Designer's™ Data Sheet # **Insulated Gate Bipolar Transistor** ### N-Channel Enhancement-Mode Silicon Gate This Insulated Gate Bipolar Transistor (IGBT) uses an advanced termination scheme to provide an enhanced and reliable high voltage—blocking capability. Short circuit rated IGBT's are specifically suited for applications requiring a guaranteed short circuit withstand time such as Motor Control Drives. Fast switching characteristics result in efficient operation at high frequencies. - Industry Standard High Power TO–247 Package with Isolated Mounting Hole - High Speed E_{off}: 60 μJ per Amp typical at 125°C - High Short Circuit Capability 10 μs minimum - · Robust High Voltage Termination - Robust RBSOA Motorola Preferred Device IGBT IN TO-247 30 A @ 90°C 50 A @ 25°C 600 VOLTS SHORT CIRCUIT RATED #### MAXIMUM RATINGS (T_C = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | | | |--|--------------------------------------|----------------------|---------------|--|--| | Collector-Emitter Voltage | VCES | 600 | Vdc | | | | Collector–Gate Voltage (R _{GE} = 1.0 MΩ) | Vcgr | 600 | Vdc | | | | Gate-Emitter Voltage — Continuous | VGE | ±20 | Vdc | | | | Collector Current — Continuous @ T _C = 25°C
— Continuous @ T _C = 90°C
— Repetitive Pulsed Current (1) | IC25
IC90
ICM | 50
30
100 | Adc
Apk | | | | Total Power Dissipation @ T _C = 25°C Derate above 25°C | P _D | 202
1.61 | Watts
W/°C | | | | Operating and Storage Junction Temperature Range | T _J , T _{stg} | -55 to 150 | °C | | | | Short Circuit Withstand Time (V _{CC} = 360 Vdc, V _{GE} = 15 Vdc, T _J = 25°C, R _G = 20 Ω) | t _{sc} | 10 | μs | | | | Thermal Resistance — Junction to Case – IGBT — Junction to Ambient | R _{OJC}
R _{OJA} | 0.62
45 | °C/W | | | | Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds | TL | 260 | °C | | | | Mounting Torque, 6–32 or M3 screw | 10 | 10 lbf•in (1.13 N•m) | | | | ⁽¹⁾ Pulse width is limited by maximum junction temperature. **Designer's Data for "Worst Case" Conditions** — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design. Preferred devices are Motorola recommended choices for future use and best overall value. #### **MGW30N60** ## **ELECTRICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise noted) | Cha | racteristic | Symbol | Min | Тур | Max | Unit | |---|--|---------------------|----------|----------------------|-------------------|--------------| | OFF CHARACTERISTICS | | | | | | | | Collector-to-Emitter Breakdown Voltage (VGE = 0 Vdc, I _C = 250 μAdc) Temperature Coefficient (Positive) | | BVCES | 600 |
870 | _ | Vdc
mV/°C | | Emitter-to-Collector Breakdown Voltage (VGE = 0 Vdc, IEC = 100 mAdc) | | BV _{ECS} | 25 | _ | _ | Vdc | | Zero Gate Voltage Collector Current (VCE = 600 Vdc, VGE = 0 Vdc) (VCE = 600 Vdc, VGE = 0 Vdc, TJ = 125°C) | | CES | _ | _ | 100
2500 | μAdc | | Gate-Body Leakage Current (VGE = ± 20 Vdc, VCE = 0 Vdc) | | IGES | _ | _ | 250 | nAdc | | ON CHARACTERISTICS (1) | | 1 | • | | | | | Collector-to-Emitter On-State Volta
(VGE = 15 Vdc, I _C = 15 Adc)
(VGE = 15 Vdc, I _C = 15 Adc, T _J =
(VGE = 15 Vdc, I _C = 30 Adc) | | VCE(on) | = | 2.20
2.10
2.60 | 2.90
—
3.45 | Vdc | | Gate Threshold Voltage
(V _{CE} = V _{GE} , I _C = 1 mAdc)
Threshold Temperature Coefficien | nt (Negative) | V _{GE(th)} | 4.0
— | 6.0
10 | 8.0
— | Vdc
mV/°C | | Forward Transconductance (V _{CE} = | 10 Vdc, I _C = 30 Adc) | 9fe | _ | 15 | _ | Mhos | | YNAMIC CHARACTERISTICS | | • | • | • | • | | | Input Capacitance | (V _{CE} = 25 Vdc, V _{GE} = 0 Vdc,
f = 1.0 MHz) | C _{ies} | _ | 4280 | _ | pF | | Output Capacitance | | Coes | _ | 275 | _ | | | Transfer Capacitance | | C _{res} | _ | 19 | _ | 1 | | WITCHING CHARACTERISTICS (1 |) | | • | • | | | | Turn-On Delay Time | | ^t d(on) | _ | 76 | _ | ns | | Rise Time | $(V_{CC}=360~Vdc,~I_{C}=30~Adc,~V_{GE}=15~Vdc,~L=300~\mu H~R_{G}=20~\Omega,~T_{J}=25^{\circ}C)$ Energy losses include "tail" | t _r | _ | 80 | _ | | | Turn-Off Delay Time | | [†] d(off) | _ | 348 | _ | | | Fall Time | | tf | _ | 188 | _ | | | Turn-Off Switching Loss | | E _{off} | _ | 0.98 | 1.28 | mJ | | Turn-On Delay Time | (V _{CC} = 360 Vdc, I _C = 30 Adc,
V _{GE} = 15 Vdc, L = 300 μH
R _G = 20 Ω, T _J = 125°C)
Energy losses include "tail" | ^t d(on) | _ | 73 | _ | ns | | Rise Time | | t _r | _ | 95 | _ |] | | Turn-Off Delay Time | | td(off) | _ | 394 | _ | | | Fall Time | | tf | _ | 418 | _ | 1 | | Turn-Off Switching Loss | | E _{off} | _ | 1.90 | _ | mJ | | Gate Charge | (V _{CC} = 360 Vdc, I _C = 30 Adc,
V _{GE} = 15 Vdc) | QT | _ | 150 | _ | nC | | | | Q ₁ | _ | 30 | _ | | | | | Q ₂ | | 45 | | | | NTERNAL PACKAGE INDUCTANC | E | | | | | | | Internal Emitter Inductance (Measured from the emitter lead 0.25" from package to emitter bond pad) | | LE | _ | 13 | _ | nH | #### TYPICAL ELECTRICAL CHARACTERISTICS Figure 1. Output Characteristics, T_J = 25°C Figure 3. Transfer Characteristics Figure 5. Capacitance Variation Figure 2. Output Characteristics, T_J = 125°C Figure 4. Collector–to–Emitter Saturation Voltage versus Junction Temperature Figure 6. Gate—to—Emitter Voltage versus Total Charge #### MGW30N60 Figure 7. Turn–Off Losses versus Gate Resistance Figure 9. Turn-Off Losses versus Collector-to-Emitter Current Figure 8. Turn-Off Losses versus Junction Temperature Figure 10. Reverse Biased Safe Operating Area #### **PACKAGE DIMENSIONS** #### MGW30N60 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. #### How to reach us: **USA/EUROPE/Locations Not Listed**: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design-NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298