° θ 10°

Product Selector


Part Number	Voltage 600V	Gate Sensitivity	Package
S6X8BBS	X	200 μΑ	SOT-23


Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
S6X8BBSRP	6X8	0.01g	Tape & Reel	3000



SOT-23 Reel Pack (RP) Specifications

Part Numbering System

Part Marking System

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

