K8 Clock Chip for Serverworks GC-HT 2-Way Servers

Recommended Application: Serverworks GC-HT systems using AMD K8 processors

Output Features:

- 4 Pairs of AMD K8 clocks
- 1 Pair of SRC/PCI Express* clock
- 2 14.318 MHz REF clocks
- 2 USB_48MHz clocks
- 4 HyperTransport 66 MHz clocks
- 4 PCI 33 MHz clocks

Features:

- Spread Spectrum for EMI reduction
- Outputs may be disabled via SMBus
- M/N programming via SMBus

	•	J	
X1	1	48	VDDREF
X2	2	47	FS0/REF0
VDD48	3	46	FS1/REF1
48MHz_0	4	45	FS2
48MHz_1	5	44	GND
GND	6	43	CPUCLK8T

Pin Configuration

48MHz_1	5		44	GND
GND	6		43	CPUCLK8T0
SCLK	7		42	CPUCLK8C0
SDATA	8		41	VDDCPU
VDDHTT	9	Ξ	40	GNDCPU
HTTCLK0	10	CS932S801	39	CPUCLK8T1
HTTCLK1	11	2S	38	CPUCLK8C1
HTTCLK2	12	63	37	VDDCPU
HTTCLK3	13	SC	36	GNDCPU
GNDHTT	14	$\mathbf{\Sigma}$		CPUCLK8T2
VDDPCI	15		34	CPUCLK8C2
PCICLK0	16		33	VDDCPU
PCICLK1	17		32	GNDCPU
PCICLK2	18		31	CPUCLK8T3
PCICLK3	19		30	CPUCLK8C3
GNDPCI	20		29	SPREAD_EN
PD#	21		28	GNDSRC
VDDA	22		27	VDDSRC
GNDA	23		26	SRCCLKT0
IREF	24		25	SRCCLKC0
	48-SSC	P, TS	SOP	-

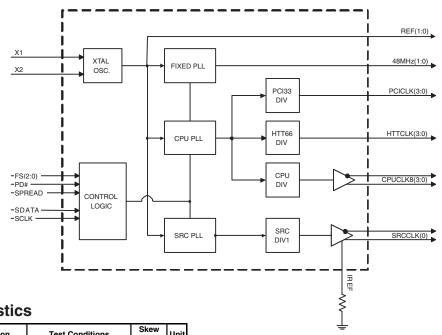
Power Groups

Pin N	Number	Description
VDD	GND	Description
3	6	48MHz
9 14		66MHz HTT Clocks
15	20	33 MHz PCI Clocks
22	23	IREF, Analog Core
27	28	SRC PLL, SRCCLK
33,37,41	32,36,40	K8 CPU Clocks, CPU PLL
48	44	REF Clocks, Xtal Oscillator

Functionality

FS2	FS2 FS1		CPU	HTT	PCI
F32	гэт	FS0	MHz	MHz	MHz
0	0	0	Hi-Z	Hi-Z	Hi-Z
0	0	1	Х	X/3	X/6
0	1	0	180.00	60.00	30.00
0	1	1	220.00	73.12	36.56
1	0	0	100.00	66.66	33.33
1	0	1	133.33	66.66	33.33
1	1	0	166.67	66.66	33.33
1	1	1	200.00	66.66	33.33

Pin Descriptions


2 3 4	X1 X2	IN	Crystal input, Nominally 14.318MHz.
2 3 4			
3 4		OUT	Crystal output, Nominally 14.318MHz
4	VDD48	PWR	Power pin for the 48MHz output.3.3V
	48MHz_0	OUT	48MHz clock output.
5	48MHz_1	OUT	48MHz clock output.
6	GND	PWR	Ground pin.
7	SCLK	I/O	Clock pin of SMBus circuitry, 5V tolerant.
8	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.
9	VDDHTT	PWR	Supply for HTT clocks, nominal 3.3V.
10	HTTCLK0	OUT	3.3V Hyper Transport output
11	HTTCLK1	OUT	3.3V Hyper Transport output
	HTTCLK2	OUT	3.3V Hyper Transport output
13	HTTCLK3	OUT	3.3V Hyper Transport output
14	GNDHTT	PWR	Ground pin for the HTT outputs
15	VDDPCI	PWR	Power supply for PCI clocks, nominal 3.3V
16	PCICLK0	OUT	PCI clock output.
17	PCICLK1	OUT	PCI clock output.
18	PCICLK2	OUT	PCI clock output.
19	PCICLK3	OUT	PCI clock output.
20	GNDPCI	PWR	Ground pin for the PCI outputs
21	PD#	IN	Asynchronous active low input pin used to power down the device. The internal
21	1.0#		clocks are disabled and the VCO and the crystal are stopped.
22	VDDA	PWR	3.3V power for the PLL core.
23	GNDA	OUT	Ground pin for the PLL core.
			This pin establishes the reference current for the differential current-mode output
24	IREF	OUT	pairs. This pin requires a fixed precision resistor tied to ground in order to establish
			the appropriate current. 475 ohms is the standard value.
	SRCCLKC0	OUT	Complement clock of differential SRC clock pair.
	SRCCLKT0	OUT	True clock of differential SRC clock pair.
27	VDDSRC	PWR	Supply for SRC clocks, 3.3V nominal
28	GNDSRC	PWR	Ground pin for the SRC outputs
	SPREAD_EN	IN	Asynchronous, active high input to enable spread spectrum functionality.
30	CPUCLK8C3	OUT	Complementary clock of differential 3.3V push-pull K8 pair.
31	CPUCLK8T3	OUT	True clock of differential 3.3V push-pull K8 pair.
32	GNDCPU	PWR	Ground pin for the CPU outputs
33	VDDCPU	PWR	Supply for CPU clocks, 3.3V nominal
34	CPUCLK8C2	OUT	Complementary clock of differential 3.3V push-pull K8 pair.
35	CPUCLK8T2	OUT	True clock of differential 3.3V push-pull K8 pair.
	GNDCPU	PWR	Ground pin for the CPU outputs
37	VDDCPU	PWR	Supply for CPU clocks, 3.3V nominal
38	CPUCLK8C1	OUT	Complementary clock of differential 3.3V push-pull K8 pair.
39	CPUCLK8T1	OUT	True clock of differential 3.3V push-pull K8 pair.
40	GNDCPU	PWR	Ground pin for the CPU outputs
41		PWR	Supply for CPU clocks, 3.3V nominal
42		OUT	Complementary clock of differential 3.3V push-pull K8 pair.
43	CPUCLK8T0	OUT	True clock of differential 3.3V push-pull K8 pair.
44	GND	PWR	Ground pin.
	FS2		Frequency select pin.
	FS1/REF1	I/O	Frequency select latch input pin / 14.318 MHz reference clock.
47	FS0/REF0		Frequency select latch input pin / 14.318 MHz reference clock.
48	VDDREF	PWR	Ref, XTAL power supply, nominal 3.3V

General Description

The **ICS932S801** is a main clock synthesizer chip that, when paired with ICS9DB108, provides all clocks required by Serverworks GC-HT-based servers.

An SMBus interface allows full control of the device.

Block Diagram

Skew Characteristics

	Parameter	Description	Test Conditions	Skew Window	Unit
T i m e	Tsk_CPU_CPU	CPU to CPU Skew	Measured at crossing points of CPUCLKT rising edges	250	ps
I n d	Tsk_CPU_PCI	CPU to PCI skew	Meastured at crossing point for CPUCLKT and 1.5V for PCI clock	2000	ps
e p e n	Tsk_PCI33-HT66 PCI33 to HT66 skew		Measured between rising edges at 1.5V	500	ps
e n t	Tsk_CPU_HT66 CPU to HT66 skew		Meastured at crossing point for CPUCLKT and 1.5V for HT66 clock	2000	ps
т i	Tsk_CPU_CPU	CPU to CPU Skew	Measured at crossing points of CPUCLKT rising edges	200	ps
m e V	Tsk_CPU_PCI	CPU to PCI skew	Meastured at crossing point for CPUCLKT and 1.5V for PCI clock	200	ps
a r i a	Lek PC133-H166 PC133 to H166 ekow		Measured between rising edges at 1.5V	200	ps
n	Tsk_CPU_HT66	CPU to HT66 skew	Meastured at crossing point for CPUCLKT and 1.5V for HT66 clock	200	ps

0959C-03/13/06

© 2019 Renesas Electronics Corporation

Table1: SRC Frequency Selection Table

SRCFS1 B5b3	SRCFS0 B5b2	SRCCLK (MHz)
0	0	100.00
0	1	101.00
1	0	102.00
1	1	104.00

Table 2: CPU Divider Ratios

]	Divider (3:2	2)			
	Bit	00		01		10		11	MSB
(1:0)	00	0000	2	0100	4	1000	8	1100	16
	01	0001	3	0101	6	1001	12	1101	24
ide	10	0010	5	0110	10	1010	20	1110	40
Divider	11	0011	15	0111	30	1011	60	1111	120
	LSB	Address	Div	Address	Div	Address	Div	Address	Div

Table 3: HTT Divider Ratios

]	Divider (3:2	2)			
(Bit	00		01		10		11	MSB
(1:0)	00	0000	4	0100	8	1000	16	1100	32
	01	0001	3	0101	6	1001	12	1101	24
ide	10	0010	5	0110	10	1010	20	1110	40
Divider	11	0011	15	0111	30	1011	60	1111	120
	LSB	Address	Div	Address	Div	Address	Div	Address	Div

Table 4: SRC Divider Ratios

]	Divider (3:2	2)			
(Bit	00		01		10		11	MSB
(1:0)	00	0000	2	0100	4	1000	8	1100	16
	01	0001	3	0101	6	1001	12	1101	24
ide	10	0010	5	0110	10	1010	20	1110	40
Divider	11	0011	7	0111	14	1011	28	1111	56
	LSB	Address	Div	Address	Div	Address	Div	Address	Div

Absolute Maximum Ratings

Supply Voltage	3.8V
Logic Inputs	GND -0.5 V to V _{DD} +3.8 V
Ambient Operating Temperature	0°C to +70°C
Storage Temperature	-65°C to +150°C
ESD Protection	Input ESD protection usung human body model > 1KV

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

 T_A = 0 - 70°C; Supply Voltage V_{DD} = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage	V _{IH}	3.3 V +/-5%	2		V _{DD} + 0.3	V	1
Input Low Voltage	VIL	3.3 V +/-5%	V _{SS} - 0.3		0.8	V	1
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	1
Input Low Current	I _{IL1}	V _{IN} = 0 V; Inputs with no pull-up resistors	-5			uA	1
	I_{IL2}	$V_{IN} = 0$ V; Inputs with pull-up resistors	-200			uA	1
Operating Current	I _{DD3.30P}	all outputs driven			325	mA	
Powerdown Current	I _{DD3.3PD}				100	mA	
Input Frequency ³	Fi	$V_{DD} = 3.3 V$		14.31818		MHz	3
Pin Inductance ¹	L _{pin}				7	nH	1
	C _{IN}	Logic Inputs			5	pF	1
Input Capacitance ¹	C _{OUT}	Output pin capacitance			6	pF	1
	CINX	X1 & X2 pins			5	рF	1
Clk Stabilization ^{1,2}	T _{STAB}	From V _{DD} Power-Up or de-assertion of PD# to 1st clock			3	ms	1,2
Modulation Frequency		Triangular Modulation	30		33	kHz	1
SMBus Voltage	V _{DD}		2.7		5.5	V	1
Low-level Output Voltage	V _{OL}	@ I _{PULLUP}			0.4	V	1
Current sinking at $V_{OL} = 0.4 V$	I _{PULLUP}		4			mA	1
SCLK/SDATA Clock/Data Rise Time ³	T _{RI2C}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Clock/Data Fall Time ³	T _{FI2C}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1

¹Guaranteed by design and characterization, not 100% tested in production.

²See timing diagrams for timing requirements.

³ Input frequency should be measured at the REFOUT pin and tuned to ideal 14.31818MHz to meet

ppm frequency accuracy on PLL outputs.

^{© 2019} Renesas Electronics Corporation

Electrical Characteristics - K8 Push Pull Differential Pair

 $T_A = 0 - 70^{\circ}C$; $V_{DD} = 3.3 \text{ V} \pm -5\%$; $C_L = AMD64 \text{ Processor Test Load}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Rising Edge Rate	$\delta V / \delta t$	Measured at the AMD64 processor's test load. 0 V +/- 400 mV (differential	2		10	V/ns	1
Falling Edge Rate	$\delta V / \delta t$	measurement)	2		10	V/ns	1
Differential Voltage	V_{DIFF}		0.4	1.25	2.3	V	1
Change in V _{DIFF_DC} Magnitude	ΔV_{DIFF}	Measured at the AMD64 processor's	-150		150	mV	1
Common Mode Voltage	V_{CM}	test load. (single-ended measurement)	1.05	1.25	1.45	V	1
Change in Common Mode Voltage	ΔV_{CM}		-200		200	mV	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	Measurement from differential wavefrom. Maximum difference of cycle time between 2 adjacent cycles.	0	100	200	ps	1
Jitter, Accumulated	t _{ja}	Measured using the JIT2 software package with a Tek 7404 scope. TIE (Time Interval Error) measurement technique: Sample resolution = 50 ps, Sample Duration = 10 µs	-1000		1000		1,2,3
Duty Cycle	d_{t3}	Measurement from differential wavefrom	45		53	%	1
Output Impedance	R _{ON}	Average value during switching transition. Used for determining series termination value.	15	35	55	Ω	1
Group Skew	t _{src-skew}	Measurement from differential wavefrom			250	ps	1

¹Guaranteed by design and characterization, not 100% tested in production.

² All accumulated jitter specifications are guaranteed assuming that REF is at 14.31818MHz

³ Spread Spectrum is off

Electrical Characteristics - SRC 0.7V Current Mode Differential Pair

 $T_A = 0 - 70^{\circ}C$; $V_{DD} = 3.3 V + -5\%$; $C_L = 2pF$, $R_S = 33.2\Omega$, $R_P = 49.9\Omega$, $I_{REF} = 475\Omega$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Current Source Output Impedance	Zo	$V_{O} = V_{x}$	3000			Ω	1
Voltage High	VHigh	Statistical measurement on	660		850		1,3
Voltage Low	VLow	single ended signal using oscilloscope math function.	-150		150	mV	1,3
Max Voltage	Vovs	Measurement on single ended			1150	mV	1
Min Voltage	Vuds	signal using absolute value.	-300			IIIV	1
Crossing Voltage (abs)	Vcross(abs)		250	350	550	mV	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges		12	140	mV	1
Long Accuracy	ppm	see Tperiod min-max values	-300		300	ppm	1,2
Average period	Tperiod	100.00 MHz nominal	9.9970	10.0000	10.0030	ns	2
		100.00 MHz spread	9.9970		10.0530	ns	2
Absolute min period	Tabsmin	@100.00MHz nominal/spread	9.8720			ns	1,2
Rise Time	t _r	$V_{OL} = 0.175V, V_{OH} = 0.525V$	175		700	ps	1
Fall Time	t _f	$V_{OH} = 0.525 V V_{OL} = 0.175 V$	175		700	ps	1
Rise Time Variation	d-t _r			30	125	ps	1
Fall Time Variation	d-t _f			30	125	ps	1
Duty Cycle	d _{t3}	Measurement from differential wavefrom	45		55	%	1
Group Skew	t _{src-skew}	Measurement from differential wavefrom			N/A	ps	
littor Phase	t	PCI Express Gen 1 phase jitter CPU=200MHz, Spread off		38	86	ps	1, 4
Jitter, Phase	t _{jphase-pcie1}	PCI Express Gen 1 phase jitter CPU=200MHz, Spread on		52	86	ps	1, 4
Jitter, Cycle to cycle	t _{jcyc-cyc}	Measurement from differential wavefrom			100	ps	1

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is at 14.31818MHz

 ${}^{3}I_{REF} = V_{DD}/(3xR_{R})$. For $R_{R} = 475\Omega$ (1%), $I_{REF} = 2.32mA$. $I_{OH} = 6 \times I_{REF}$ and $V_{OH} = 0.7V @ Z_{O} = 50\Omega$.

⁴Per PCI SIG method for PCI Express Gen 1. Visit http://www.pcisig.com for details.

Output High Current

Output Low Current

Edge Rate

Edge Rate

Duty Cycle

Skew

Jitter, Cycle to cycle

SYMBOL TYP PARAMETER CONDITIONS MIN Long Accuracy see Tperiod min-max values -300 ppm 29.9910 30.0090 33.33MHz output nominal PCI33 Clock period Tperiod 29.9910 33.33MHz output spread 30.1598 14.9955 15.0045 66.67MHz output nominal HTT66 Clock period Tperiod 14.9955 15.0799 66.67MHz output spread Output High Voltage V_{OH} $I_{OH} = -1 \text{ mA}$ 2.4 Output Low Voltage $I_{OL} = 1 \text{ mA}$ VoL

UNITS

ppm

ns

ns

ns

ns

٧

٧

mA

mΑ

mA

mΑ

V/ns

V/ns

%

ps

ps

Notes

1,2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

MAX

300

0.55

-33

38

4

4

55

200

250

-33

30

1

1

45

Electrical Characteristics - PCICLK 33 MHz, HTTCLK 66 MHz Clocks

 $T_A = 0 - 70^{\circ}C$; VDD=3.3V +/-5%; $C_L = 20 \text{ pF}$ (unless otherwise specified)

Guaranteed by design and characterization, not 100% tested in production.

I_{OH}

I_{OL}

 $\delta V/\delta t$

δV/δt

d_{t1}

t_{sk1}

t_{jcyc-cyc}

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that REF is at 14.31818MHz

V _{OH} @MIN = 1.0 V

V_{OH}@ MAX = 3.135 V

V_{OL} @ MIN = 1.95 V

V_{OL} @ MAX = 0.4 V

Rising edge rate

Falling edge rate

 $V_{T} = 1.5 V$

 $V_{T} = 1.5 V$

 $V_{T} = 1.5 V$

Electrical Characteristics - 48MHz

$T_{A} = 0 - 70^{\circ}C$: $V_{DD} =$	3.3 V +/-5%; C1 =	= 20 pF (unless	otherwise specified)
--	-------------------	-----------------	----------------------

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-100		100	ppm	1,2
Clock period	T _{period}	48.00MHz output nominal	20.8257		20.8340	ns	2
Output High Voltage	V _{OH}	I _{OH} = -1 mA	2.4			V	1
Output Low Voltage	V _{OL}	I _{OL} = 1 mA			0.55	V	1
Output High Current	1	V _{OH} @ MIN = 1.0 V	-33			mA	1
Output High Current	I _{ОН}	V _{OH} @ MAX = 3.135 V			-33	mA	1
Outrout Law Ourrant	I _{OL}	V _{OL} @MIN = 1.95 V	30			mA	1
Output Low Current		V _{OL} @ MAX = 0.4 V			38	mA	1
Edge Rate	$\delta V / \delta t$	Rising edge rate	1		4	V/ns	1
Edge Rate	$\delta V / \delta t$	Falling edge rate	1		4	V/ns	1
Duty Cycle	d _{t1}	V _T = 1.5 V	45		55	%	1
Skew	t _{sk1}	V _T = 1.5 V			50	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	V _T = 1.5 V			200	ps	1

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that REF is at 14.31818MHz

^{© 2019} Renesas Electronics Corporation

Electrical Characteristics - REF-14.318MHz

A, DD	· · · , - L		/				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-300		300	ppm	1
Clock period	T _{period}	14.318MHz output nominal	69.8270		69.8550	ns	2
Output High Voltage	V _{OH}	I _{OH} = -1 mA	2.4			V	1
Output Low Voltage	V _{OL}	I _{OL} = 1 mA			0.4	V	1
Output High Current	I _{OH}	V _{OH} @MIN = 1.0 V, V _{OH} @MAX = 3.135 V	-29		-23	mA	1
Output Low Current	I _{OL}	V _{OL} @MIN = 1.95 V, V _{OL} @MAX = 0.4 V	29		27	mA	1
Edge Rate	$\delta V / \delta t$	Rising edge rate	1		2	V/ns	1
Edge Rate	$\delta V / \delta t$	Falling edge rate	1		2	V/ns	1
Duty Cycle	d _{t1}	V _T = 1.5 V	45		55	%	1
Skew	t _{sk1}	V _T = 1.5 V			50	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	V _T = 1.5 V			1000	ps	1

 $T_A = 0 - 70^{\circ}C$; $V_{DD} = 3.3 \text{ V} \pm -5\%$; $C_L = 27 \text{ pF}$ (unless otherwise specified)

¹Guaranteed by design and characterization, not 100% tested in production.

 2 All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that REF is at 14.31818MHz

General SMBus serial interface information

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will *acknowledge*
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending *Byte N through Byte N + X -1* (see Note 2)
- ICS clock will *acknowledge* each byte *one at a time*
- Controller (host) sends a Stop bit

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D3 (H)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends **Byte N + X -1**
- ICS clock sends Byte 0 through byte X (if X_(H) was written to byte 8).
- Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

In	dex Block W	/rit	e Operation
Cor	ntroller (Host)		ICS (Slave/Receiver)
Т	starT bit		
Slav	e Address D2 _(H)		
WR	WRite		
			ACK
Beg	inning Byte = N		
			ACK
Data	Byte Count = X		
			ACK
Begir	nning Byte N		
			ACK
	0	te	
	0	X Byte	0
	0	\times	0
			0
Byte	e N + X - 1		
			ACK
Р	stoP bit		

In	dex Block Rea	ad (Operation		
Cor	ntroller (Host)	IC	S (Slave/Receiver)		
Т	starT bit				
Slav	e Address D2 _(H)				
WR	WRite				
			ACK		
Begi	nning Byte = N				
	-		ACK		
RT	Repeat starT				
Slav	e Address D3 _(H)				
RD	ReaD				
			ACK		
		Data Byte Count = X			
	ACK				
			Beginning Byte N		
	ACK				
		Ъ,	0		
	0	X Byte	0		
	0	×	0		
	0				
			Byte N + X - 1		
N	Not acknowledge				
Р	stoP bit				

Byt	ie 0	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	FS Source	Latched Input or SMBus Frequency Select	RW	Latched Inputs	SMBus	0
Bit 6		-	CPU SS_EN	Spread Enable for CPU and SRC PLLs. Setting	RW	OFF	ON	0
Bit 5		-	SRC SS_EN	SPREAD_EN to '1', forces Spread ON for both PLLs.	RW	OFF	ON	0
Bit 4		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 3		-	FS3	Freq Select Bit 3	RW			0
Bit 2		-	FS2	Freq Select Bit 2	RW	See Functiona	Latched	
Bit 1		-	FS1	Freq Select Bit 1	RW	Page 1		Latched
Bit 0		-	FS0	Freq Select Bit 0	RW			Latched

SMBus Table: Frequency Select and Spread Control Register

SMBus Table: Output Control Register

Byt	te 1	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7			PCICLK3	Output Enable	RW	Disable (Low)	Enable	1
Bit 6			PCICLK2	Output Enable	RW	Disable (Low)	Enable	1
Bit 5			PCICLK1	Output Enable	RW	Disable (Low)	Enable	1
Bit 4			PCICLK0	Output Enable	RW	Disable (Low)	Enable	1
Bit 3			HTTCLK3	Output Enable	RW	Disable (Low)	Enable	1
Bit 2			HTTCLK2	Output Enable	RW	Disable (Low)	Enable	1
Bit 1			HTTCLK1	Output Enable	RW	Disable (Low)	Enable	1
Bit 0			HTTCLK0	Output Enable	RW	Disable (Low)	Enable	1

SMBus Table: Output Control Register

Byt	ie 2	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7			48MHz_1	Output Enable	RW	Disable (Low)	Enable	1
Bit 6			48MHz_0	Output Enable	RW	Disable (Low)	Enable	1
Bit 5			REF1	Output Enable	RW	Disable (Low)	Enable	1
Bit 4			REF0	Output Enable	RW	Disable (Low)	Enable	1
Bit 3			CPUCLK8(3)	Output Enable	RW	Disable	Enable	1
Bit 2			CPUCLK8(2)	When Disabled	RW	Disable	Enable	1
Bit 1			CPUCLK8(1)	CPUCLKT = 0	RW	Disable	Enable	1
Bit 0			CPUCLK8(0)	CPUCLKC = 1	RW	Disable	Enable	1

SMBus Table: SRCCLK(0) Output Control Register

Byt	te 3	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 6		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 5		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 4		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 3		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 2		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 1		-	SRCCLK0 PD	SRCCLK Power Down Drive Mode	RW	Driven	Hi-Z	0
Bit 0			SRCCLK0	Output Enable	RW	Disable (Hi-Z)	Enable	1

SMBus Table: 48MHz Drive Strength Control Register

By	te 4	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 6		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 5		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 4		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 3		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 2		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 1		5	48MHz_1 DS	Drive Strength Control	RW	1X	2X	0
Bit 0		4	48MHz_0 DS	Drive Strength Control	RW	1X	2X	0

SMBus Table: SRC Frequency Select Register

By	te 5	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 6			Reserved	Reserved	RW	Reserved	Reserved	0
Bit 5		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 4		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 3		-	SRCFS1	SRC FS bit 1	RW	See Ta	ble 1:	0
Bit 2		-	SRCFS0	SRC FS bit 0	RW	SRC Freque	ncy Select	0
Bit 1		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 0		-	Reserved	Reserved	RW	Reserved	Reserved	0

SMBus Table: Device ID Register

By	te 6	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	DevID 7	Device ID MSB	R	-	-	1
Bit 6		-	DevID 6	Device ID 6	R	-	-	0
Bit 5		-	DevID 5	Device ID 5	R	-	-	0
Bit 4		-	DevID 4	Device ID4	R	-	-	0
Bit 3		-	DevID 3	Device ID3	R	-	-	0
Bit 2		-	DevID 2	Device ID2	R	-	-	0
Bit 1		-	DevID 1	Device ID1	R	-	-	0
Bit 0		-	DevID 0	Device ID LSB	R	-	-	1

SMBus Table: Vendor ID Register

By	te 7	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	RID3		R	-	-	Х
Bit 6		-	RID2	Revision ID	R	-	-	Х
Bit 5		-	RID1	Revision ID	R	-	-	Х
Bit 4		-	RID0		R	-	-	Х
Bit 3		-	VID3		R	-	-	0
Bit 2		-	VID2	VENDOR ID	R	-	-	0
Bit 1		-	VID1	(0001 = ICS)	R	-	-	0
Bit 0		-	VID0		R	-	-	1

SMBus Table: Byte Count Register

Byt	te 8	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	BC7		RW			0
Bit 6		-	BC6		RW			0
Bit 5		-	BC5		RW	Writing to this	register will	0
Bit 4		-	BC4	Byte Count Programming	RW	configure how	many bytes	0
Bit 3		-	BC3	b(7:0)	RW	will be read ba	ck, default is	1
Bit 2		-	BC2		RW	9 byt	es.	0
Bit 1		-	BC1		RW	-		0
Bit 0		-	BC0		RW			1

SMBus Table: Reserved Register

By	te 9	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 6		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 5		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 4		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 3		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 2		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 1		-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 0		-	Reserved	Reserved	RW	Reserved	Reserved	0

SMBus Table: M/N Programming Enable

Byt	e 10	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	M/N_EN	CPU and SRC PLL M/N Programming Enable	RW	Disable	Enable	0
Bit 6		-	Reserved	Reserved	RW	-	-	0
Bit 5		-	Reserved	Reserved	RW	-	-	0
Bit 4		-	Reserved	Reserved	RW	-	-	0
Bit 3		-	Reserved	Reserved	RW	-	-	0
Bit 2		-	Reserved	Reserved	RW	-	-	0
Bit 1		-	Reserved	Reserved	RW	-	-	0
Bit 0		-	Reserved	Reserved	RW	-	-	0

Byte	e 11	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	N Div8	N Divider Prog bit 8	RW	The decimal representatio		Х
Bit 6		-	N Div9	N Divider Prog bit 9	RW	of M and N Di	vier in Byte	Х
Bit 5		-	M Div5		RW	11 and 12 wil	l configure	Х
Bit 4		-	M Div4		RW	RW the CPU VCO frequency.		Х
Bit 3		-	M Div3		RW	Default at powe	er up = latch	Х
Bit 2		-	M Div2	M Divider Programming	RW	in or Byte 0 I	Rom table.	Х
Bit 1		-	M Div1	bit (5:0)	RW	V VCO Frequency = 14.3		Х
Bit 0		-	M Div0		RW	x [NDiv(9 [MDiv(5:	, -	Х

SMBus Table: CPU Frequency Control Register

SMBus Table: CPU Frequency Control Register

Byte	e 12	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	N Div7		RW	The decimal re	presentation	Х
Bit 6		-	N Div6		RW	of M and N Divier in Byte		Х
Bit 5		-	N Div5		RW	11 and 12 will configure		Х
Bit 4		-	N Div4	N Divider Programming	RW	the CPU VCO frequency.		Х
Bit 3		-	N Div3	Byte12 bit(7:0) and	RW	Default at power up = latch		Х
Bit 2		-	N Div2	Byte11 bit(7:6)	RW	in or Byte 0 I	Rom table.	Х
Bit 1		-	N Div1		RW	VCO Frequency = 14.318		Х
Bit 0		-	N Div0		RW	x [NDiv(9 [MDiv(5	, <u>-</u>	Х

SMBus Table: CPU Spread Spectrum Control Register

Byte	e 13	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	SSP7		RW			Х
Bit 6		-	SSP6		RW			Х
Bit 5		-	SSP5		RW	These Spread	d Spectrum	Х
Bit 4		-	SSP4	Spread Spectrum	RW	bits in Byte 13	3 and 14 will	Х
Bit 3		-	SSP3	Programming bit(7:0)	RW	program th	e spread	Х
Bit 2		-	SSP2		RW	pecentage	of CPU	Х
Bit 1		-	SSP1		RW			Х
Bit 0		-	SSP0		RW			Х

SMBus Table: CPU Spread Spectrum Control Register

Byte	e 14	Pin #	Name	Control Function	Туре	0	1	PWD		
Bit 7		-	Reserved	Reserved	R	-	-	0		
Bit 6		-	SSP14		RW	These Spread Spectrum		· · ·		Х
Bit 5		-	SSP13		RW			Х		
Bit 4		-	SSP12	Carood Capatrum	RW	 bits in Byte 13 and 14 will program the spread 	Х			
Bit 3		-	SSP11	Spread Spectrum Programming bit(14:8)	RW			Х		
Bit 2	-		SSP10	Flogramming bit(14.0)	RW		•	Х		
Bit 1			SSP9	1 [pecentage of CPU		Х		
Bit 0		-	SSP8		RW			Х		

Byte	e 15	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	N Div8	N Divider Prog bit 8	RW	The decimal re	presentation	Х
Bit 6		-	N Div9	N Divider Prog bit 9	RW	of M and N Divier in Byte		Х
Bit 5		-	M Div5		RW	15 and 16 wi	ll configure	Х
Bit 4		-	M Div4		RW	the SRC VCO frequency. Default at power up = latch		Х
Bit 3		-	M Div3		RW			Х
Bit 2		-	M Div2	M Divider Programming	RW	in or Byte 0 I	Rom table.	Х
Bit 1		-	M Div1	bits	RW	VCO Frequen	cy = 14.318	Х
Bit 0		-	M Div0		RW	x [NDiv(9:0)+8] / [MDiv(5:0)+2]		Х

SMBus Table: SRC Frequency Control Register

SMBus Table: SRC Frequency Control Register

Byte	e 16	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	N Div7		RW	The decimal representation		Х
Bit 6	-		N Div6		RW	of M and N Di	vier in Byte	Х
Bit 5		-	N Div5		RW	15 and 16 will configure		Х
Bit 4		-	N Div4		RW	the SRC VCO frequency.		Х
Bit 3		-	N Div3	N Divider Programming	RW	Default at pow	er up = latch	Х
Bit 2		-	N Div2	b(7:0)	RW	in or Byte 0 I	Rom table.	Х
Bit 1		-	N Div1		RW	VCO Frequency = 14.318		Х
Bit 0		-	N Div0		RW	x [NDiv(9 [MDiv(5	, -	х

SMBus Table: SRC Spread Spectrum Control Register

Byte	e 17	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	SSP7		RW			Х
Bit 6		-	SSP6		RW			Х
Bit 5		-	SSP5		RW	These Spread	d Spectrum	Х
Bit 4		-	SSP4	Spread Spectrum	RW	bits in Byte 17	7 and 18 will	Х
Bit 3		-	SSP3	Programming b(7:0)	RW	program th	e spread	Х
Bit 2		-	SSP2		RW	pecentage	of SRC	Х
Bit 1		-	SSP1		RW			Х
Bit 0		-	SSP0	I	RW			Х

SMBus Table: SRC Spread Spectrum Control Register

Byte	e 18	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	Reserved	Reserved	R	-	-	0
Bit 6		-	SSP14		RW	These Spread Spectrum bits in Byte 17 and 18 will		Х
Bit 5		-	SSP13		RW			Х
Bit 4		-	SSP12	Enroad Enastrum	RW			Х
Bit 3		-	SSP11	Spread Spectrum Programming b(14:8)	RW			Х
Bit 2		-	SSP10	Flogramming b(14.0)	RW	program the spread	Х	
Bit 1		-	SSP9		RW	 pecentage of SRC 		Х
Bit 0		-	SSP8		RW		Х	

SMBus Table: Programmable Output Divider Register

Byte	e 19	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	CPUDiv3		RW			Х
Bit 6	6 -		CPUDiv2	CPU Divider Ratio	RW	See Table 2:		Х
Bit 5		-	CPUDiv1	Programming Bits	RW	CPU Divide	er Ratios	Х
Bit 4		-	CPUDiv0		RW			Х
Bit 3		-	HTTDiv3	HTT Divider Ratio	RW			Х
Bit 2		-	HTTDiv2	Programming Bits (PCI	RW	See Ta	ble 3:	Х
Bit 1		-	HTTDiv1	divider is always 2x the	RW	HTT Divide	er Ratios	Х
Bit 0		-	HTTDiv0	HTT divider or 1/2 freq.)	RW			Х

SMBus Table: Programmable Output Divider Register

Byt	e 20	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	Reserved	Reserved	R	-	-	Х
Bit 6		-	Reserved	Reserved	R	-	-	Х
Bit 5		-	Reserved	Reserved	R	-	-	Х
Bit 4		-	Reserved	Reserved	R	-	-	Х
Bit 3		-	SRC_Div3		RW			Х
Bit 2		-	SRC_Div2	SRC_ Divider Ratio	RW	See Table 4:		Х
Bit 1		-	SRC_Div1	Programming Bits	RW	SRC Divide	er Ratios	Х
Bit 0		-	SRC_Div0		RW			Х

SMBusTable: Test Byte Register

Byte 21 Test		Test	Test Function		Test Result	PWD
Bit 7		`	ICS ONLY TEST	RW	Reserved	0
Bit 6	6 ICS ONLY TEST		ICS ONLY TEST	RW	Reserved	0
Bit 5	Bit 5		ICS ONLY TEST		Reserved	0
Bit 4			ICS ONLY TEST	RW	Reserved	0
Bit 3			ICS ONLY TEST	RW	Reserved	0
Bit 2			ICS ONLY TEST	RW	Reserved	0
Bit 1			ICS ONLY TEST	RW	Reserved	0
Bit 0	t 0		ICS ONLY TEST	RW	Reserved	0

Shared Pin Operation -Input/Output Pins

The I/O pins designated by (input/output) on the **ICS932S801** serve as dual signal functions to the device. During initial power-up, they act as input pins. The logic level (voltage) that is present on these pins at this time is read and stored into a 5-bit internal data latch. At the end of Power-On reset, (see AC characteristics for timing values), the device changes the mode of operations for these pins to an output function. In this mode the pins produce the specified buffered clocks to external loads.

To program (load) the internal configuration register for these pins, a resistor is connected to either the VDD (logic 1) power supply or the GND (logic 0) voltage potential. A 10 Kilohm (10K) resistor is used to provide both the solid CMOS programming voltage needed during the power-up programming period and to provide an insignificant load on the output clock during the subsequent operating period. Figure 1 shows a means of implementing this function when a switch or 2 pin header is used. With no jumper is installed the pin will be pulled high. With the jumper in place the pin will be pulled low. If programmability is not necessary, than only a single resistor is necessary. The programming resistors should be located close to the series termination resistor to minimize the current loop area. It is more important to locate the series termination resistor close to the driver than the programming resistor.

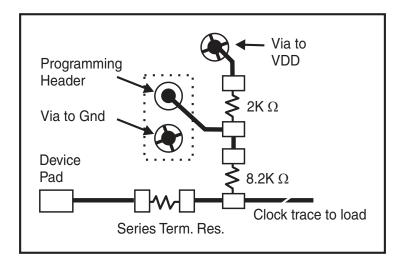
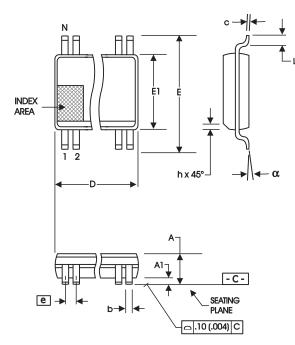



Fig. 1

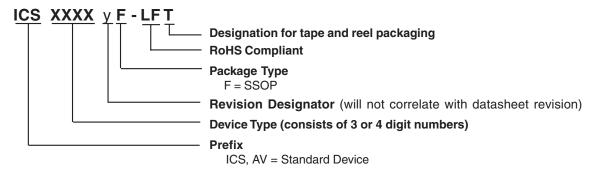
0959C-03/13/06

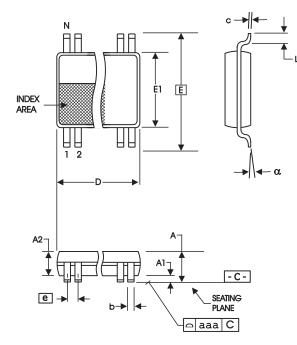
© 2019 Renesas Electronics Corporation

	300 mil SSOP							
	In Milli	meters	In Inches					
SYMBOL	COMMON D	IMENSIONS	COMMON D	IMENSIONS				
	MIN	MAX	MIN	MAX				
Α	2.41	2.80	.095	.110				
A1	0.20	0.40	.008	.016				
b	0.20	0.34	.008	.0135				
С	0.13	0.25	.005	.010				
D	SEE VAF	RIATIONS	SEE VARIATIONS					
E	10.03	10.68	.395	.420				
E1	7.40	7.60	.291	.299				
е	0.635	BASIC	0.025 BASIC					
h	0.38	0.64	.015	.025				
L	0.50	1.02	.020	.040				
N	SEE VAF	RIATIONS	SEE VAF	RIATIONS				
а	0°	8°	0°	8°				

VARIATIONS

N	D n	nm.	D (inch)		
IN	MIN	MAX	MIN	MAX	
48	15.75	16.00	.620	.630	


Reference Doc.: JEDEC Publication 95, MO-118


10-0034

Ordering Information

ICS932S801<u>y</u>FLFT

Example:

-	(240 m	il) (20	mil)		
	In Millir	neters	In Inches		
SYMBOL	COMMON DI	MENSIONS	COMMON D	IMENSIONS	
	MIN	MAX	MIN	MAX	
А		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.17	0.27	.007	.011	
С	0.09	0.20	.0035	.008	
D	SEE VAR	IATIONS	SEE VARIATIONS		
E	8.10 B	ASIC	0.319 BASIC		
E1	6.00	6.20	.236	.244	
е	0.50 B	ASIC	0.020 BASIC		
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VARIATIONS		
а	0°	8°	0°	8°	
aaa		0.10		.004	

VARIATIONS

Ν	Drr	ım.	D (inch)		
	MIN	MAX	MIN	MAX	
48	12.40	12.60	.488	.496	

Reference Doc.: JEDEC Publication 95, MO-153

10-0039

Ordering Information

ICS932S801<u>y</u>GLFT

Example:

Revision History

Rev.	Issue Date	Description	Page #
		1. Updated Electrical Characteristics Tables:	
		i) Changed SRC jitter from 125ps to 100ps;	
		ii) Changed PCI/HTT Skew from 500ps to 200ps;	
		iii) Added USB Skew, 50ps.	
		iv) Change REF Skew from 500ps to 50ps.	14-16
В	5/18/2005	2. Updated LF Ordering Information from "Lead Free" to "RoHS Compliant".	18-19
		1. Correct pin description of PD# (Pin 21). It does not contain a pull up resistor.	
С	3/13/2006	2. Added PCIe Gen 1 phase noise numbers to SRC output characterisitics	2, 7

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>