

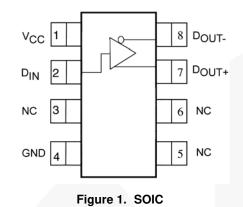
May 2010

FIN1017 3.3V LVDS, 1-Bit, High-Speed Differential Driver

Features

- Greater than 600Mbs Data Rate
- 3.3V Power Supply Operation
- 0.5ns Maximum Differential Pulse Skew
- 1.5ns Maximum Propagation Delay
- Low Power Dissipation
- Power-Off Protection
- Meets or Exceeds the TIA/EIA-644 LVDS Standard
- Flow-Through Pinout Simplifies PCB Layout
- 8-Lead SOIC and US8 Packages Save Space

Description


This single driver is designed for high-speed interconnects utilizing Low Voltage Differential Signaling (LVDS) technology. The driver translates LVTTL signal levels to LVDS levels with a typical differential output swing of 350mV, which provides low EMI at ultra-low power dissipation even at high frequencies. This device is ideal for high-speed transfer of clock or data.

The FIN1017 can be paired with its companion receiver, the FIN1018, or with any other LVDS receiver.

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FIN1017MX	-40 to +85°C	8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150inch Narrow	Tape and Reel
FIN1017K8X	-40 to +85°C	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	Tape and Reel

Pin Configuration

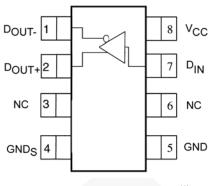


Figure 2. US-8 (Top View)⁽¹⁾

Note:

1. Ground pins 4 and 5 for optimum performance.

Pin Definitions

Pin# US-8	Pin# SOIC	Name	Description
7	2	D _{IN}	LVTTL Data Input
2	7	D _{OUT+}	Non-inverting Driver Output
1	8	D _{OUT-}	Inverting Driver Output
8	1	V _{CC}	Power Supply
4, 5	4	GND / GND _S	Ground
3, 6	3, 5, 6	NC	No Connect

Function Table

Input	Outputs		
D _{IN}	D _{OUT+}	D _{OUT-}	
LOW	LOW	HIGH	
HIGH	HIGH	LOW	
OPEN	LOW	HIGH	

FIN1017 — 3.3V LVDS, 1-Bit, High-Speed Differential Driver

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	-0.5	+4.6	V
D _{IN}	DC Input Voltage	-0.5	+6.0	V
D _{OUT}	DC Output Voltage	-0.5	+4.7	V
I _{OSD}	Driver Short-Circuit Current, Continuous		10	mA
T _{STG}	Storage Temperature Range	-65	+150	°C
TJ	Max Junction Temperature		+150	°C
TL	Lead Temperature (Soldering, 10 Seconds)		+260	°C
	Human Body Model, JESD22-A114		6500	
ESD	Bus Pins D _{OUT+} /D _{OUT-} to GND		10500	V
	Machine Model, JESD22-A115		350	

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

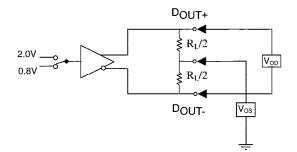
Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage	3.0	3.6	V
V _{IN}	Input Voltage	0	V _{CC}	V
T _A	Operating Temperature	-40	+85	°C

DC Electrical Characteristics

Over-supply voltage and operating temperature ranges, unless otherwise specified. All typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3V$.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
VOD	Output Differential Voltage		250	350	450	mV
ΔV_{OD}	V _{OD} Magnitude Change from Differential LOW-to-HIGH				25	mV
Vos	Offset Voltage	$-$ R _L = 100 Ω , See Figure 3	1.125	1.250	1.375	V
ΔV_{OS}	Offset Magnitude Change from Differential LOW-to-HIGH				25	mV
IOFF	Power-Off Output Current	$V_{CC} = 0V, V_{OUT} = 0V \text{ or } 3.6V$			±20	mA
I _{OS} Shor	Short-Circuit Output Current	$V_{OUT} = 0V$			-8	mA
		$V_{OD} = 0V$			±8	
VIH	Input HIGH Voltage		2		Vcc	V
V _{IL}	Input LOW Voltage		GND		0.8	V
l _{iN}	Input Current	$V_{IN} = 0V \text{ or } V_{CC}$			±20	mA
I _{I(OFF)}	Power-Off Input Current	$V_{CC} = 0V$, $V_{IN} = 0V$ or 3.6V			±20	mA
V _{IK}	Input Clamp Voltage	I _{IK} = -18mA	-1.5			V
I _{CC} F		No Load, $V_{IN} = 0V$ or V_{CC}			8	mA
	Power Supply Current	$R_L = 100\Omega$, $V_{IN} = 0V$ or V_{CC}			10	mA
CIN	Input Capacitance			4		pF
Соит	Output Capacitance			6		pF

AC Electrical Characteristics


Over-supply voltage and operating temperature ranges, unless otherwise specified. All typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3V$.

Symbol	Parameter	Test Conditions	Min.	Max.	Units
t _{PLHD}	Differential Propagation Delay, LOW-to-HIGH		0.5	1.5	ns
t PHLD	Differential Propagation Delay, HIGH-to-LOW		0.5	1.5	ns
t _{TLHD}	Differential Output Rise Time (20% to 80%) $R_L = 100\Omega, C_L = 10pF,$		0.4	1.0	ns
t _{THLD}	Differential Output Fall Time (80% to 20%)	see Figure 4 and Figure 5	0.4	1.0	ns
t _{SK(P)}	Pulse Skew t _{PLH} - t _{PHL}			0.5	ns
t _{SK(PP)}	Part-to-Part Skew ⁽²⁾			1.0	ns

Note:

 t_{SK(PP)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits.

Test Diagrams

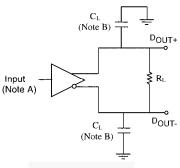
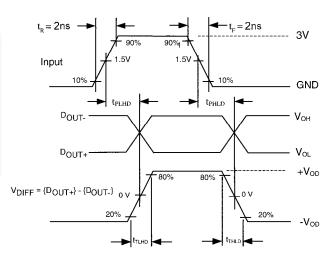
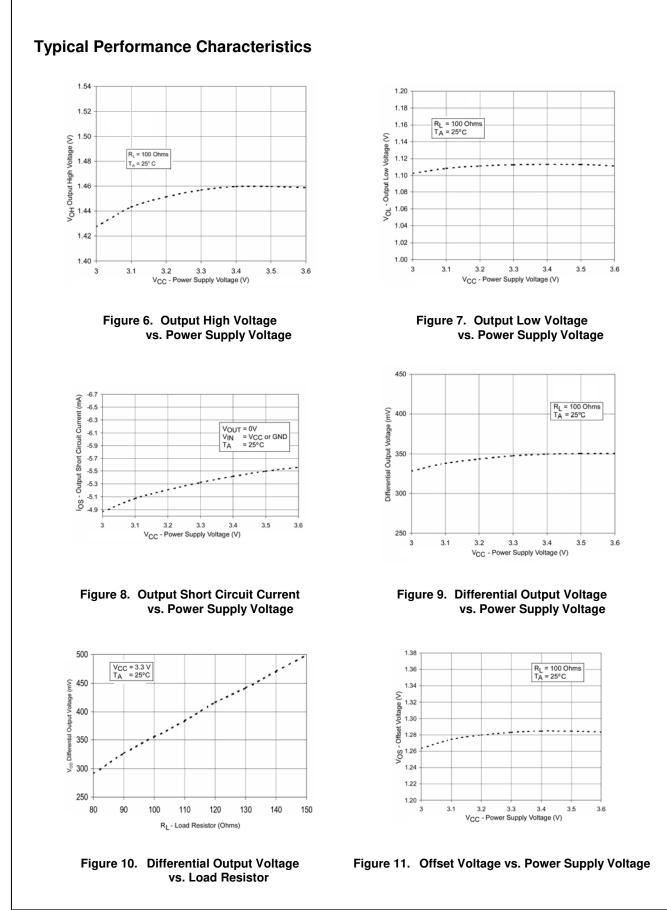
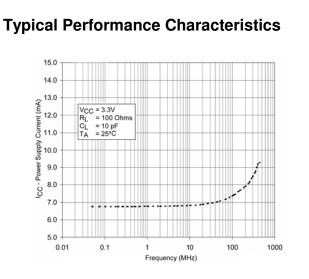
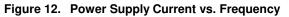
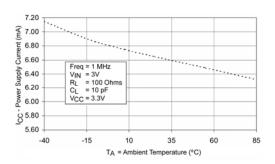



Figure 4. Differential Driver Propagation Delay and Transition Time Test Circuit


Notes:


Note A: All input pulses have frequency = 10MHz, t_R or t_F = 2ns.


Note B: C_L includes all probe and fixture capacitances.



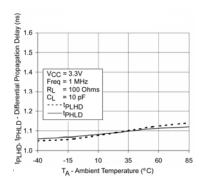


Figure 16. Differential Propagation Delay vs. Ambient Temperature

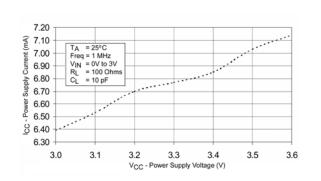


Figure 13. Power Supply Current vs. Power Supply Voltage

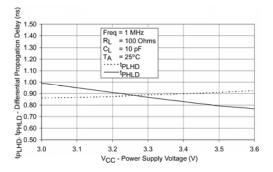


Figure 15. Differential Propagation Delay vs. Power Supply

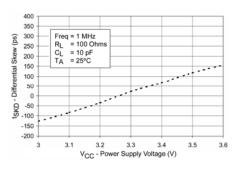
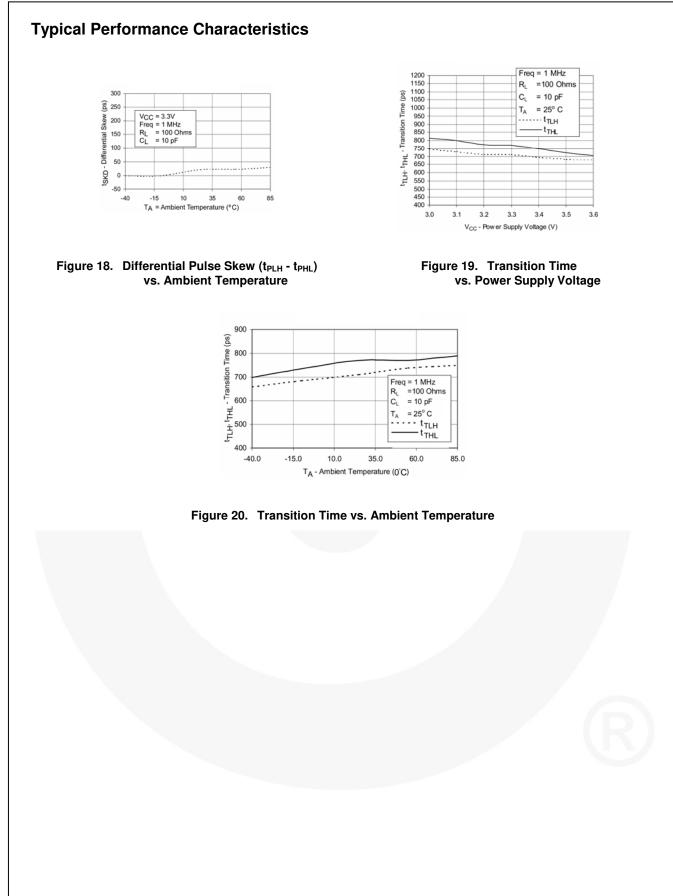
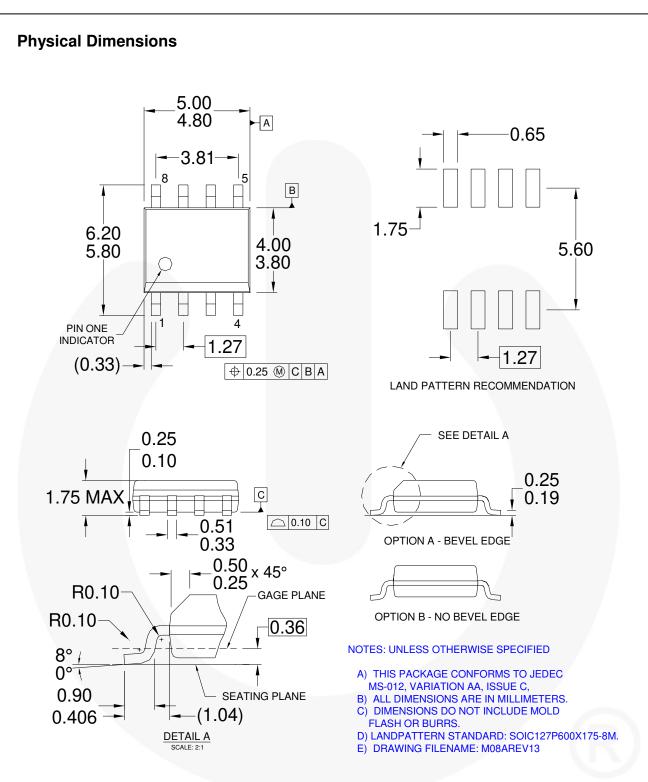
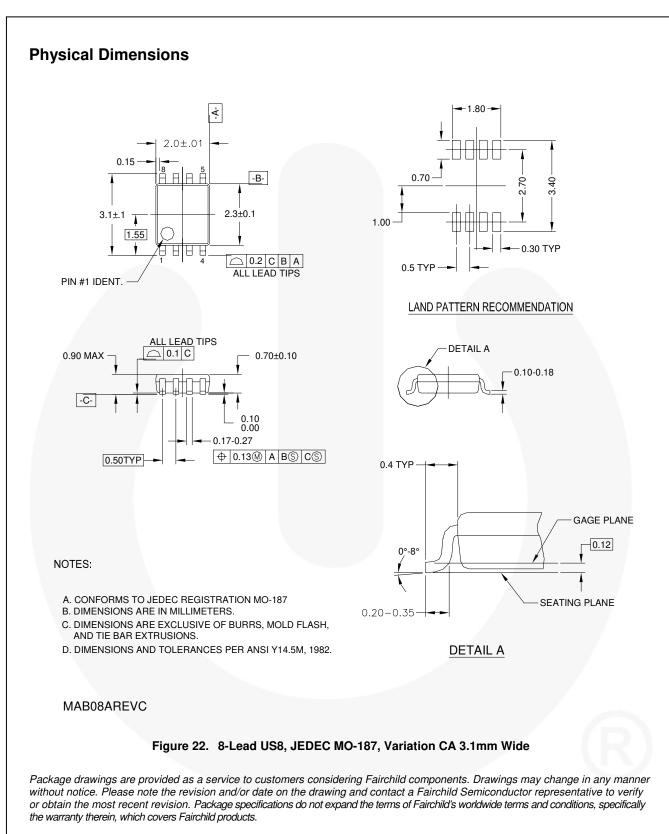




Figure 17. Differential Pulse Skew (t_{PLH} - t_{PHL}) vs. Power Supply Voltage



Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>. FIN1017 ----

3.3V LVDS, 1-Bit, High-Speed Differential Driver

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>.

full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product informatic Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification Product Status		Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		