

MOSFET Maximum Ratings T_J = 25°C unless otherwise noted.

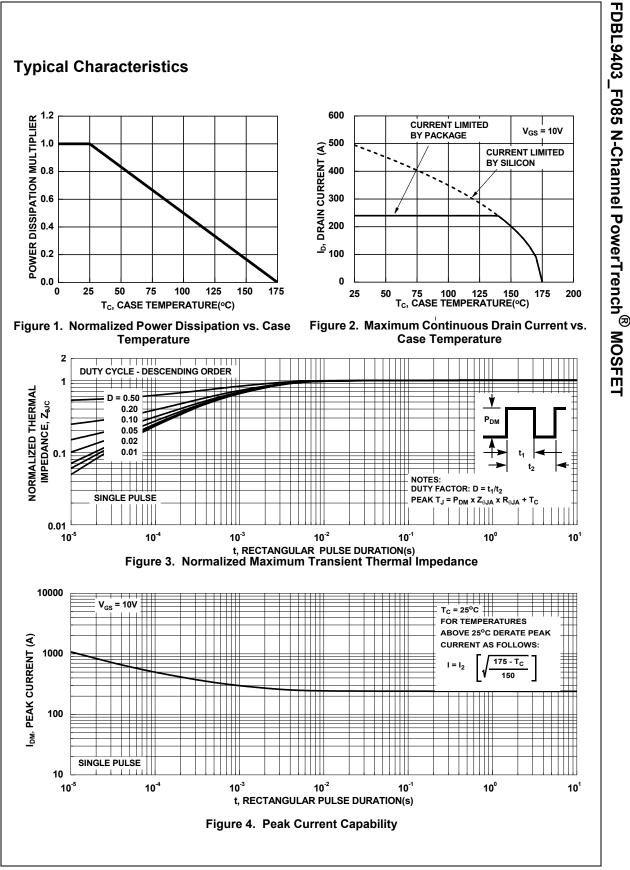
Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-to-Source Voltage		40	V	
V _{GS}	Gate-to-Source Voltage		±20	V	
	Drain Current - Continuous (V _{GS} =10) (Note 1)	T _C =25°C	240	^	
D	Pulsed Drain Current	T _C = 25°C	See Figure 4	— A	
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	737	mJ	
P _D	Power Dissipation		357	W	
	Derate Above 25°C		2.38	W/ ^o C	
T _J , T _{STG}	Operating and Storage Temperature		-55 to + 175	°C	
R _{θJC}	Thermal Resistance, Junction to Case		0.42	°C/W	
R _{0JA}	Maximum Thermal Resistance, Junction to Ambient	(Note 3)	43	°C/W	

Notes:

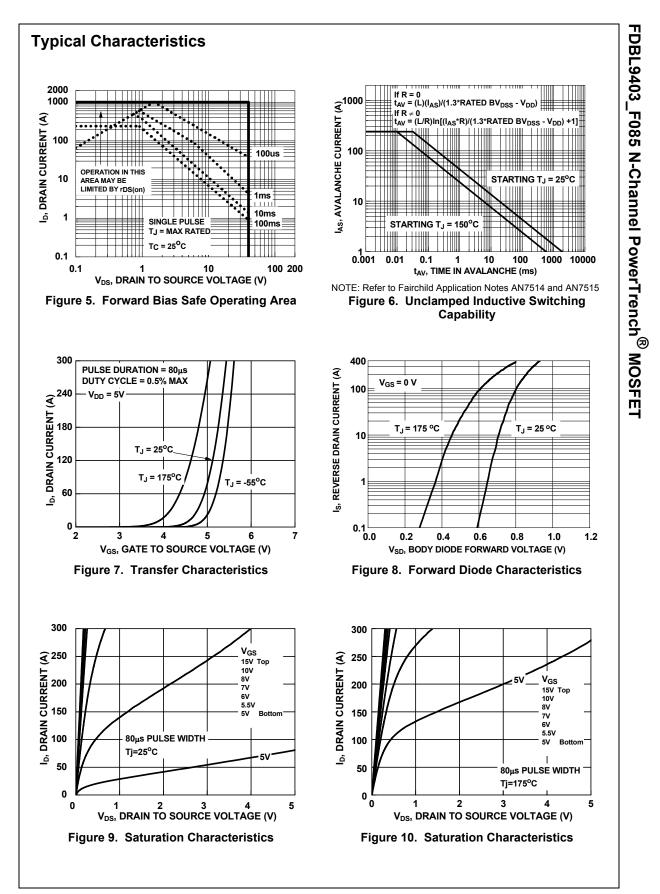
1: Current is limited by bondwire configuration.

2: Starting $T_J = 25^{\circ}C$, L = 0.36 mH, $I_{AS} = 64$ A, $V_{DD} = 40$ V during inductor charging and $V_{DD} = 0$ V during time in avalanche.

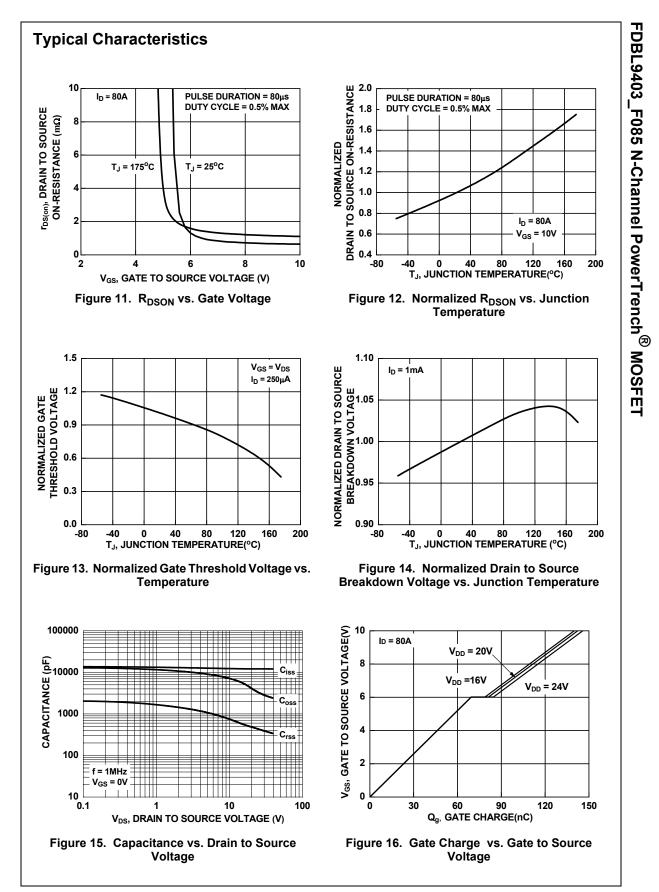
3: R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design, while R_{0JA} is determined by the board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.


Package Marking and Ordering Information

Device Marking	Device	Package			
FDBL9403	FDBL9403_F085	MO-299A	-	-	-


Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Units
Off Cha	racteristics						
B _{VDSS}	Drain-to-Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V		40	-	-	V
I _{DSS}	Drain-to-Source Leakage Current	V _{DS} =40V,		-	-	1	μA mA
I _{GSS}	Gate-to-Source Leakage Current	V _{GS} = ±20V		-	-	±100	nA
On Cha	racteristics			-			
V _{GS(th)}	Gate to Source Threshold Voltage	V_{GS} = V_{DS} , I		2.0	3.3	4.0	V
	Drain to Source On Resistance	I _D = 80A,		-	0.65	0.90	mΩ
R _{DS(on)}		V _{GS} = 10V	T _J = 175 ^o C (Note 4)	-	1.10	1.50	mΩ
C _{iss} C _{oss}	Input Capacitance Output Capacitance	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz		-	12000 3260	-	pF pF
				-	3260	-	•
C _{rss}	Reverse Transfer Capacitance	1 - 1101112		-	442	-	pF
R _g	Gate Resistance	f = 1MHz		-	3.3	-	Ω
Q _{g(ToT)}	Total Gate Charge at 10V	V _{GS} = 0 to 1	0V V _{DD} = 32V	-	144	188	nC
Q _{g(th)}	Threshold Gate Charge	$V_{GS} = 0 \text{ to } 2^{2}$	V I _D = 80A	-	22	26	nC
Q _{gs}	Gate-to-Source Gate Charge			-	66	-	nC
Q _{gd}	Gate-to-Drain "Miller" Charge			-	16	-	nC
	ng Characteristics				_	160	20
t _{on} ⁺		_	-	-	- 42	162	ns
t _{d(on)} t	Turn-On Delay Rise Time	V_{DD} = 20V, I _D = 80A, V_{GS} = 10V, R _{GEN} = 6 Ω		-	42 73	-	ns ns
t _r	Turn-Off Delay			-	83	-	ns
t _{d(off)} t	Fall Time			-	50	-	ns
t _f	Turn-Off Time			-		279	ns
t _{off}				-	-	219	115
Drain-S	ource Diode Characteristics						
V _{SD}	Source-to-Drain Diode Voltage	I _{SD} =80A, V _{GS} = 0V		-	-	1.25	V
	.	I _{SD} = 40A, V		-	-	1.2	V
t _{rr}	Reverse-Recovery Time	$I_F = 80A$, $dI_{SD}/dt = 100A/\mu s$, $V_{DD}=32V$		-	111	129	ns
Q _{rr}	Reverse-Recovery Charge			-	178	214	nC

Note:


4: The maximum value is specified by design at T_J = 175°C. Product is not tested to this condition in production.

FDBL9403_F085 Rev. C1

FDBL9403_F085 Rev. C1

FDBL9403_F085 Rev. C1

Obsolete

Not In Production

Datasheet contains specifications on a product that is discontinued by Fairchild

Semiconductor. The datasheet is for reference information only.