QUICKSWITCH® PRODUCTS HIGH-SPEED CMOS 20-BIT BUS SWITCH WITH FLOW-THRU PINOUT

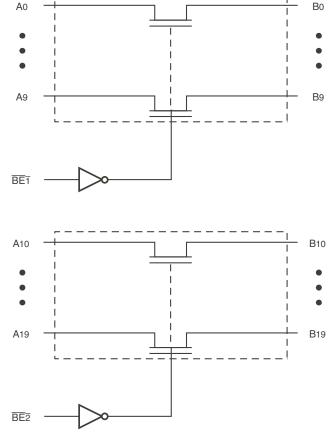
IDTQS32X861

FEATURES:

- Enhanced N channel FET with no inherent diode to Vcc
- 5Ω bidirectional switches connect inputs to outputs
- · Zero propagation delay, zero ground bounce
- · Undershoot clamp diodes on all switch and control inputs
- · Available in 48-pin QVSOP package

APPLICATIONS:

- · Hot-swapping, hot-docking
- Voltage translation (5V to 3.3V)
- · Power conservation
- · Capacitance reduction and isolation
- · Bus isolation
- · Clock gating

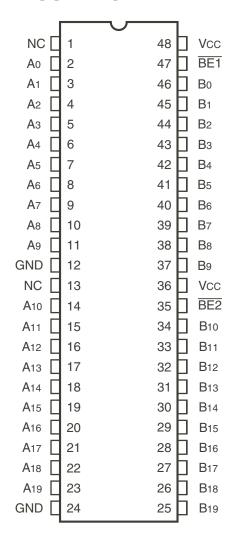

DESCRIPTION:

The QS32X861 provides two sets of ten high-speed CMOS TTL-compatible bus switches. The low ON resistance of the QS32X861 allows inputs to be connected to outputs without adding propagation delay and without generating additional ground bounce noise. The Bus Enable $(\overline{\mbox{BEn}})$ signals turn the switches on.

The QS32X861 bus switch is ideal for switching digital buses, as well as for hotplug buffering and 5V to 3V conversion.

The QS32X861 is characterized for operation at -40°C to +85°C.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

JUNE 2011

PIN CONFIGURATION

QVSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Supply Voltage to Ground	-0.5 to +7	٧
VTERM ⁽³⁾	DC Switch Voltage Vs	-0.5 to +7	V
VTERM ⁽³⁾	DC Input Voltage VIN	-0.5 to +7	V
VAC	AC Input Voltage (pulse width ≤ 20ns)	-3	V
lout	DC Output Current	120	mA
Рмах	Maximum Power Dissipation (TA = 85°C)	0.5	W
Tstg	Storage Temperature	-65 to +150	°C

NOTE:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE

 $(TA = +25^{\circ}C, f = 1.0MHz, VIN = 0V, VOUT = 0V)$

Pins	Тур.	Max. ⁽¹⁾	Unit
Control Pins	3	5	pF
Quickswitch Channels (Switch OFF)	5	7	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	I/O	Description	
A0 - A19	I/O	Bus A	
B0 - B19	I/O	Bus B	
BEn	I	Bus Enable	

FUNCTION TABLE(1)

BE1	BE2	A0 - A9	A10 - A19	Function
L	L	B0 - B9	B10 - B19	Connect
L	Н	B0 - B9	Z	Connect
Н	L	Z	B10 - B19	Connect
Н	Н	Z	Z	Disconnect

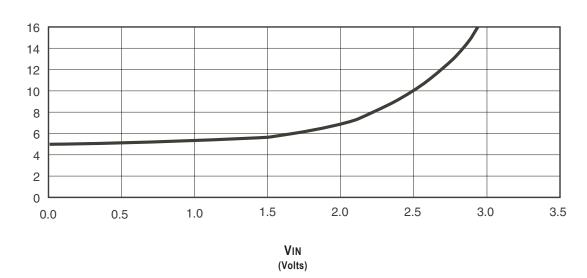
NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: TA = -40°C to +85°C, $VCC = 5.0V \pm 5\%$


Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH for Control Pins	2	_	-	V
VIL	Input LOW Level	Guaranteed Logic LOW for Control Pins	_	_	0.8	V
lin	Input LeakageCurrent (Control Inputs)	$0V \le VIN \le VCC$	_	±0.01	±1	μΑ
loz	Off-State Output Current (Hi-Z)	0V ≤ Vouт ≤ Vcc, Switches OFF	_	±0.01	±1	μΑ
Ron	Switch ON Resistance	Vcc = Min., Vin = 0V, Ion = 30mA	_	5	7	Ω
		Vcc = Min., Vin = 2.4V, Ion =15mA	_	10	15	
VP	Pass Voltage ⁽²⁾	Vcc = 5V, Ιουτ = -5μA	3.7	4	4.2	V

NOTES:

- 1. Typical values are at Vcc = 5.0V, TA = 25°C.
- 2. Pass Voltage is guaranteed but not production tested.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 5V

POWER SUPPLY CHARACTERISTICS

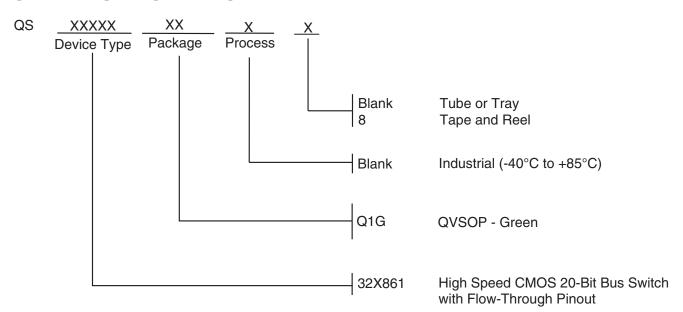
Symbol	Parameter	Test Conditions ⁽¹⁾	Typ ⁽²⁾	Max.	Unit
Iccq	Quiescent Power Supply Current	Vcc = Max., Vin = GND or Vcc, f = 0	0.2	6	μΑ
Δlcc	Power Supply Current per Control Input HIGH(3)	Vcc = Max., Vin = 3.4V, f = 0	_	2.5	mA
ICCD	Dynamic Power Supply Current per MHz ⁽⁴⁾	Vcc = Max., A and B pins open	_	0.25	mA/MHz
		BEn Control Input Toggling at 50% Duty Cycle			

NOTES:

- 1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
- 2. Typical values are at Vcc = 5.0V, 25°C ambient.
- 3. Per TLL driven input ($V_{IN} = 3.4V$, control inputs only). A and B pins do not contribute to Δlcc .
- 4. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B pins generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 $T_A = -40$ °C to +85°C, $V_{CC} = 5.0V \pm 5\%$;


CLOAD = 50pF, RLOAD = 500Ω unless otherwise noted.

Symbol	Parameter	Min. ⁽¹⁾	Тур.	Max.	Unit
tPLH	Data Propagation Delay (2,3)	_	0.25	_	ns
t PHL	An to/from Bn				
tpzh	Switch Turn-on Delay	1.5	_	6.5	ns
tPZL	BEn to An/Bn				
tpHZ	Switch Turn-off Delay (2)	1.5	_	5.5	ns
tPLZ	BEn to An/Bn				

NOTES:

- 1. Minimums are guaranteed but not production tested.
- 2. This parameter is guaranteed but not production tested.
- 3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for CL = 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERING INFORMATION

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/