Silicon Germanium GPS Low Noise Amplifier

RF & Protection Devices

Never stop thinking

Edition 2007-02-12

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2009.

Legal Disclaimer

All Rights Reserved.

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

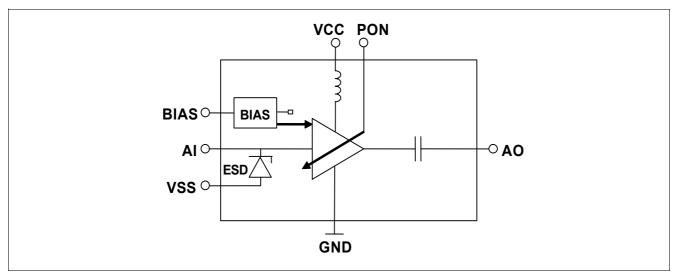
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revisio	Revision History: 2007-02-12, Rev.1.3				
Previou	Previous Version: BGA615L7 V1.2				
Page	Subjects (major changes since last revision)				
4	added moisture sensitivity level				
5	added thermal resistance				
6	adjusted power gain settling times adjusted inband and out of band compression points				
12	updated recommended land pattern (added solder mask defined layout)				
13	added reel diameter and pcs / reel information				

BGA615L7

Silicon Germanium GPS Low Noise Amplifier


Features

- High gain: 18 dB
- Low Noise Figure: 0.9 dB
- Power off function
- Operating frequency 1575 MHz
- Supply voltage: 2.4 V to 3.2 V
- Tiny PG-TSLP-7-1 leadless package
- B7HF Silicon Germanium technology
- RF output internally matched to 50 Ω
- Low external component count
- 1 kV HBM ESD protection (including AI-pin)
- Moisture sensitivity level: MSL 1

Application

• 1575 MHz GPS

Description

The BGA615L7 is a front-end low noise amplifier for Global Positioning System (GPS) applications. The LNA provides 18 dB gain, 0.9 dB noise figure and high linearity performance, allowing it to be used as a first-stage LNA. Current consumption is as low as 5.6 mA. The BGA615L7 is based upon Infineon Technologies' B7HF Silicon Germanium technology. It operates over a 2.4 V to 3.2 V supply range.

Туре	Package	Marking	Chip
BGA615L7	PG-TSLP-7-1	BS	T0595

Silicon Germanium GPS Low Noise Amplifier

Pin Definition and Function

Pin No.	Symbol	Function	
1	AI	LNA input	
2	BIAS	DC bias	
3	GND	RF ground	
4	PON	Power on control	
5	VCC	Supply control	
6	AO	LNA output	
7	VSS	DC ground	

Maximum Ratings

Table 2 Maximum Ratings

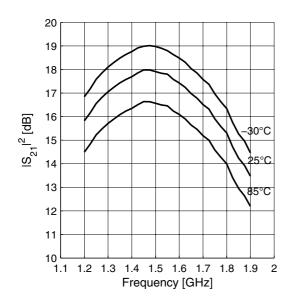
Parameter ¹⁾	Symbol	Value	Unit
Voltage at pin VCC	V _{cc}	-0.3 3.6	V
Voltage at pin AI	V _{AI}	-0.3 0.9	V
Voltage at pin BIAS	V _{BIAS}	-0.3 0.9	V
Voltage at pin AO	V _{AO}	-0.3 V _{CC} + 0.3	V
Voltage at pin PON	V _{PON}	-0.3 V _{CC} + 0.3	V
Voltage at pin VSS	V _{SS}	-0.3 0.3	V
Current into pin VCC	I _{CC}	10	mA
RF input power	P _{IN}	10	dBm
Total power dissipation	P _{tot}	36	mW
Junction temperature	T _J	150	°C
Ambient temperature range	T _A	-30 85	°C
Storage temperature range	T _{STG}	-65 150	°C
Thermal resistance junction soldering point	R _{th JS}	240	K/W
ESD capability all pins (HBM: JESD22A-114)	V _{ESD}	1000	V

1) All voltages refer to GND-Node.

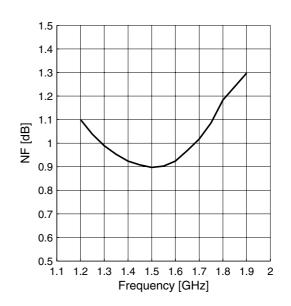
Electrical Characteristics

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Supply voltage	V _{CC}	2.4	2.8	3.2	V	
Supply current	I _{CC}	-	5.6	-	mA	ON-mode
		-	0.2	3	μA	OFF-mode
Gain switch control voltage	V _{pon}	1.5	-	3.2	V	ON-mode
		0	-	0.5	V	OFF-mode
Gain switch control current	I _{pon}	-	1.5	3	μA	ON-mode
		-	0	1	μA	OFF-mode
Insertion power gain	$ S_{21} ^2$	-	18	-	dB	High-gain Mode
Noise figure ²⁾	NF	-	0.9	-	dB	Z _S = 50 Ω
Input return loss	<i>RL</i> _{in}	-	13	-	dB	
Output return loss	<i>RL</i> _{out}	-	>15	-	dB	
Reverse isolation	$1/ S_{12} ^2$	-	35	-	dB	
Power gain settling time ³⁾	t _S	-	20	-	μs	OFF- to ON-mode
		-	50	-	μS	ON- to OFF-mode
Inband input 3rd order intercept point	IIP ₃	-	-1	-	dBm	$f_1 = 1575 \text{ MHz}$ $f_2 = f_1 + /-1 \text{ MHz}$
Inband input 1 dB compression point	IP _{1dB}	-	-14	-	dBm	
Out of band input 1 dB compression point	IP _{1dB,900M}	-	-9	-	dBm	<i>f</i> = 806 MHz 928 MHz
Out of band input 1 dB compression point	IP _{1dB,1650M}	-	-12	-	dBm	<i>f</i> = 1612 MHz 1710 MHz
Out of band input 1 dB compression point	<i>IP</i> _{1dB,1900M}	-	-6	-	dBm	f = 1710 MHz1785 MHz f =1850 MHz1909 MHz
Stability	k	-	> 1.5	-		<i>f</i> = 20 MHz 10 GHz

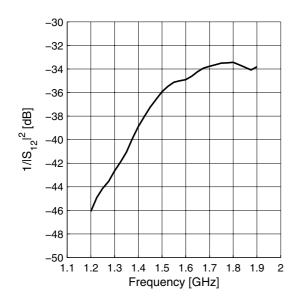
1) Measured on BGA615L7 application board including PCB losses (unless noted otherwise)

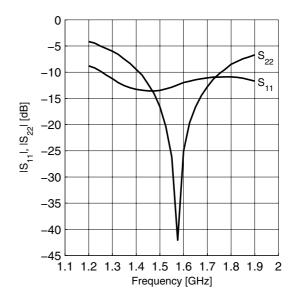

2) PCB losses subtracted

3) To within 1 dB of the final gain OFF- to ON-mode; to within 3 dB of the final gain ON- to OFF-mode



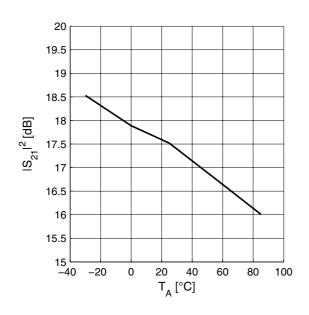
Typical Measurement Results ON Mode; T_A = 25 °C

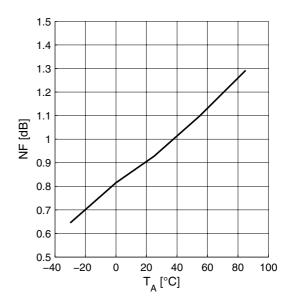

Gain $|S_{21}|^2 = f(f)$ $V_{CC} = 2.8 \text{ V}$


Noise Figure¹⁾ NF = f(f) $V_{CC} = 2.8 V$

Reverse Isolation $1/|S_{12}|^2 = f(f)$ $V_{CC} = 2.8 \text{ V}$

1) PCB losses subtraced

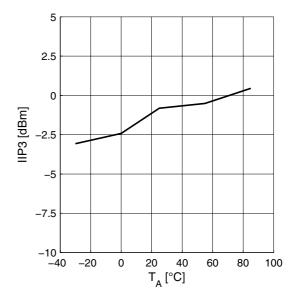



Silicon Germanium GPS Low Noise Amplifier

Typical Measurement Results ON Mode vs. Temperature

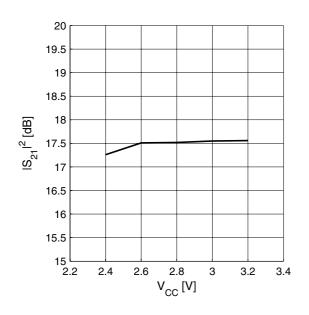
Power Gain $|S_{21}|^2 = f(T_A)$ $V_{CC} = 2.8 \text{ V}$

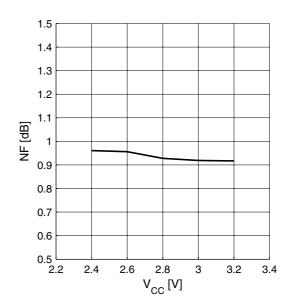
Noise Figure¹⁾ $NF = f(T_A)$ $V_{CC} = 2.8 V$



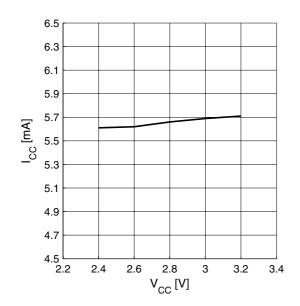
Supply current $I_{CC} = f(T_A)$ $V_{CC} = 2.8 V$

1) PCB losses subtracted

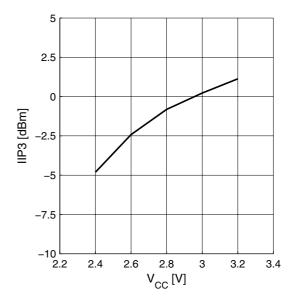

Third Order Input Intercept Point $IIP_3 = f(T_A)$ $V_{CC} = 2.8 V$



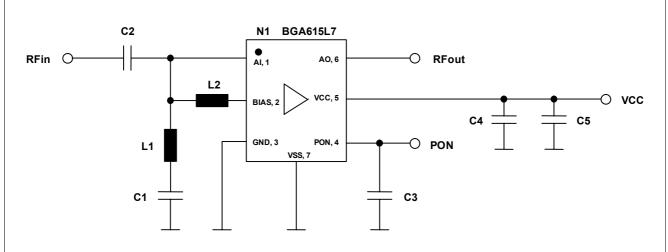
Typical Measurement Results ON Mode vs. Supply Voltage


Power Gain $|S_{21}| = f(V_{CC})$ $T_A = 25 \text{ °C}$

Noise Figure¹⁾ $NF = f(V_{CC})$ $T_A = 25 \text{ °C}$



Supply current I_{CC} = f(V_{CC}) T_A = 25 °C


1) PCB losses subtracted

Third Order Input Intercept Point $IIP_3 = f(V_{CC})$ $T_A = 25 \ ^{\circ}C$

PCB Configuration

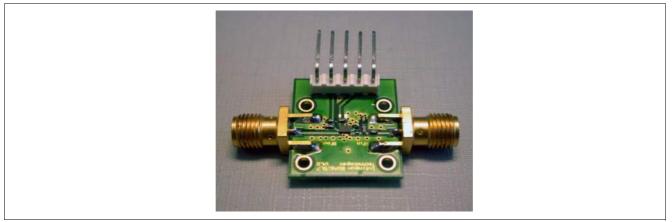

Figure 2 Schematic of BGA615L7

Table 4Bill of Materials

Name	Value	Package	Manufacturer	Function	
C1	10 nF	0402	Various	LF trap	
C2	5 pF	0402	Various	DC block	
C3	10 pF	0402	Various	Control voltage filtering optional	
C4	100 pF	0402	Various	Supply filtering optional	
C5	2.2 nF	0402	Various	Supply filtering	
L1	3.3 nH	0402	Various	LF trap & input matching	
L2	100 nH	0402	Various	Biasing	
N1	BGA615L7	PG-TSLP-7-1	Infineon	SiGe LNA	

Application Board

Figure 3 Photograph of Application Board

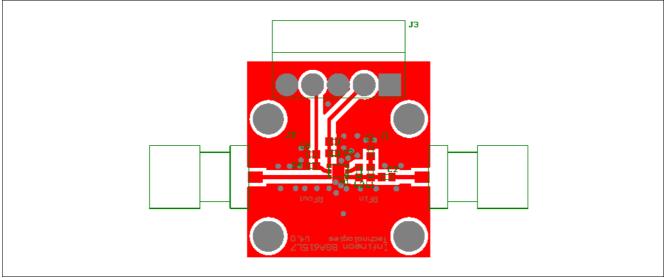
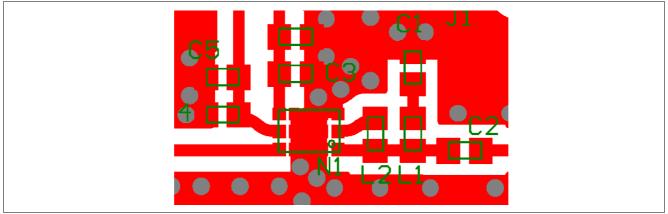
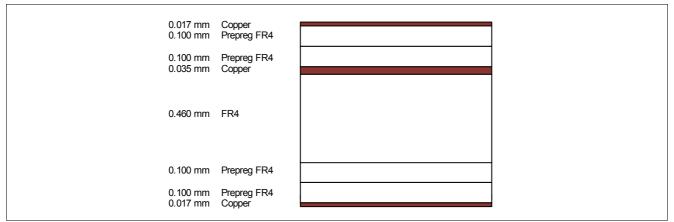
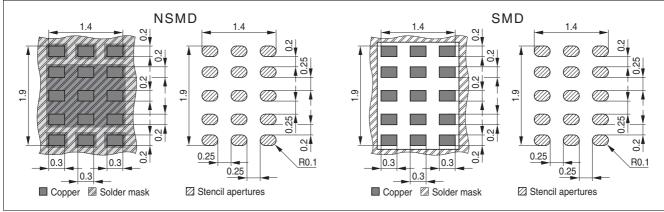


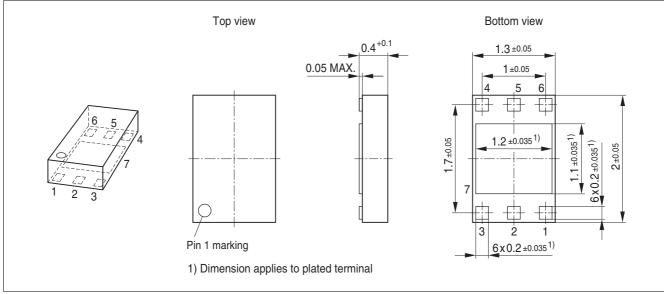
Figure 4 Top View of Application Board

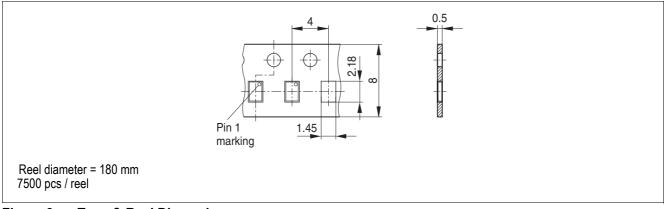

Figure 5 Detailed View of Application Board

Please note that RF-ground is connected via pin 3 only. In order to achieve the same performance as given in this data sheet, it is necessary to provide good RF-grounding on this pin. Furthermore, the LF trap consisting of inductor L1 and capacitor C1 should be placed as close as possible to pin 3.

Figure 7 Recommended Land Pattern


Table 5 Application Notes

No.	Description
AN091	The BGA615L7 Silicon-Germanium Low Noise Amplifier in GPS Applications
AN093	The BGA615L7 Silicon-Germanium Low Noise Amplifier with 0201 chip components
AN094	The BGA615L7 Silicon-Germanium Low Noise Amplifier for Low-Current GPS Applications


A list of all application notes is available at http://goto.infineon.com/smallsignaldiscretes-appnotes.

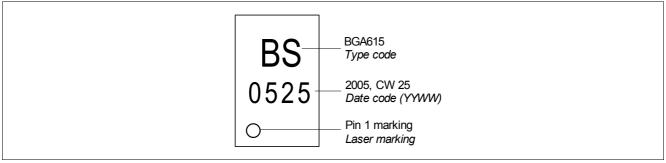

Package Information

Figure 9 Tape & Reel Dimensions

