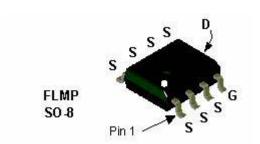


FDS4080N7 40V N-Channel FLMP PowerTrench[®] MOSFET

General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for "low side" synchronous rectifier operation, providing an extremely low $R_{DS(ON)}$ in a small package.

Applications

- Synchronous rectifier
- DC/DC converter

Features

- 13 A, 40 V $R_{DS(ON)}$ = 10 m Ω @ V_{GS} = 10 V
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability
- Fast switching (Qg = 30 nC)
- FLMP SO-8 package: Enhanced thermal performance in industry-standard package size

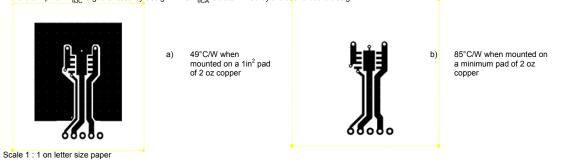
Absolute Maximum Ratings T_A=25°C unless otherwise noted

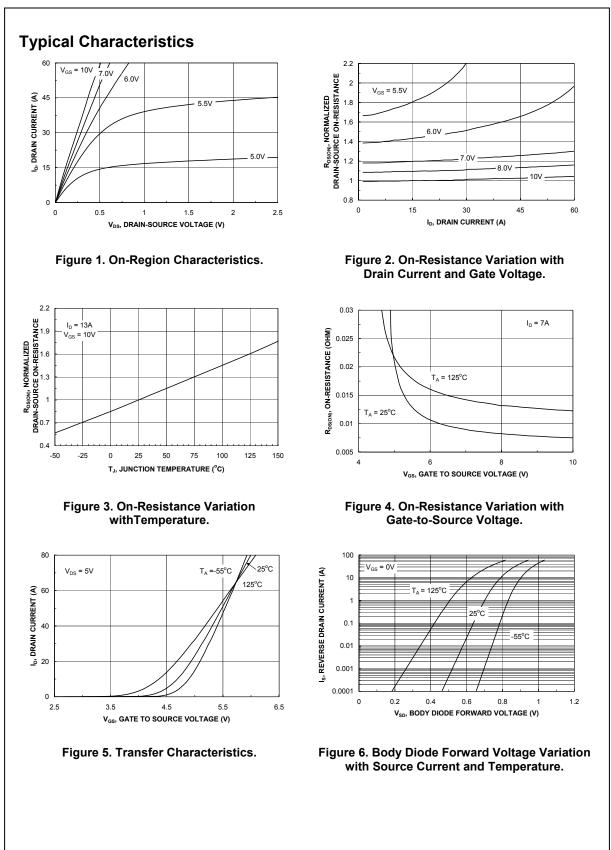
Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Source Voltage			40	V
V _{GSS}	Gate-Source Voltage			± 20	V
I _D	Drain Current – Continuous (Note 1a)			13	Α
	– Pulsed			60	
PD	Power Diss	ipation for Single Operation	(Note 1a)	3.9	W
	Operating and Storage Junction Temperature Range			–55 to +150	°C
R _{0JA}	I Charac		ent (Note 1a)	38 1	°C/W
Therma R _{θJA} R _{θJC} Packag	I Charac Thermal Re Thermal Re e Markin	teristics sistance, Junction-to-Ambie sistance, Junction-to-Ambie g and Ordering In	ent (Note 1a) ent formation	38 1	°C/W
Therma R _{θJA} R _{θJC}	I Charac Thermal Re Thermal Re e Markin	teristics sistance, Junction-to-Ambie sistance, Junction-to-Ambie	ent (Note 1a)	38	°C/W

©2004 Fairchild Semiconductor Corporation

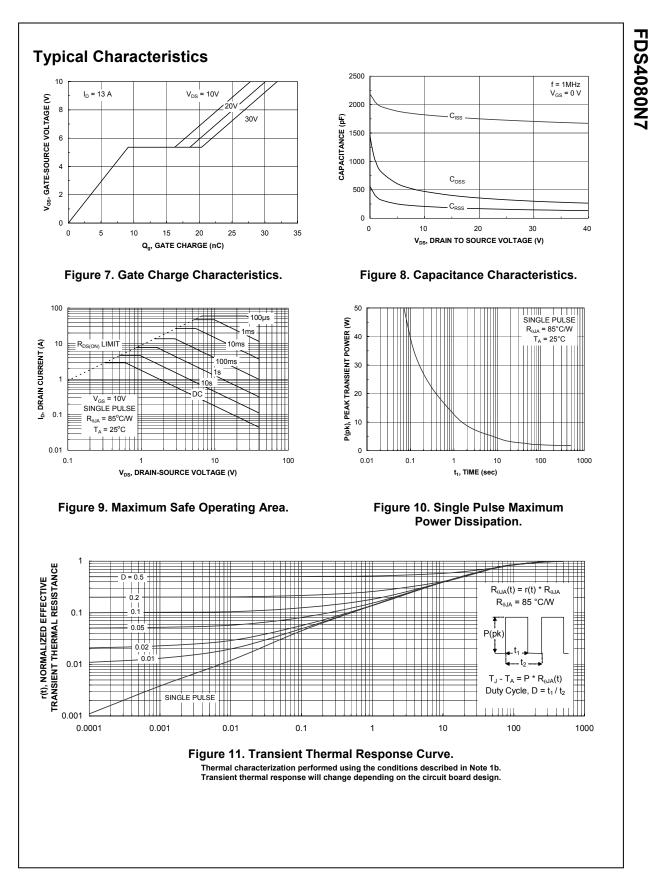
Electrical Characteristics $T_{A} = 25^{\circ}C$ unless otherwise noted Min Symbol Max Units **Parameter Test Conditions** Тур Drain-Source Avalanche Ratings (Note 2) Drain-Source Avalanche Energy Single Pulse, V_{DD} = 10V, I_D=13A 200 E_{AS} mJ Drain-Source Avalanche Current 13 А I_{AS} **Off Characteristics** Drain–Source Breakdown Voltage $V_{GS} = 0 V, I_D = 250 \mu A$ 40 V $\mathsf{BV}_{\mathsf{DSS}}$ Breakdown Voltage Temperature ΔBV_{DSS} I_D = 250 μ A, Referenced to 25°C 44 mV/°C Coefficient $\Delta T_{\rm J}$ V_{DS} = 32 V, V_{GS} = 0 V Zero Gate Voltage Drain Current 1 IDSS μA V_{GS} = 20 V, V_{DS} = 0 V Gate-Body Leakage, Forward 100 nA I_{GSSF} Gate-Body Leakage, Reverse $V_{GS} = -20 \text{ V}$, $V_{DS} = 0 \text{ V}$ -100 nA I_{GSSR} On Characteristics (Note 2) V Gate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250 \ \mu A$ 2 3.9 5 $V_{\text{GS(th)}}$ Gate Threshold Voltage $I_D = 250 \ \mu A$, Referenced to $25^{\circ}C$ $\Delta V_{GS(th)}$ mV/°C -8 Temperature Coefficient $\Delta T_{\rm J}$ V_{GS} = 10 V, I_{D} = 13 A R_{DS(on)} Static Drain-Source 7.8 10 mΩ **On-Resistance** V_{GS} = 10 V, I_D = 13 A, T_J =125°C 12 21 Forward Transconductance $V_{DS} = 5 V$, $I_D = 13 A$ 41 S **g**fs **Dynamic Characteristics** pF Input Capacitance 1750 C_{iss} V_{DS} = 20 V, V_{GS} = 0 V, C_{oss} **Output Capacitance** f = 1.0 MHz 357 pF C_{rss} **Reverse Transfer Capacitance** 138 pF Switching Characteristics (Note 2) $V_{DD} = 20 V$, $I_D = 1 A$, Turn-On Delay Time 12 21 ns t_{d(on)} V_{GS} = 10 V, R_{GEN} = 6 Ω Turn-On Rise Time 8 17 tr ns 29 Turn-Off Delay Time 46 t_{d(off)} ns Turn–Off Fall Time 14 25 tf ns V_{DS} = 20 V, I_{D} = 13 A, Q_g **Total Gate Charge** 30 40 nC $V_{GS} = 10 V$ Q_{gs} Gate-Source Charge 9 nC Q_{gd} Gate-Drain Charge 10 nC **Drain–Source Diode Characteristics and Maximum Ratings** Maximum Continuous Drain-Source Diode Forward Current 3.2 А Is Drain-Source Diode Forward V_{SD} $V_{GS} = 0 V$, I_S = 3.2 A (Note 2) 0.7 1.2 V Voltage

FDS4080N7

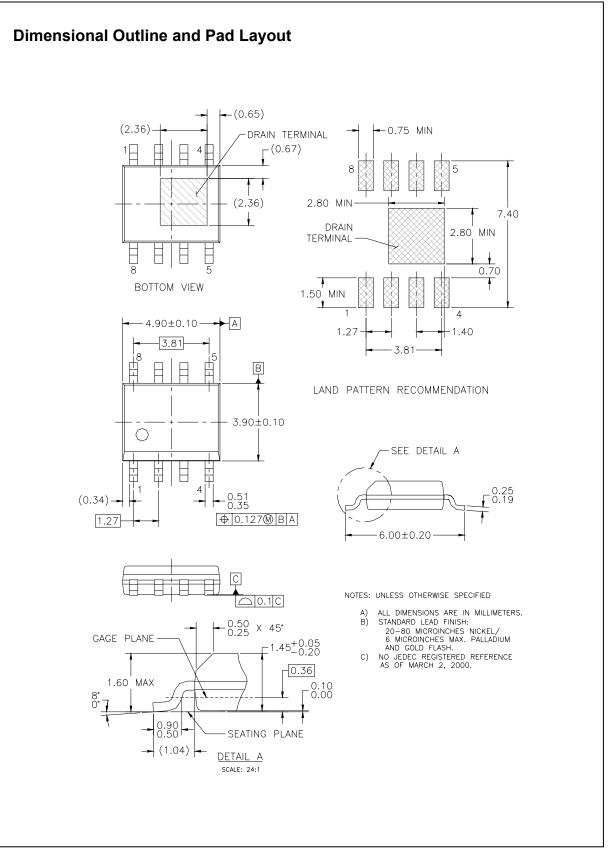

Electrical Characteristics


2. Pulse Test: Pulse Width < 300μ s, Duty Cycle < 2.0%

 $T_A = 25^{\circ}C$ unless otherwise noted


Notes:

1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.



FDS4080N7 Rev D1 (W)

FDS4080N7 Rev D1 (W)

FDS4080N7 Rev D1 (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	ISOPLANAR™	POP™	Stealth™
ActiveArray™	FAST®	LittleFET™	Power247™	SuperFET™
Bottomless™	FASTr™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CoolFET™	FPS™	MicroFET™	PowerTrench [®]	SuperSOT [™] -6
CROSSVOLT™	FRFET™	MicroPak™	QFET [®]	SuperSOT [™] -8
DOME™	GlobalOptoisolator™	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	GTO™່	MSX™	QT Optoelectronics [™]	TinyLogic [®]
E ² CMOS [™]	HiSeC™	MSXPro™	Quiet Series [™]	TINYOPTO™
EnSigna™	I²C™	OCX™	RapidConfigure™	TruTranslation™
FACT™	ImpliedDisconnect™	OCXPro™	RapidConnect™	UHC™
Across the boar	d. Around the world.™	OPTOLOGIC [®]	SILENT SWITCHER®	UltraFET [®]
The Power Franchise™		OPTOPLANAR™	SMART START™	VCX™
Programmable Active Droop™		PACMAN™	SPM™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production