
SiHB5N80AE

Vishay Siliconix

E Series Power MOSFET

PRODUCT SUMMARY							
V _{DS} (V) at T _J max.	850						
R _{DS(on)} typ. (Ω) at 25 °C	$V_{GS} = 10 V$	1.17					
Q _g max. (nC)	16.5						
Q _{gs} (nC)	3						
Q _{gd} (nC)	6						
Configuration	Single						

FEATURES

- Low figure-of-merit (FOM) Ron x Qa
- Low effective capacitance (Ciss)
- · Reduced switching and conduction losses
- Ultra low gate charge (Q_q)
- Avalanche energy rated (UIS)
- Integrated Zener diode ESD protection
- · Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- · Server and telecom power supplies
- Switch mode power supplies (SMPS)
- Power factor correction power supplies (PFC)
- Lighting
 - High-intensity discharge (HID)
 - Fluorescent ballast lighting
- Industrial
 - Welding
 - Induction heating
 - Motor drives
 - Battery chargers
 - Renewable energy

ORDERING INFORMATION				
Package	D ² PAK (TO-263)			
Lead (Pb)-free and halogen-free	SiHB5N80AE-GE3			

ABSOLUTE MAXIMUM RATINGS ($T_C = 25 \degree C$, unless otherwise noted)								
PARAMETER	SYMBOL	LIMIT	UNIT					
Drain-source voltage			V _{DS}	800	V			
Gate-source voltage	V _{GS}	± 30	V					
Continuous drain current (T _J = 150 °C)	V _{GS} at 10 V	$T_{C} = 25 \text{ °C}$ $T_{C} = 100 \text{ °C}$	1	4.4				
	VGS at 10 V	T _C = 100 °C	I _D	2.8	А			
Pulsed drain current ^a	I _{DM}	7						
Linear derating factor		0.5	W/°C					
Single pulse avalanche energy ^b	E _{AS}	17	mJ					
Maximum power dissipation	PD	62.5	W					
Operating junction and storage temperature ran	T _J , T _{stg}	-55 to +150	°C					
Drain-source voltage slope T _J = 125 °C			alı . (alt	70				
Reverse diode dv/dt ^d	dv/dt	0.3	V/ns					
Soldering recommendations (peak temperature)		260	°C					

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature

b. V_{DD} = 140 V, starting T_J = 25 °C, L = 28.2 mH, R_a = 25 Ω , I_{AS} = 1.1 A

c. 1.6 mm from case

d. $I_{SD} \leq I_D$, di/dt = 100 A/µs, starting T_J = 25 °C

S21-0475-Rev. A, 17-May-2021

1

Document Number: 92405

Vishay Siliconix

THERMAL RESISTANCE RAT	INGS						
PARAMETER	SYMBOL	MAX.			UNIT		
Maximum junction-to-ambient	R _{thJA}	62			°C (M		
Maximum junction-to-case (drain)	R _{thJC}		2	°C/W			
SPECIFICATIONS (T _J = 25 $^{\circ}$ C, t	unless otherwi	se noted)					
PARAMETER	SYMBOL	TES	T CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static							
Drain-source breakdown voltage	V _{DS}	V _{GS} =	= 0 V, I _D = 250 μA	800	-	-	V
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C, I _D = 1 mA	-	0.8	-	V/°C
Gate-source threshold voltage (N)	V _{GS(th)}	V _{DS} =	· V _{GS} , I _D = 250 μA	2	-	4	V
	1	\	$V_{\rm GS}$ = ± 20 V	-	-	± 10	
Gate-source leakage	I _{GSS}	\	V _{GS} = ± 30 V	-	-	± 50	μA
	1	V _{DS} =	800 V, V _{GS} = 0 V	-	-	1	
Zero gate voltage drain current	IDSS	V _{DS} = 640 V	, V _{GS} = 0 V, T _J = 125 °C	-	-	10	μA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 1.5 A	-	1.17	1.35	Ω
Forward transconductance a	9 _{fs}	V _{DS}	= 30 V, I _D = 2 A	-	1.2	-	S
Dynamic				•	•	•	•
Input capacitance	C _{iss}		-	321	-	pF	
Output capacitance	C _{oss}	$V_{GS} = 0 V,$ $V_{DS} = 100 V,$ f = 1 MHz		-	20		-
Reverse transfer capacitance	C _{rss}			-	4		-
Effective output capacitance, energy related ^a	C _{o(er)}	$V_{\rm DS}$ = 0 V to 480 V, $V_{\rm GS}$ = 0 V		-	14		-
Effective output capacitance, time related ^b	C _{o(tr)}			_	71		-
Total gate charge	Qg			-	11	16.5	
Gate-source charge	Q _{gs}	V _{GS} = 10 V I _D = 2 A, V _{DS} = 640 V		-	3	-	nC
Gate-drain charge	Q _{gd}			-	6	-	
Turn-on delay time	t _{d(on)}			-	12	24	
Rise time	t _r	Voo =	= 640 V, I _D = 2 A,	-	8	16	
Turn-off delay time	t _{d(off)}		$V_{\rm GS} = 10 \text{ V}, \text{ R}_{\rm g} = 9.1 \Omega$		10	20	ns
Fall time	t _f			-	28	56	
Gate input resistance	R _g	f = 1 MHz, open drain		1.6	3.2	6.4	Ω
Drain-Source Body Diode Characteristi		•					
Continuous source-drain diode current	۱ _S	MOSFET sym showing the	MOSFET symbol showing the		-	4.4	
Pulsed diode forward current	I _{SM}	integral reverse p - n junction diode		-	-	7	A
Diode forward voltage	V _{SD}	T _J = 25 °	-	-	1.2	V	
Reverse recovery time	t _{rr}			-	267	534	ns
Reverse recovery charge	Q _{rr}	$T_J = 2$	5 °C, $I_F = I_S = 2 A$,	-	1.2	2.4	μC
Reverse recovery current	I _{RRM}	di/dt = 100 A/μs, V _R = 25 V			7.5	-	A

Notes

a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 V to 480 V V_{DSS}

b. $C_{oss(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 V to 480 V V_{DSS}

SiHB5N80AE

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

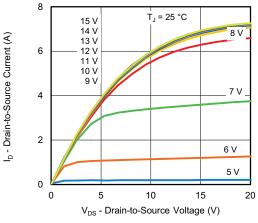


Fig. 1 - Typical Output Characteristics

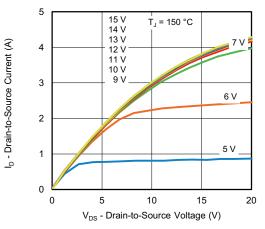


Fig. 2 - Typical Output Characteristics

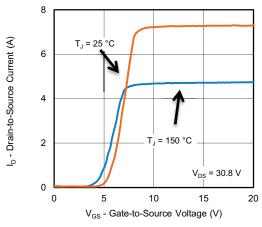


Fig. 3 - Typical Transfer Characteristics

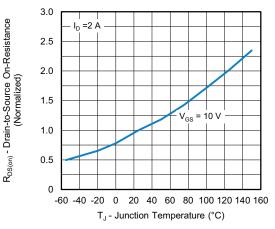


Fig. 4 - Normalized On-Resistance vs. Temperature

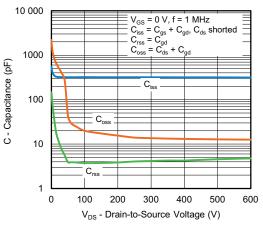
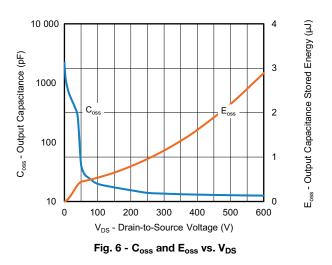



Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

S21-0475-Rev. A, 17-May-2021

3

Document Number: 92405

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

SiHB5N80AE

Vishay Siliconix

5

4

3

2

1

0

V_{DS} - Drain-to-Source Breakdown Voltage (Normalized)

25

1.2

1.1

1

0.9

0.8

-60 -40

-20 0

50

75

T_C - Case Temperature (°C)

Fig. 10 - Maximum Drain Current vs. Case Temperature

100

125

I_D = 250uA

20 40 60 80 100 120 140 160

T_J - Junction Temperature (°C)

Fig. 11 - Normalized Breakdown Voltage vs. Temperature

150

l_D - Drain Current (A)

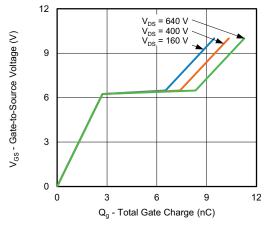


Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage

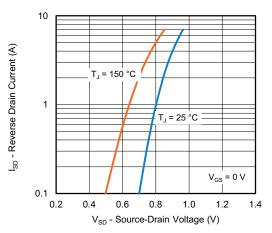


Fig. 8 - Typical Source-Drain Diode Forward Voltage

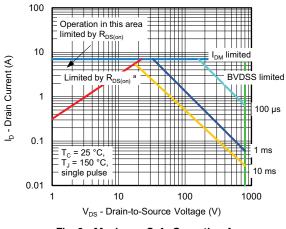


Fig. 9 - Maximum Safe Operating Area

Note

a. V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

4

Vishay Siliconix

Fig. 12 - Normalized Transient Thermal Impedance, Junction-to-Case

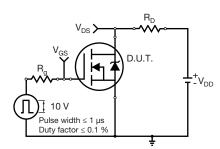


Fig. 13 - Switching Time Test Circuit

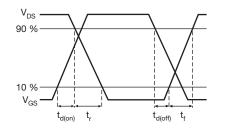


Fig. 14 - Switching Time Waveforms

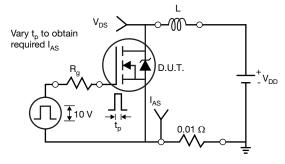


Fig. 15 - Unclamped Inductive Test Circuit

S21-0475-Rev. A, 17-May-2021

5

Fig. 16 - Unclamped Inductive Waveforms

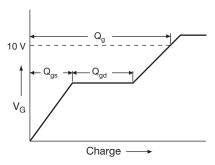
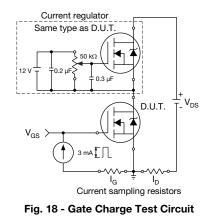



Fig. 17 - Basic Gate Charge Waveform

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Siliconix

Peak Diode Recovery dv/dt Test Circuit

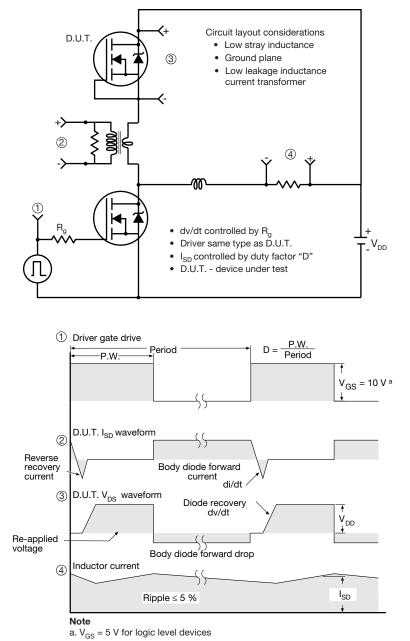


Fig. 19 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?92405.

6

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

TO-263AB (HIGH VOLTAGE)

/3

ВH B 4

A

н

∕₅∖

Detail A

(Datum A)

D

 $\underline{4}$ 11

$2 \times e^{-2 \times b^{2}}$ $2 \times e^{-2 \times b}$ $2 \times e^{-2 \times b}$ $(-) \oplus 0.010 \oplus A \oplus B$ $(-) \oplus 0.0$						• •			1 4	
	MILLIMETERS		INC	CHES			MILLIMETERS		INCHES	
DIM.	MIN.	MAX.	MIN.	MAX.		DIM.	MIN.	MAX.	MIN.	MA
А	4.06	4.83	0.160	0.190		D1	6.86	-	0.270	-
A1	0.00	0.25	0.000	0.010		E	9.65	10.67	0.380	0.4
b	0.51	0.99	0.020	0.039		E1	6.22	-	0.245	-
b1	0.51	0.89	0.020	0.035		е	2.54 BSC		0.100) BSC
b2	1.14	1.78	0.045	0.070		Н	14.61	15.88	0.575	0.6
b3	1.14	1.73	0.045	0.068		L	1.78	2.79	0.070	0.1
С	0.38	0.74	0.015	0.029		L1	-	1.65	-	0.0
c1	0.38	0.58	0.015	0.023		L2	-	1.78	-	0.0
c2	1.14	1.65	0.045	0.065		L3	0.25 BSC		0.010 BSC	

Α

ECN: S-82110-Rev. A, 15-Sep-08 DWG: 5970

8.38

Notes

D

9.65

0.330

0.380

2. Dimensions are shown in millimeters (inches).

3. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body at datum A.

L4

5.28

0.188

4.78

4. Thermal PAD contour optional within dimension E, L1, D1 and E1.

- 5. Dimension b1 and c1 apply to base metal only.
- 6. Datum A and B to be determined at datum plane H.
- 7. Outline conforms to JEDEC outline to TO-263AB.

H

A1

B

Gauge plane 0° tọ 8°

L3

Detail "A" Rotated 90° CW

coolo 9.1

Vishay Siliconix

Seating plane

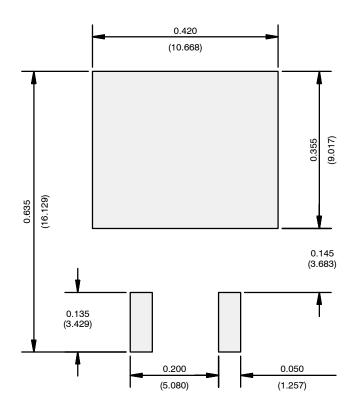
MAX.

0.420

-

0.625

0.110 0.066


0.070

0.208

^{1.} Dimensioning and tolerancing per ASME Y14.5M-1994.

RECOMMENDED MINIMUM PADS FOR D²PAK: 3-Lead

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.