Switching Power Supply Type SPP1 20W Enclosed type

- Universal AC input full range
- Short circuit protection
- Internal input filter

Optional features

- High efficiency
- High everage efficiency (meet ErP)
- Low stand-by power consumption
- CE, TUV, and cURus approved

Product Description

Enclosed Switching Power Supply meet your needs for AC DC and DC DC power requirements. SPP provide the most flexible OEM system power solutions from 5V to 24V at 20V for industrial control and automation applications.

Most carry fullcertifications and offer wide range universal input, screw terminal connections.

Especially designed where compact dimensions and performance are a must.

Model ______ SP P1 24 20 1 X Model _____ Mounting (P1 = Panel) _____ Output voltage ____ Output power ____ Input Type _____

CARLO GAVAZZI

Input type: 1= single phase

Approvals

Output Performances

MODEL NO.	INPUT VOLTAGE	OUTPUT POWER	OUTPUT VOLTAGE	OUTPUT CURRENT	EFF. (min.)	EFF. (typ.)	EFF. (avg.)
Single Output Models							
SPP1 05201	88~264 VAC	20 WATTS	+ 5 VDC	4000 mA	81%	83%	80%
SPP1 12201	88~264 VAC	20.4 WATTS	+ 12 VDC	1700 mA	84%	86%	83%
SPP1 15201	88~264 VAC	21 WATTS	+15 VDC	1400 mA	85%	87%	84%
SPP1 24201	88~264 VAC	21.6 WATTS	+24 VDC	900 mA	85%	87%	84%

Output Data All specifications are at nominal values, full load, 25°C unless otherwise noticed

Line regulation	± 0.5%
Load regulation	±1%
Minimum load	0%
Turn on time (full resistive load) Vi nom, Io nom Vi nom, Io nom with 3500µF	1000ms 1500ms
Transient recovery time	2ms
Ripple and noise	100mVpp
Output voltage accuracy	+ 1%
Temperature coefficient	± 0.03%/°C
Hold up time Vi= 115VAC Vi= 230VAC	15ms 80ms
Voltage fall time (I ₀ nom, Vi nom)	150ms
Voltage rise time Vi nom, Io nom (full resistive load) Vi nom, Io nom with 3500µF CAP	150ms 500ms

Voltage trim range	
5V Model	4.5-5.5 VDC
12V Model	10.8-13.2 VDC
15V Model	13.5-16.5 VDC
24V Model	21.6-27.6 VDC
Rated continuous loading	
5V Model	4A @ 5VDC/3.6A @ 5.5VDC
12V Model	1.7A @ 12VDC/1.5A @ 13.2 VDC
15V Model	1.4A @ 15VDC/1.25A@ 16.5VDC
24V Model	0.9A @ 24VDC/0.75A @ 27.6VDC
Reverse voltage	
5V Model	7.5VDC
12V Model	18VDC
15V Model	22VDC
24V Model	35VDC
Capacitor load	3500μF

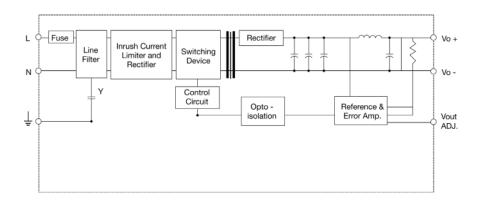
Input Data All specifications are at nominal values, full load, 25°C unless otherwise noticed

Rated input voltage Inom	100 - 240VAC	Power dissipation	
Voltage range		(Vi : 230VAC, lo nom) 5V Model	4.5W
AC IN	88 - 264VAC	12V Model	4W
DC IN	120 - 375VDC	15V Model	4W
Rated input current	120 0.0120	24V Model	4W
Vi: 115/230 VAC lo nom	390mA / 250 mA	Frequency range	47- 63Hz
Vi: 88 VAC Io nom	250mA	Leakage current	
Inrush current		Input-Output	0.25mA
Vi= 115VAC	20A	Input-FG	3.5mA
Vi= 230VAC	40A		

Controls and Protections All specifications are at nominal values, full load, 25°C unless otherwise noticed

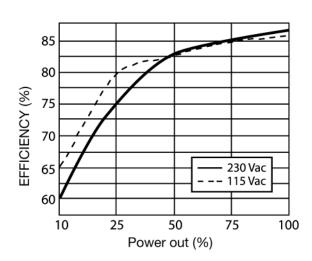
Overload	120 – 160%	Over voltage protection	V	/DC
Input fuse	T2A/250VAC internal ¹⁾	5V Mardal	Min.	Max.
Output short circuit	Hiccup mode	5V Model	5.75	6.75
Output offort offourt	Though mode	12V Model	13.8	16.2
		15V Model	17.25	20.25
		24V Model	28.8	32.4
1) Fuse not replaceable by user				

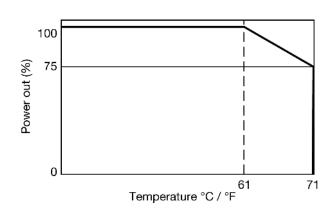
General Data All specifications are at nominal values, full load, 25°C unless otherwise noticed


Ambient temperature	-40°C to +71°C	MTBF (Bellcore issue 6 @ 40°C, GB)	
Derating (>60°C to +71°C)	2.5%/°C (see curve)	5V Model	729000 Hours
Relative humidity	20 ~ 95%RH	12V Model 15V Model	740000 Hours 746000 Hours
Storage	-40°C to +85°C	24V Model	772000 Hours
Protection degree	IP20	Case material	Plastic: PC, UL94-V0
Cooling	Free air convection	Altitude IEC 60068-2-13	4850m
Insulation voltage		Stand-by power comsumption	0.3W
Input-Output Input-FG	3.000VAC/4242VDC min 1.500VAC/2121VDC min	Dimensions LxWxD mm(inch)	92(3.62)x54(2.13)x30(1.18)
Insulation resistance I/O	100MΩ min (@ 500VDC)	Weight	140g
Switching Frequency	65 Khz		

Norms and Standards

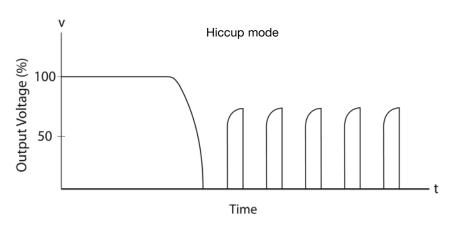
Vibration resistance	meet IEC 60068-2-6 (10-500Hz, 2G, along X, Y, Z each Axis, 60 min for each Axis)	CE	EN 61000-6-3, EN 55022 Class B, EN 61000-3-2, EN 61000-3-3, EN 61000-6-2,
Shock resistance	meet IEC 60068-2-27 (15G, 11ms, 3 Axis, 6 faces, 3 times for each face)		EN 55024, EN 61000-4-2, EN 61000-4-3,
UL / cUL	UL60950-1, Recognized		EN 61000-4-4, EN 61000-4-5.
TUV	EN 60950 -1 CB scheme		EN 61000-4-6, EN 61000-4-8, EN 61000-4-11, ENV 50204, EN 61204-3


Block Diagrams

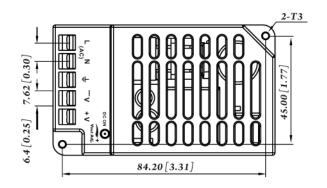

Pin Assignement and Front Controls

Pin No.	Designation	Description	
1	L	Input terminals (phase conductor, no polarity at DC input)	
2	N	Input terminals (neutral conductor, no polarity at DC input)	
3	(Ground this terminal to minimize high-frequecy emissions	
4	-	Negative output terminal	
5	+	Positive output terminal	
	Vout ADJ	Trimmer-potentiometer for Vout adjustment	
	DC ON	Operation indicator LED	

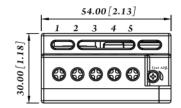
Typ. Efficency Curve



Derating Diagram



Typ. Current Limited Curve


Mechanical Drawings mm (inches)

Installation

Ventilation and cooling	Ventilation/Cooling Normal convection
Connector size range Spring terminal	AWG22-12 (0.2~2.5mm²) flexible/solid cable, 10mm stripping at cable connector can withstand torque at maximum 0.90 Nm (8 pound-inches)
General tolerances mm(in.) 0.00 (0.00) ÷ 30.00 (1.18) 30.00 (1.18) ÷ 120.00 (4.72)	±0.30 (0.01) ±0.50 (0.02)

