

SCES084H-AUGUST 1996-REVISED SEPTEMBER 2004

FEATURES

- Member of the Texas Instruments Widebus™ Family
- **Output Ports Have Equivalent 26-** Ω Series **Resistors, So No External Resistors Are** Required
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

DESCRIPTION/ORDERING INFORMATION

This 1-bit to 4-bit address register/driver is designed for 1.65-V to 3.6-V V_{CC} operation.

The device is ideal for use in applications in which a single address bus is driving four separate memory locations. The SN74ALVCH162831 can be used as a buffer or a register, depending on the logic level of the select (SEL) input.

When SEL is logic high, the device is in the buffer mode. The outputs follow the inputs and are controlled by the two output-enable (\overline{OE}) inputs. Each OE controls two groups of nine outputs.

When SEL is logic low, the device is in the register mode. The register is an edge-triggered D-type flip-flop. On the positive transition of the clock (CLK) input, data set up at the A inputs is stored in the internal registers. OE controls operate the same as in buffer mode.

When \overline{OE} is logic low, the outputs are in a normal logic state (high or low logic level). When OE is logic high, the outputs are in the high-impedance state.

SEL and OE do not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The outputs, which are designed to sink up to 12 mA, include equivalent 26- Ω resistors to reduce overshoot and undershoot.

4Y1 1 80 1Y2 3Y1 2 79 2Y2 GND 3 78 GND 2Y1 4 77 3Y2 1Y1 5 76 4Y2 Vcc 6 75 Vcc NC 7 74 1Y3 A1 8 73 2Y3 GND 9 72 GND NC 10 71 3Y3 A2 11 70 4Y3 GND 12 69 GND NC 13 68 1Y4 A3 14 67 2Y4 Vcc 15 66 Vcc NC 13 68 1Y4 A3 14 67 2Y4 Vcc 15 66 Vcc NC 16 65 3Y4 A4 17 64 4Y4 GND 18 63 GND CLK 19 62 1Y5 <tr< th=""><th>D</th><th>вв I (то</th><th>PACI P VII</th><th>KAG EW)</th><th>SE</th><th>E</th></tr<>	D	вв I (то	PACI P VII	KAG EW)	SE	E
3Y1 2 79 2Y2 GND 3 78 GND 2Y1 4 77 3Y2 1Y1 5 76 4Y2 Vcc 6 75 Vcc NC 7 74 1Y3 A1 8 73 2Y3 GND 9 72 GND NC 10 71 3Y3 A2 11 70 4Y3 GND 12 69 GND NC 13 68 1Y4 A3 14 67 2Y4 Vcc 15 66 Vcc NC 13 68 1Y4 A3 14 67 2Y4 Vcc 15 66 Vcc NC 13 68 1Y4 A4 17 64 4Y4 GND 18 63 GND CLK 19 62 1Y5 OE2 21 50 2Y5 <t< td=""><td>1) (A)</td><td>Γ.</td><td>U</td><td></td><td>հ</td><td>41/0</td></t<>	1) (A)	Γ.	U		հ	41/0
GND 3 78 GND 2Y1 4 77 3Y2 1Y1 5 76 4Y2 V _{CC} 6 75 V _{CC} NC 7 74 1Y3 A1 8 73 2Y3 GND 9 72 GND NC 10 71 3Y3 A2 11 70 4Y3 GND 12 69 GND NC 13 68 1Y4 A3 14 67 2Y4 V _{CC} 15 66 V _{CC} NC 16 65 3Y4 A4 17 64 4Y4 GND 18 63 GND CLK 19 62 1Y5 OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 </td <td></td> <td></td> <td></td> <td></td> <td>H</td> <td></td>					H	
2Y1 4 77 3Y2 1Y1 5 76 4Y2 V _{CC} 6 75 V _{CC} NC 7 74 1Y3 A1 8 73 2Y3 GND 9 72 GND NC 10 71 3Y3 A2 11 70 4Y3 GND 12 69 GND NC 13 68 1Y4 A3 14 67 2Y4 V _{CC} 15 66 V _{CC} NC 16 65 3Y4 A4 17 64 4Y4 GND 18 63 GND CLK 19 62 1Y5 OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 </td <td></td> <td></td> <td></td> <td></td> <td>H</td> <td></td>					H	
1Y1 5 76 4Y2 V _{CC} 6 75 V _{CC} NC 7 74 1Y3 A1 8 73 2Y3 GND 9 72 GND NC 10 71 3Y3 A2 11 70 4Y3 GND 12 69 GND NC 13 68 1Y4 A3 14 67 2Y4 V _{CC} 15 66 V _{CC} NC 16 65 3Y4 A4 17 64 4Y4 GND 18 63 GND CLK 19 62 1Y5 OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 50 V _{CC} A7 27 54 3Y6		-			H	
V _{CC} 6 75 V _{CC} NC 7 74 1Y3 A1 8 73 2Y3 GND 9 72 GND NC 10 71 3Y3 A2 11 70 4Y3 GND 12 69 GND NC 13 68 1Y4 A3 14 67 2Y4 V _{CC} 15 66 V _{CC} NC 16 65 3Y4 A4 17 64 4Y4 GND 18 63 GND CLK 19 62 1Y5 OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 V _{CC} <td></td> <td></td> <td></td> <td></td> <td>Ц</td> <td></td>					Ц	
NC 7 74 1Y3 A1 8 73 2Y3 GND 9 72 GND NC 10 71 3Y3 A2 11 70 4Y3 GND 12 69 GND NC 13 68 1Y4 A3 14 67 2Y4 Vcc 15 66 Vcc NC 16 65 3Y4 A4 17 64 4Y4 GND 18 63 GND CLK 19 62 1Y5 OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 Vcc 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7					Ц	
A1 8 73 2Y3 GND 9 72 GND NC 10 71 3Y3 A2 11 70 4Y3 GND 12 69 GND NC 13 68 1Y4 A3 14 67 2Y4 Vcc 15 66 Vcc NC 16 65 3Y4 A4 17 64 4Y4 GND 18 63 GND CLK 19 62 1Y5 OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 Vcc 26 55 Vcc A7 27 54 3Y6 NC 31 50 2Y7 GND 32 49 GND					Ц	
GND 9 72 GND NC 10 71 3Y3 A2 11 70 4Y3 GND 12 69 GND NC 13 68 1Y4 A3 14 67 2Y4 VCC 15 66 VCC NC 16 65 3Y4 A4 17 64 4Y4 GND 18 63 GND CLK 19 62 1Y5 OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 Vcc 26 55 Vcc A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7					Ц	
NC 10 71 3Y3 A2 11 70 4Y3 GND 12 69 GND NC 13 68 1Y4 A3 14 67 2Y4 Vcc 15 66 Vcc NC 16 65 3Y4 A4 17 64 4Y4 GND 18 63 GND CLK 19 62 1Y5 OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 Vcc 26 55 Vcc A7 27 54 3Y6 NC 31 50 2Y7 GND 32 49 GND A8 30 51 1Y7 NC 31 50 2Y7					Ц	
A2 11 70 4Y3 GND 12 69 GND NC 13 68 1Y4 A3 14 67 2Y4 V _{CC} 15 66 V _{CC} NC 16 65 3Y4 A4 17 64 4Y4 GND 18 63 GND CLK 19 62 1Y5 OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 V _{CC} 26 55 V _{CC} A7 27 54 3Y6 NC 28 53 4Y6 GND 32 49 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND				72	Ц	
GND 12 69 GND NC 13 68 1Y4 A3 14 67 2Y4 V _{CC} 15 66 V _{CC} NC 16 65 3Y4 A4 17 64 4Y4 GND 18 63 GND CLK 19 62 1Y5 OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 V _{CC} 26 55 V _{CC} A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7				71	Ц	
NC 13 68 1Y4 A3 14 67 2Y4 V _{CC} 15 66 V _{CC} NC 16 65 3Y4 A4 17 64 4Y4 GND 18 63 GND CLK 19 62 1Y5 OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 V _{CC} 26 55 V _{CC} A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7		-			Ц	
A3 14 67 2Y4 V _{CC} 15 66 V _{CC} NC 16 65 3Y4 A4 17 64 4Y4 GND 18 63 GND CLK 19 62 1Y5 OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 V _{CC} 26 55 V _{CC} A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} <td></td> <td></td> <td></td> <td>69</td> <td>Ц</td> <td></td>				69	Ц	
V _{CC} 15 66 V _{CC} NC 16 65 3Y4 A4 17 64 4Y4 GND 18 63 GND CLK 19 62 1Y5 OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 V _{CC} 26 55 V _{CC} A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 35 46 V _{CC} 49<		13		68	Ц	
NC 16 65 3Y4 A4 17 64 4Y4 GND 18 63 GND CLK 19 62 1Y5 OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 V _{CC} 26 55 V _{CC} A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8	A3			67		2Y4
A4 17 64 4Y4 GND 18 63 GND CLK 19 62 1Y5 OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 V _{CC} 26 55 V _{CC} A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND	V _{CC}	15		66		V _{CC}
GND 18 63 GND CLK 19 62 1Y5 OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 V _{CC} 26 55 V _{CC} A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8 <td>NC</td> <td>16</td> <td></td> <td>65</td> <td></td> <td>3Y4</td>	NC	16		65		3Y4
CLK 19 62 1Y5 OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 V _{CC} 26 55 V _{CC} A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	A4	17		64	μ	4Y4
OE1 20 61 2Y5 OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 V _{CC} 26 55 V _{CC} A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	GND	18		63		
OE2 21 60 3Y5 SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 V _{CC} 26 55 V _{CC} A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	CLK	19		62	þ	1Y5
SEL 22 59 4Y5 GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 V _{CC} 26 55 V _{CC} A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	OE1	20		61		2Y5
GND 23 58 GND A5 24 57 1Y6 A6 25 56 2Y6 V _{CC} 26 55 V _{CC} A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	OE2	21		60	þ	3Y5
A5 24 57 1Y6 A6 25 56 2Y6 V _{CC} 26 55 V _{CC} A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	SEL	22		59		4Y5
A6 25 56 2Y6 V _{CC} 26 55 V _{CC} A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	GND	23		58	þ	GND
V _{CC} 26 55 V _{CC} A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	A5	24		57	þ	1Y6
A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	A6	25		56	h	2Y6
A7 27 54 3Y6 NC 28 53 4Y6 GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	V _{CC}	26		55	Б	V _{CC}
GND 29 52 GND A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8		27		54	Б	3Y6
A8 30 51 1Y7 NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	NC	28		53	Б	4Y6
NC 31 50 2Y7 GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	GND j	29		52	Б	GND
GND 32 49 GND A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	A8	30		51	Б	1Y7
A9 33 48 3Y7 NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	NC	31		50	Б	2Y7
NC 34 47 4Y7 V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	GND	32		49	Б	GND
V _{CC} 35 46 V _{CC} 4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	A9	33		48	ħ	3Y7
4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	NC	34		47	Б	4Y7
4Y9 36 45 1Y8 3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8	V _{CC}	35		46	ĥ	V _{CC}
3Y9 37 44 2Y8 GND 38 43 GND 2Y9 39 42 3Y8				45	Б	
GND 38 43 GND 2Y9 39 42 3Y8		Т		44	Б	
2Y9 39 42 3Y8				43	Б	
9 P					Б	
		40		41	Б	

NC - No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments.

SCES084H-AUGUST 1996-REVISED SEPTEMBER 2004

20

OE2 _____

19

22

OE1

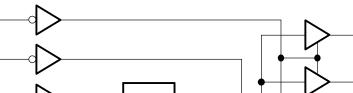
CLK

SEL

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.


ORDERING INFORMATION

T _A	PACKAG	GE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
-40°C to 85°C	TVSOP - DBB	Tape and reel	SN74ALVCH162831GR	ALVCH162831		

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

	INP	UTS		OUTPUT
ŌĒ	SEL	CLK	Α	Y
Н	Х	Х	Х	Z
L	Н	Х	L	L
L	Н	Х	Н	Н
L	L	\uparrow	L	L
L	L	\uparrow	Н	Н

FUNCTION TABLE

CLK

D

Q

5 1Y1

2 _____ 3Y1

2Y1

LOGIC DIAGRAM (POSITIVE LOGIC)

To Eight Other Channels

SCES084H-AUGUST 1996-REVISED SEPTEMBER 2004

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range ⁽²⁾	-0.5	4.6	V	
Vo	Output voltage range ⁽²⁾⁽³⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V ₀ < 0		-50	mA
I _O	Continuous output current			±50	mA
	Continuous current through each $V_{CC} \mbox{ or } GND$			±100	mA
θ_{JA}	Package thermal impedance ⁽⁴⁾			64	°C/W
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) This value is limited to 4.6 V maximum.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		1.65	3.6	V
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		
VIH	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		
	,	V _{CC} = 1.65 V to 1.95 V		$0.35 imes V_{CC}$	
V _{IL}	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V		0.7	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	
VI	Input voltage	· · · · ·	0	V _{CC}	V
Vo	Output voltage		0	V _{CC}	V
	,	V _{CC} = 1.65 V		-2	
	High lovel output ourrent	$V_{CC} = 2.3 V$		-6	mA
I _{ОН}	High-level output current	$V_{CC} = 2.7 V$		-8	
		$V_{CC} = 3 V$		-12	
		V _{CC} = 1.65 V		2	
		V _{CC} = 2.3 V		6	mA
I _{OL}	Low-level output current	V _{CC} = 2.7 V		8	mA
		$V_{CC} = 3 V$		12	
$\Delta t / \Delta v$	Input transition rise or fall rate			10	ns/V
Τ _Α	Operating free-air temperature		-40	85	°C

 All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES084H-AUGUST 1996-REVISED SEPTEMBER 2004

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT		
	I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} - 0.2					
	I _{OH} = -2 mA	1.65 V	1.2					
	I _{OH} = -4 mA	2.3 V	1.9					
V _{OH}		2.3 V	1.7			V		
	I _{OH} = -6 mA	3 V	2.4					
	I _{OH} = -8 mA	2.7 V	2					
	I _{OH} = -12 mA	3 V	2					
	I _{OL} = 100 μA	1.65 V to 3.6 V			0.2			
	I _{OL} = 2 mA	1.65 V			0.45			
	I _{OL} = 4 mA	2.3 V			0.4			
V _{OL}		2.3 V			0.55	V		
	I _{OL} = 6 mA	3 V			0.55			
	I _{OL} = 8 mA	2.7 V			0.6			
	$I_{OL} = 12 \text{ mA}$	3 V			0.8			
I _I	$V_{I} = V_{CC} \text{ or } GND$	3.6 V			±5	μΑ		
	V ₁ = 0.58 V	1.65 V	25					
	V ₁ = 1.07 V	1.65 V	-25					
	$V_1 = 0.7 V$	2.3 V	45					
I _{I(hold)}	V ₁ = 1.7 V	2.3 V	-45			μA		
	V ₁ = 0.8 V	3 V	75					
	$V_1 = 2 V$	3 V	-75					
	$V_1 = 0 \text{ to } 3.6 \text{ V}^{(2)}$	3.6 V			±500			
I _{OZ}	$V_{O} = V_{CC}$ or GND	3.6 V			±10	μΑ		
I _{CC}	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	3.6 V			40	μΑ		
ΔI _{CC}	One input at V_{CC} - 0.6 V, Other inputs at V_{CC} or GND	3 V to 3.6 V			750	μA		
C Control input	$s = \frac{1}{2} \sqrt{-1} \sqrt{-1} \frac{1}{2} \sqrt{-1} \sqrt{-1} \frac{1}{2} \sqrt{-1} -1$	3.3 V	4.5			~E		
C _i Data inputs	$V_{I} = V_{CC} \text{ or } GND$	3.3 V		5		pF		
C _o Outputs	$V_0 = V_{CC}$ or GND	3.3 V		7.5		pF		

TEXAS

TRUMENTS www.ti.com

(1) All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. (2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

TIMING REQUIREMENTS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		V _{CC} = 1.8 V		$\begin{array}{c} \mathrm{V_{CC}} = 2.5 \ \mathrm{V} \\ \pm \ 0.2 \ \mathrm{V} \end{array}$		V V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency		(1)		150		150		150	MHz
tw	Pulse duration, CLK high or low	(1)		3.3		3.3		3.3		ns
t _{su}	Setup time, A data before CLK↑	(1)		2		2		1.6		ns
t _h	Hold time, A data after CLK↑	(1)		0.7		0.5		1.1		ns

(1) This information was not available at the time of publication.

SCES084H-AUGUST 1996-REVISED SEPTEMBER 2004

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM TO		V _{CC} =	$V_{CC} = 1.8 V$ $V_{CC} = 2.5 V$ $\pm 0.2 V$		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT	
	(INPUT)	(OUTPUT)	MIN	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			(1)		150		150		150		MHz
	A			(1)	1.1	4.7		4.8	1.5	4.3	
t _{pd}	CLK	Y		(1)	1	5.3		5.3	1.4	4.7	ns
	SEL			(1)	1.1	6		6.2	1.5	4.8	
t _{en}	ŌĒ	Y		(1)	1	5.9		5.9	1.1	5.1	ns
t _{dis}	ŌĒ	Y		(1)	1.4	6.3		5.4	1.6	5.1	ns

(1) This information was not available at the time of publication.

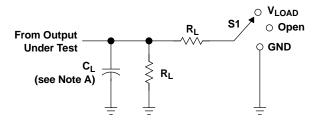
SWITCHING CHARACTERISTICS

from 0°C to 65°C, $C_L = 50 \text{ pF}$

PARAMETER	METER FROM TO (INPUT) (OUTPUT)		V _{CC} = 3. ± 0.15	3 V V	UNIT
			MIN	MAX	
t _{pd}	CLK	Y	1.9	4.5	ns

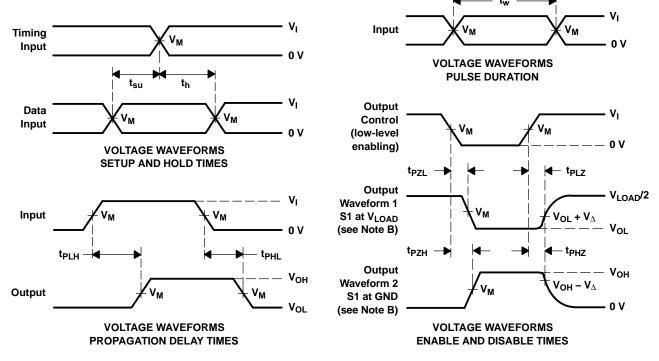
OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C$

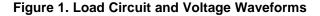

	PARAMETER		TEST CONDITIONS		V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT
	Power dissipation	All outputs enabled			(1)	119	132	_
C _{pd}	capacitance per bit (four outputs switching)	All outputs disabled	$C_{L} = 0,$	f = 10 MHz	(1)	22	25	pF

(1) This information was not available at the time of publication.

SCES084H-AUGUST 1996-REVISED SEPTEMBER 2004



LOAD CIRCUIT


TEST	S1
t _{pd}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

N N	IN	PUT	V	v	6		v
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	C∟	RL	V_{Δ}
1.8 V	V _{CC}	≤2 ns	V _{CC} /2	2 × V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
74ALVCH162831GRE4	ACTIVE	TSSOP	DBB	80		TBD	Call TI	Call TI	
74ALVCH162831GRG4	ACTIVE	TSSOP	DBB	80		TBD	Call TI	Call TI	
SN74ALVCH162831DBBR	OBSOLETE	TSSOP	DBB	80		TBD	Call TI	Call TI	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

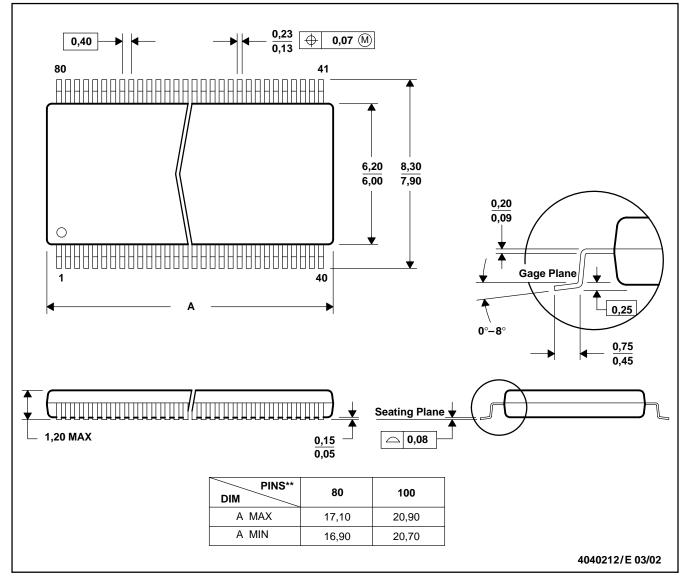
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


MECHANICAL DATA

MTSS005D - JANUARY 1995 - REVISED MARCH 2002

DBB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

80 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC : 80 Pin – MO-153 Variation FF

100 Pin – MO-194 Variation BB

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated