

High Efficiency Dual Buck and One Load **Switch Power Management Unit EV Board**

NOT RECOMMENDED FOR NEW DESIGNS

DESCRIPTION

The EV5403-QB-02A Evaluation Board is designed to demonstrate the capabilities of MPS' MP5403. The MP5403 is a monolithic power management unit containing two high efficiency step-down switching converters and a load switch. The two regulators supply current up to 3.5A and 2.5A separately and the load switch supplies up to 3A load current with extremely low R_{ON} resistance. With the input range up to 6V, the MP5403 is ideal for powering ASIC and SOC for Solid-State Drive or other compact power systems.

The MP5403 requires a minimum number of readily available standard external components and is available in a small QFN20 (2.5mmx3mm) package.

ELECTRICAL SPECIFICATION

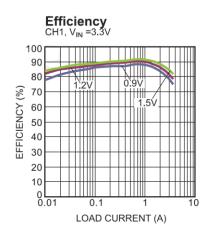
Parameter	Symbol	Value	Units
Input Voltage	V_{IN1}/V_{IN2}	2.7 – 6	V
Output Voltage	V _{OUT1} /V _{OUT2}	1.2/1.2	V
Output Current	I _{OUT1} /I _{OUT2}	3.5/2.5	Α

FEATURES

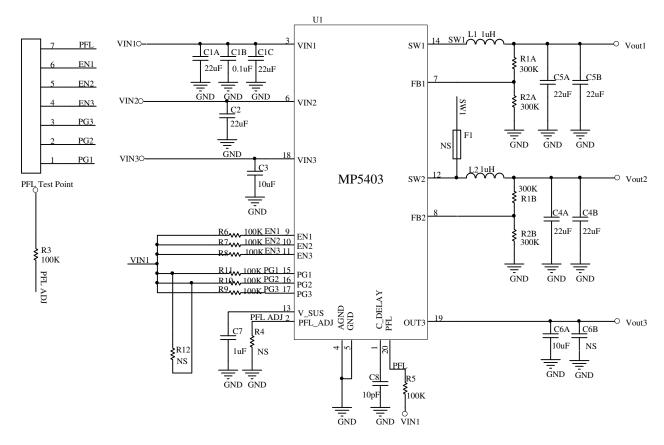
- Up to 6V Operating Input Range
- Low IQ: 85µA for Two Switchers Totally
- Two Buck Converters:
 - 3.5A with $55m\Omega/20m\Omega$ R_{DSON}
 - 2.5A with $65m\Omega/22m\Omega$ R_{DSON}
 - 1.5MHz Switching Frequency
- One Load Switch with $20m\Omega$ R_{ON}
 - 3A with 20mΩ R_{DSON}
 - Soft Start and Output Discharge
 - Over Current Protection
- Input Power Good Indicator with Adjustable Threshold and Delay
- Thermal Shutdown
- Available in a QFN20 (2.5mmx3mm) Package

APPLICATIONS

- Solid-State Drive
- Portable Instruments
- **Battery-Powered Devices**


All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Products, Quality Assurance page. "MPS" and "The Future of Analog IC Technology", are Registered Trademarks of Monolithic Power Systems, Inc.

EV5403-QB-02A EVALUATION BOARD

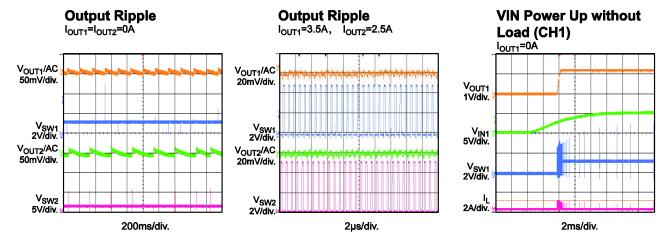


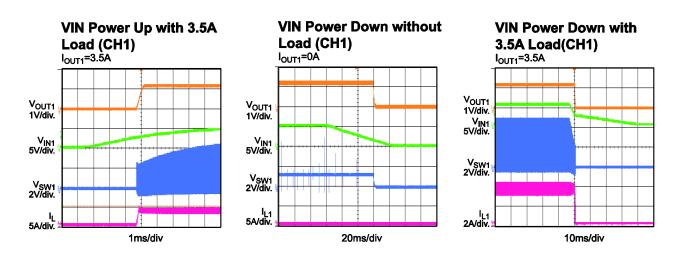
(L x W x H) 6.5cm x 6.5cm x 1.6cm

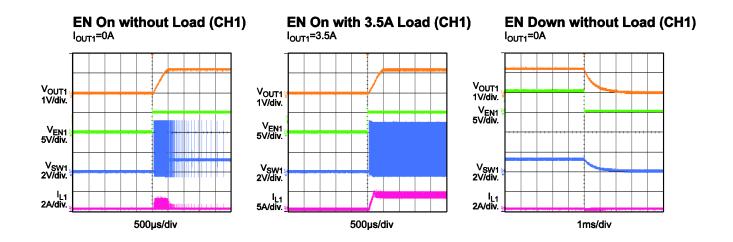
Board Number	MPS IC Number		
EV5403-QB-02A	MP5403		

EVALUATION BOARD SCHEMATIC

EV5403-QB-02A BILL OF MATERIALS

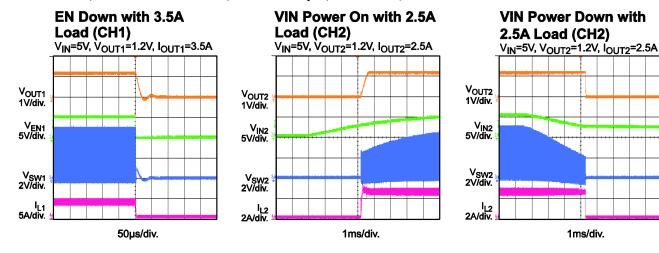

Qty	Ref	Value	Description	Package	Manufacturer	Part Number
2	L1, L2	1µH	Inductor, ±20%	SMD	Wurth	744 373 240 10
7	C1A, C1C, C2, C4A, C4B, C5A, C5B	22µF	Ceramic Capacitor, 10V, X5R	0805	muRata	GRM21BR61A226ME51L
2	C3, C6A	10µF	Ceramic Capacitor, 10V, X5R	0805	muRata	GRM21BR61A106KE19L
1	C7	1µF	Ceramic Capacitor, 16V, X7R	0603	muRata	GRM21BR71C105KA01L
1	C1B	0.1µF	Ceramic Capacitor, 16V, X7R	0603	muRata	GRM219R71C104KA01D
1	C8	10pF	Ceramic Capacitor, 50V, COG	0603	muRata	GRM1885C1H100JA01D
4	R1A, R1B, R2A, R2B	300kΩ	Film Res,1%	0603	ROYAL	RL0603FR-07300KL
8	R3, R5, R6, R7, R8, R9, R10, R11	100kΩ	Film Res,5%	0603	Any	Any
1	U1	MP5403	Dual buck and one load switch PWIC	QFN20	MPS	MP5403
1	CN1		1X7 PINS, 2.54mm		Any	Any

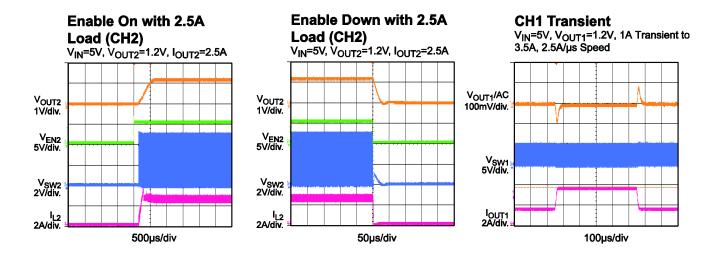


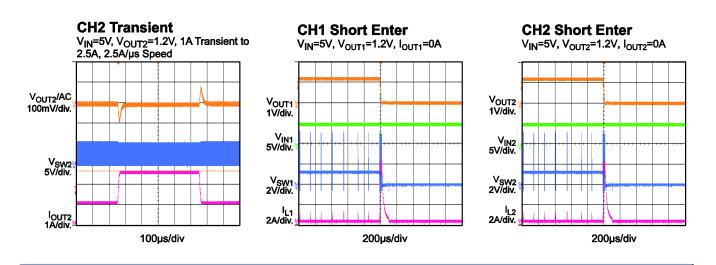

EVB TEST RESULTS

Performance waveforms are tested on the evaluation board.

 $V_{IN1} = V_{IN2} = 5V$, $V_{OUT1} = V_{OUT2} = 1.2V$, $L1 = L2 = 1\mu H$, $T_A = 25^{\circ}C$, unless otherwise noted.

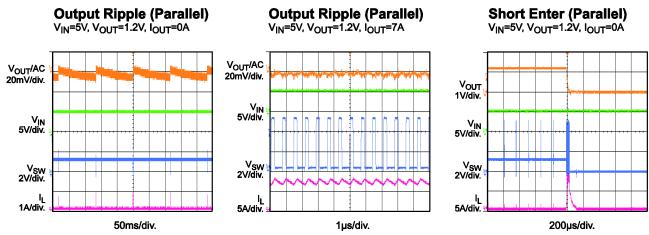


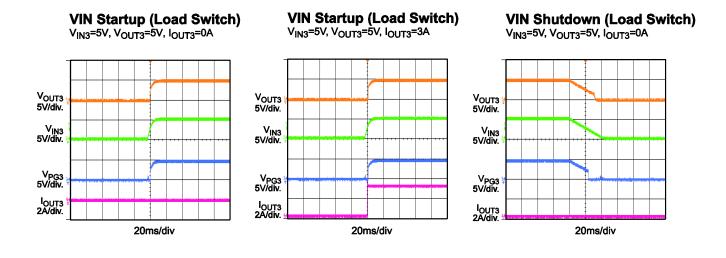


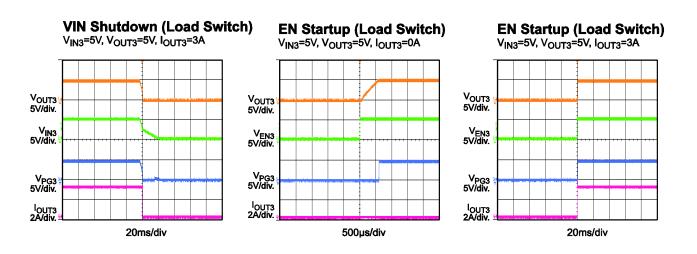

EVB TEST RESULTS (continued)

Performance waveforms are tested on the evaluation board.

 $V_{IN1} = V_{IN2} = 5V$, $V_{OUT1} = V_{OUT2} = 1.2V$, $L1 = L2 = 1\mu H$, $T_A = 25^{\circ}C$, unless otherwise noted.

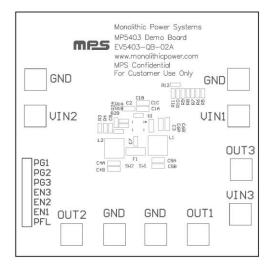



© 2016 MPS. All Rights Reserved.


EVB TEST RESULTS (continued)

Performance waveforms are tested on the evaluation board.

 $V_{\text{IN1}} = V_{\text{IN2}} = 5V$, $V_{\text{OUT1}} = V_{\text{OUT2}} = 1.2V$, $L1 = L2 = 1 \mu H$, $T_A = 25 ^{\circ}\text{C}$, unless otherwise noted.



PRINTED CIRCUIT BOARD LAYOUT

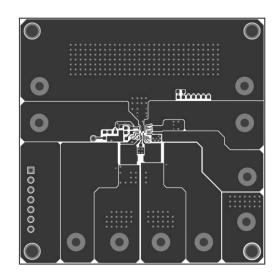


Figure 1—Top Silk Layer

Figure 2—Top Layer

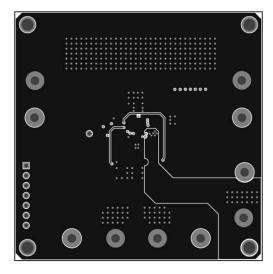


Figure 3—Bottom Layer

QUICK START GUIDE

The output voltage of this board is set externally by operating from +2.7V to +6V for V_{IN1} , +2V to +6V for V_{IN2} (if V_{IN1} >2.7V) and +0.5V to +6V for V_{IN3} (if V_{IN1} >2.7V). The default output voltage of this board is set to V_{OUT1} =1.2V, V_{OUT2} =1.2V.

- 1. Preset Power Supply to $2.7V \le V_{IN1} \le 6V$, $2V \le V_{IN2} \le 6V$, $0.5V \le V_{IN3} \le 6V$.
- 2. Turn Power Supply off.
- 3. Connect Power Supply terminals to:
 - a. Positive (+): V_{IN1} , V_{IN2} , V_{IN3} (connect to V_{IN1} or V_{IN2} or external power)
 - b. Negative (-): GND
- 4. Connect Load to:
 - a. Positive (+): VOUT1
 - b. Negative (-): GND
 - c. Positive (+): VOUT2
 - d. Negative (-): GND
 - e. Positive (+): VOUT3
 - f. Negative (-): GND
- 5. Turn Power Supply on after making connections.
- 6. To enable the MP5403, apply a voltage, $1.3V \le V_{EN} \le 6V$, to the EN pin. To disable the MP5403, apply a voltage, $V_{EN} < 0.4V$, to the EN pin. The EN pin can be connected to V_{IN} with a $100k\Omega$ resistor for automatic startup.
- 7. The output voltage V_{OUT} can be changed by varying R2A or R2B. Calculate the new value by formula:

$$R2A(orR2B) = \frac{R1A(orR1B)}{\frac{V_{OUT}}{0.6V} - 1}$$

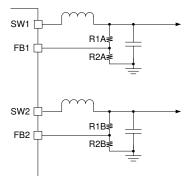


Figure 4

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.