

CY25823

CK-SSCD Spread Spectrum Differential Clock Specification

Features

- 3.3V operation
- 96- and 100-MHz frequency support
- Selectable slew rate control
- 200-ps jitter
- I²C programmability
- 250-µA power-down current
- Lexmark Spread Spectrum for best electromagnetic interference (EMI) reduction
- 16-pin TSSOP package

٠

•

Pin Description

Pin No.	Name	Туре	Description
1	CLKIN	Input	3.3V 14.131818-MHz single-ended clock input
2,3,4	S[3:1]	Input	Spread Spectrum configuration
5	PWRDWN	Input	3.3V LVTTL input for power-down active high, no pull-up or pull-down
6	REFOUT/SEL	I/O	Latched input during power-up , 1 (10K external pull-up) = 100 MHz or 0 (10K external pull-down) = 96 MHz. After power-up it becomes 14.31818-MHz REFOUT clock.
7	SCLK	Input	SMBus-compatible SCLK
8	SDATA	I/O	SMBus-compatible SDATA
9	VDD	3.3V	3.3V power supply for logic and outputs
10	VSS	Ground	Ground for logic and outputs
11	CLKOUT#	Output	0.7V 96-MHz or 100-MHz Spread Spectrum differential clock output
12	CLKOUT	Output	0.7V 96-MHz or 100-MHz Spread Spectrum differential clock output
13	VSSIREF	Ground	Current reference ground
14	IREF	Input	Typically a precision 475 Ω external resistor is connected between this pin and VSSIREF to set IOUT (drive current) of CLKOUT differential driver.
15	VSSA	Ground	Ground for PLL
16	VDDA	3.3V	3.3V power supply for PLL

Serial Data Interface

To enhance the flexibility and function of the clock synthesizer, a two-signal serial interface is provided. Through the Serial Data Interface, various device functions such as individual clock output buffers can be individually enabled or disabled.

The registers associated with the Serial Data Interface initializes to their default setting upon power-up, and therefore use of this interface is optional. Clock device register changes are normally made upon system initialization, if any are required. The interface can also be used during system operation for power management functions.

Data Protocol

The clock driver serial protocol accepts byte write, byte read, block write, and block read operation from the controller. For block write/read operation, the bytes must be accessed in sequential order from lowest to highest byte (most significant bit first) with the ability to stop after any complete byte has been transferred. For byte write and byte read operations, the system controller can access individual indexed bytes. The offset of the indexed byte is encoded in the command code, as described in *Table 1*.

The block write and block read protocol is outlined in *Table 2* while *Table 3* outlines the corresponding byte write and byte read protocol. The combined 7 bits slave address and read/write bit form a complete block write (D4h) or block read (D5h) command.

Table 1. Command Code Definition

Bit	Description
7	0 = Block read or block write operation 1 = Byte read or byte write operation
· · /	Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'

Table 2. Block Read and Block Write Protocol

	Block Write Protocol		Block Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
2:8	Slave address – 7 bits (D4)	2:8	Slave address – 7 bits (D5)
9	Write = 0	9	Read = 0
10	Acknowledge from slave	10	Acknowledge from slave

Table 2. Block Read and Block Write Protocol (continued)

	Block Write Protocol	Block Read Protocol		
Bit	Description	Bit	Description	
11:18	Command Code – 8 bits '00000000' stands for block operation	11:18	Command Code – 8 bits '00000000' stands for block operation	
19	Acknowledge from slave	19	Acknowledge from slave	
20:27	Byte Count – 8 bits	20	Repeat start	
28	Acknowledge from slave	21:27	Slave address – 7 bits	
29:36	Data byte 0 – 8 bits	28	Read = 1	
37	Acknowledge from slave	29	Acknowledge from slave	
38:45	Data byte 1 – 8 bits	30:37	Byte count from slave – 8 bits	
46	Acknowledge from slave	38	Acknowledge	
		39:46	Data byte from slave – 8 bits	
	Data Byte (N–1) –8 bits	47	Acknowledge	
	Acknowledge from slave	48:55	Data byte from slave – 8 bits	
	Data Byte N –8 bits	56	Acknowledge	
	Acknowledge from slave		Data bytes from slave/Acknowledge	
	Stop		Data byte N from slave – 8 bits	
			Not Acknowledge	
			Stop	

Table 3. Byte Read and Byte Write Protocol

	Byte Write Protocol		Byte Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
2:8	Slave address – 7 bits (D4)	2:8	Slave address – 7 bits (D5)
9	Write = 1	9	Read = 1
10	Acknowledge from slave	10	Acknowledge from slave
11:18	Command Code – 8 bits '100000xx' stands for byte operation, bits[1:0] of the command code represents the offset of the byte to be accessed	11:18	Command Code – 8 bits '100000xx' stands for byte operation, bits[1:0] of the command code represents the offset of the byte to be accessed
19	Acknowledge from slave	19	Acknowledge from slave
20:27	Data byte from master – 8 bits	20	Repeat start
28	Acknowledge from slave	21:27	Slave address – 7 bits
29	Stop	28	Read = 1
		29	Acknowledge from slave
		30:37	Data byte from slave – 8 bits
		38	Not Acknowledge
		39	Stop

Byte 0: Control Register

Bit	@Power-up	Pin#	Name	Pin Description
7	0	11, 12	SS0	-
6	S1	11, 12	SS1	-
5	S2	11, 12	SS2	-
4	S3	11, 12	SS3	-
3	SEL100/96#	6	SEL100/96#	Select output frequency, 1 = 100 MHz, 0 = 96 MHz

Byte 0: Control Register (continued)

Bit	@Power-up	Pin#	Name	Pin Description
2	0			Reserved must equal 0
1	1	11, 12	Spread Enable	Spread spectrum enable, 0 = Disable, 1 = Enable
0	0			Hardware/software control of S[3:0], and output frequency. 0 = hardware control, 1= software control.

Table 4. Spread Spectrum Select (Charge Pump = 00 or Default Condition)

SS3	SS2	SS1	SS0	Spread Mode	Spread Amount %
0	0	0	0	Down	0.65
0	0	0	1	Down	0.80
0	0	1	0	Down	0.90
0	0	1	1	Down	1.10
0	1	0	0	Down	1.30
0	1	0	1	Down	1.40
0	1	1	0	Down	1.80
0	1	1	1	Down	2.25
1	0	0	0	Center	±0.25
1	0	0	1	Center	±0.30
1	0	1	0	Center	±0.40
1	0	1	1	Center	±0.45
1	1	0	0	Center	±0.60
1	1	0	1	Center	±0.80
1	1	1	0	Center	±1.00
1	1	1	1	Center	±1.10

Table 5. Spread Spectrum Select (Charge Pump = 11 and 01)

SS3	SS2	SS1	SS0	Spread Mode	Spread Amount % (Charge pump = 11)	Spread Amount % (Charge pump = 01)
0	0	0	0	Down	0.80	0.90
0	0	0	1	Down	0.90	1.10
0	0	1	0	Down	1.20	1.40
0	0	1	1	Down	1.40	1.60
0	1	0	0	Down	1.60	2.00
0	1	0	1	Down	1.75	2.20
0	1	1	0	Down	2.20	2.75
0	1	1	1	Down	2.60	3.30
1	0	0	0	Center	±0.38	±0.40
1	0	0	1	Center	±0.40	±0.50
1	0	1	0	Center	±0.50	±0.60
1	0	1	1	Center	±0.60	±0.70
1	1	0	0	Center	±0.75	±0.90
1	1	0	1	Center	±1.00	±1.25
1	1	1	0	Center	±1.15	±1.45
1	1	1	1	Center	±1.30	±1.65

Byte1[7:2] Control Register

Bit	@Pup	Pin#	Name	Pin Description
7	0			Reserved set equal to '0'
6	0			Reserved set equal to '0'
5	0			Reserved set equal to '0'
4	0			Reserved set equal to '0'
3	0			Reserved set equal to '0'
2	1	11,12	CLKEN	CLKOUT/CLKOUT# enable 0 =Disable, 1 = Enable

Byte 1: [1:0] Control Register (Charge Pump Settings)

Bit	@Pup	Default Value	One Step Higher Than Default	Two Steps Higher Than Default
1	0	0	1	1
0	0	0	1	0

Bytes 2 through 5: Reserved Registers

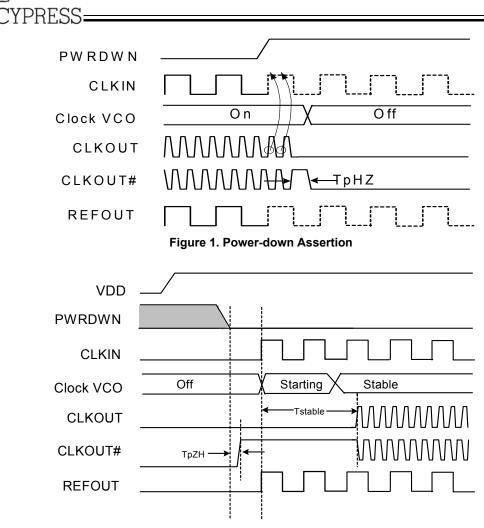
Byte 6: Vendor/Revision ID Register

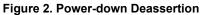
Bit	@Pup	Pin#	Name	Pin Description
7	0	-	-	Revision ID Bit 3
6	0	-	-	Revision ID Bit 2
5	0	-	-	Revision ID Bit 1
4	0	-	-	Revision ID Bit 0
3	1	-	-	Vendor ID Bit 3
2	0	-	-	Vendor ID Bit 2
1	0	-	-	Vendor ID Bit 1
0	0	_	_	Vendor ID Bit 0

Spread Enable and Spread Select[3:0]

Spread Enable and Spread Select[3:0] register bits are used to enable and disable spread spectrum on CLKOUT and to change the spread modulation. When the spread selection changes, the CLKOUT output transits to the target spread selection without deviating from clock specifications.

At device power-up spread spectrum is enabled and hardware control mode is enabled. The initial spread-spectrum configuration is determined by the S[3:1] pins, which correspond to the S[3:1] bits in *Table 4*. The S0 configuration bit is hard-coded to zero when hardware control mode is selected. All four spread spectrum configuration bits, S[3:0], can also be set when the device is in the software control mode.


Charge Pump Select Byte1 [1:0]


Programming these bits (Byte1[1:0]) via I^2C enables the user to have more spread percentage options as described in *Table 5*. At the start up the default value for byte1[1:0] bits is set to '00', this value can be changed via I^2C to have higher spread percentage on CLKOUT and CLKOUT#. Setting the byte[1:0] bits to '11' allows the user to have a slightly higher spread percentage than the default value(00). The '01' option is the highest spread option for maximum EMI reduction.

PWRDWN (Power-down) Clarification

The PWRDWN (Power-down) pin is used to shut off the clock prior to shutting off power to the device. PWRDWN is an asynchronous active HIGH input. This signal is synchronized internally to the device powering down the clock synthesizer. PWRDWN also is an asynchronous function for powering up the system. When PWRDWN is high, all clocks are tri-stated and the oscillator and PLL are also powered down. All clocks are shut down in a synchronous manner so has not to cause glitches while transitioning to the stopped state. The CLKIN input must be on and within specified operating parameters before PWRDWN is asserted and it must remain in this state while PWRDWN is asserted, see *Figure 1*.

When PWRDWN is de-asserted (CLKIN starts after powerdown de-assertion to meet the IDD \leq 250µA specification) the clocks should remain stopped until the VCO is stable and within specification (t_{STABLE})., see *Figure 2*.

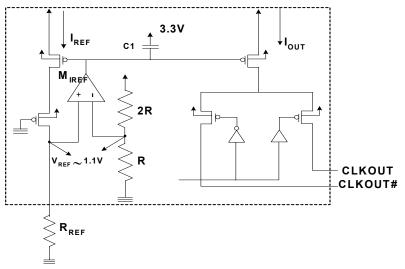


Figure 3. Current Reference Circuit

CLKOUT/CLKOUT# Enable Clarification

The CLKOUT enable I2C register bit (Byte1, bit2) is used to enable/disable the CLKOUT clock. The PLL and crystal oscillator remains on when the outputs are disabled.

When CLKOUT is disabled, the disabled clock is three-stated. The transition to this mode (three-state) is glitch free. Similarly, when CLKOUT is enabled the clock starts in a predictable manner without any glitches or abnormal behavior.

Current Reference, IREF


The details of the current reference circuit are shown in *Figure 3*. The operational amplifier in the current reference circuit drives the gate of M_{IREF} with feedback to establish V_{REF} = 1.1V at both inputs of the amplifier. Thus the reference current is established according to the following formula:

$I_{REF} = 1.1V / R_{REF}$

where $\mathsf{R}_{\mathsf{REF}}$ is the external resistor and 1.1V is the reference voltage.

The I_{REF} is scaled by 6x at the output stage and I_{OUT} is given as: I_{OUT} = 6 x I_{REF}

The recommended value for ${\sf R}_{\sf REF}$ is 475 Ohms, which corresponds to the ${\sf I}_{\sf REF}$ of 2.32mA.

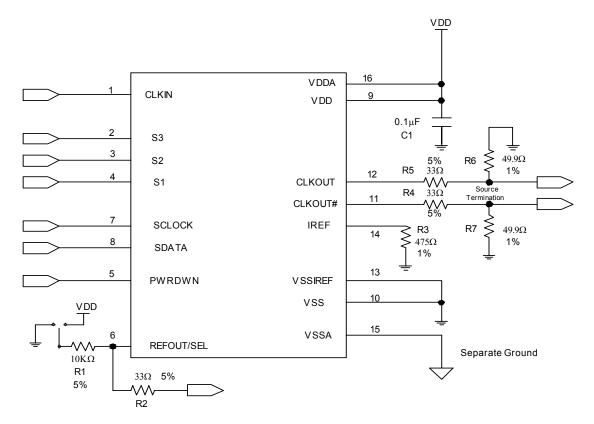
Absolute Maximum Conditions

Parameter	Description	Condition	Min.	Max.	Unit
V _{DD}	Core Supply Voltage		-0.5	4.6	V
V _{DDA}	Analog Supply Voltage		-0.5	4.6	V
V _{IN}	Input Voltage	Relative to V _{SS}	-0.5	V _{DD} + 0.5	VDC
Т _S	Temperature, Storage	Non-functional	-65	150	°C
T _A	Temperature, Operating Ambient	Functional	0	70	°C
Т _Ј	Temperature, Junction	Functional	-	150	°C
Ø _{JC}	Dissipation, Junction to Case	Mil-Spec 883E Method 1012.1	-	33.89	°C/W
Ø _{JA}	Dissipation, Junction to Ambient	JEDEC (JESD 51)	-	117.36	°C/W
ESD _{HBM}	ESD Protection (Human Body Model)	MIL-STD-883, Method 3015	2000	-	V

DC Electrical Specifications

Parameter	Description	Condition	Min.	Max.	Unit
VDD	Power supply for logic and outputs	3.3 ± 5%	3.135	3.465	V
VDDA	Power supply for PLL	3.3 ± 5%	3.135	3.465	V
V _{ILI2C}	Input Low Voltage	SDATA, SCLK	V _{SS} -0.5	0.8	V
V _{IHI2C}	Input High Voltage	SDATA, SCLK	2.0	V _{DD}	V
V _{IL}	Input Low Voltage		$V_{\rm SS} - 0.5$	0.8	V
V _{IH}	Input High Voltage		2.0	V _{DD}	V
IIL	Input Leakage Current	except internal pull-ups resistors, 0 < V _{IN} < V _{DD}	-5	5	μA
I _{OZ}	High-impedance Output Current		-10	10	μΑ
I _{DD}	Dynamic Supply Current	without output load	-	50	mA
I _{DDS}	Total Power Supply Current in Shutdown mode (No Input Clock)	Shutdown active	-	250	μA
C _{IN}	Input Pin Capacitance		2	5	pF
C _{OUT}	Output Pin Capacitance		3	6	pF
L _{IN}	Input Pin Inductance		-	5	nH
R _{PU}	SCLK and SDATA pull-up resistors	when PWRDWN = 1	50	200	kΩ
R _{REF}	I _{REF} external reference resistor	1% tolerance	200	500	W

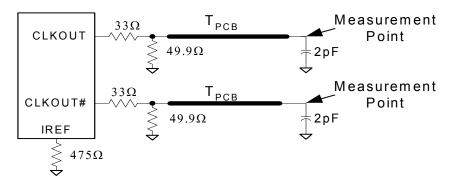
AC Electrical Specifications


Parameter	Description	Condition	Min.	Max.	Unit
CLKIN/REFC	OUT AC Specifications	•	•	•	
T _{DC}	Duty Cycle	Measured at 1.5V crossing point	40	60	%
T _R / T _F	Rise and Fall Times	Measured between 0.8V and 2.0V (REFOUT with max. 30 pF Lumped capacitive load)	-	1.2	ns
T _{CCJ}	Cycle to Cycle Jitter	As an average over $1-\mu s$ duration	-	1000	ps
L _{ACC}	Long-term Accuracy	Over 150 ms	-	300	ppm
CLKOUT/CL	KOUT# AC Specifications	·			
T _{DC}	CLKOUT and CLKOUT# Duty Cycle	Measured at crossing point V _{OX}	45	55	%
T _{PERIOD}	100 MHz CLKOUT and CLKOUT# Period	Measured at crossing point V_{OX}	9.990	10.010	ns
T _{PERIOD}	96 MHz CLKOUT and CLKOUT# Period	Measured at crossing point V _{OX}	10.406	10.427	ns
T _{CCJ}	CLKOUT/CLKOUT# Cycle to Cycle Jitter with Spread Spectrum Enabled	Measured at crossing point V_{OX}	_	200	ps

AC Electrical Specifications (continued)

Parameter	Description	Condition	Min.	Max.	Unit
T _R / T _F	CLKOUT and CLKOUT# Rise and Fall Times	Measured from V_{OL} = 0.175 to V_{OH} = 0.525V	175	700	ps
T _{RFM}	Rise/Fall Matching	Determined as a fraction of $2^{*}(T_{R} - T_{F})/(T_{R} + T_{F})$	-	20	%
Tstable ^[1]	All clock stabilization from Power-up		-	3.0	ms
ΔT_R	Rise Time Variation		-	125	ps
ΔT_F	Fall Time Variation		-	125	ps
V _{HIGH}	Voltage High		660	850	mv
V _{LOW}	Voltage Low		-150	-	mv
V _{OX}	Crossing Point Voltage at 0.7V Swing		250	550	mv
V _{OVS}	Maximum Overshoot Voltage		-	V _{HIGH} + 0.3	V
V _{UDS}	Minimum Undershoot Voltage		-0.3	-	V
V _{RB}	Ring Back Voltage	Measure SE	-	0.2	V

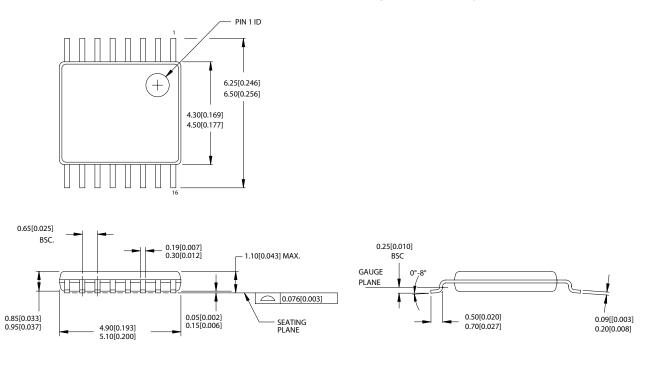
Application Schematic^[2,3]


Figure 4. Application Schematic

Notes:

- 1. Not 100% tested, guaranteed by design.
- 2. V_{DD} and V_{DDA} should be tied together and connected to 3.3V. 3. V_{SSIREF} and V_{SS} are tied together and are common ground.

Figure 5. Single-ended Measurement Points for TRise and TFall (CLKOUT and CLKOUT#)



Ordering Information

Part Number	Package Type	Product Flow	
CY25823ZZC	16-pin TSSOP (Lead-free)	Commercial, 0°C to 70°C	
CY25823ZZCT	16-pin TSSOP – Tape and Reel (Lead-free)	Commercial, 0°C to 70°C	

Package Drawing and Dimension

16-Lead Thin Shrunk Small Outline Package (4.40 MM Body) Z16

51-85091-*A

All product and company names mentioned in this document are the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2003. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document History Page

Document Title: CY25823 CK-SSCD Spread Spectrum Differential Clock Specification Document Number:				
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
**	131662	12/10/03	RGL	New Data Sheet
*A	203801	See ECN	RGL	Fixed the I2C Block Read/Write Protocol and Byte Read/Write Protocol tables