DS90C383

DS90C383/DS90CF384 +3.3V Programmable LVDS Transmitter 24-Bit Flat Panel
Display (FPD) Link-65 MHz, +3.3V LVDS Receiver 24-Bit Flat Panel Display
(FPD) Link-65 MHz

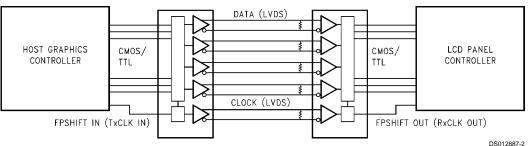
Literature Number: SNLS124A

DS90C383/DS90CF384

+3.3V Programmable LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link—65 MHz, +3.3V LVDS Receiver 24-Bit Flat Panel Display (FPD) Link—65 MHz

General Description

The DS90C383 transmitter converts 28 bits of LVCMOS/ LVTTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. The DS90CF384 receiver converts the LVDS data streams back into 28 bits of LVCMOS/ LVTTL data. At a transmit clock frequency of 65 MHz, 24 bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 455 Mbps per LVDS data channel. Using a 65 MHz clock, the data throughputs is 227 Mbytes/sec. The transmitter is offered with programmable edge data strobes for convenient interface with a variety of graphics controllers. The transmitter can be programmed for Rising edge strobe or Falling edge strobe through a dedicated pin. A Rising edge transmitter will inter-operate with a Falling edge receiver (DS90CF384) without any translation logic. Both devices are also offered in a 64 ball, 0.8mm fine pitch ball grid array (FBGA) package which provides a 44 % reduction in PCB footprint compared to the TSSOP package.


This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- 20 to 65 MHz shift clock support
- Programmable transmitter (DS90C383) strobe select (Rising or Falling edge strobe)
- Single 3.3V supply
- Chipset (Tx + Rx) power consumption < 250 mW (typ)
- Power-down mode (< 0.5 mW total)
- Single pixel per clock XGA (1024x768) ready
- Supports VGA, SVGA, XGA and higher addressability.
- Up to 227 Megabytes/sec bandwidth
- Up to 1.8 Gbps throughput
- Narrow bus reduces cable size and cost
- 290 mV swing LVDS devices for low EMI
- PLL requires no external components
- Low profile 56-lead TSSOP package.
- Also available in a 64 ball, 0.8mm fine pitch ball grid array (FBGA) package
- Falling edge data strobe Receiver
- Compatible with TIA/EIA-644 LVDS standard
- ESD rating >7 kV
- Operating Temperature: -40°C to +85°C


Block Diagrams

Typical Application

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Block Diagrams (Continued)

Order Number DS90C383MTD or DS90C383SLC See NS Package Number MTD56 or SLC64A

DS90CF384 DATA (LVDS) CMOS/TTL OUTPUTS 8 RED LVDS-TO-TTL PARALLEL GRN (140 Mbit/s To 455 Mbit/s On Each LVDS Channel) BLU - FPLINE (HSYNC) FPFRAME (VSYNC) - DRDY (DATA ENABLE) - CNTL CLOCK (LVDS) RECEIVER (20 MHz To 65 MHz) CLOCK OUT POWER DOWN DS012887-24

Order Number DS90CF384MTD or DS90CF384SLC See NS Package Number MTD56 or SLC64A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V_{CC}) -0.3V to +4VCMOS/TTL Input Voltage -0.3V to $(V_{CC} + 0.3V)$ CMOS/TTL Output Voltage -0.3V to $(V_{CC} + 0.3V)$ LVDS Receiver Input Voltage -0.3V to $(V_{CC} + 0.3V)$ LVDS Driver Output Voltage -0.3V to $(V_{CC} + 0.3V)$

LVDS Output Short Circuit

Duration Continuous Junction Temperature +150°C Storage Temperature -65°C to +150°C

Lead Temperature

(Soldering, 4 sec for TSSOP) +260°C

Solder Reflow Temperature (20 sec for FBGA)

+220°C Maximum Package Power Dissipation Capacity 25°C

MTD56 (TSSOP) Package:

DS90C383MTD 1.63 W DS90CF384MTD 1.61 W

Package Derating:

DS90C383MTD 12.5 mW/°C above +25°C DS90CF384MTD 12.4 mW/°C above +25°C

Maximum Package Power Dissipation Capacity 25°C

SLC64A Package:

DS90C383SLC 2.0 W 2.0 W DS90CF384SLC

Package Derating:

DS90C383SLC 10.2 mW/°C above +25°C DS90CF384SLC 10.2 mW/°C above +25°C

ESD Rating (HBM, 1.5 k Ω , 100 pF) > 7 kV

Recommended Operating Conditions

	Min	Nom	Max	Units
Supply Voltage (V _{CC})	3.0	3.3	3.6	V
Operating Free Air				
Temperature (T _A)	-40	+25	+85	°C
Receiver Input Range	0		2.4	V
Supply Noise Voltage (V_{CC})			100	mV_PP

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Condition	ons	Min	Тур	Max	Units
LVCMO	S/LVTTL DC SPECIFICATIONS			•	•		
V _{IH}	High Level Input Voltage			2.0		V _{cc}	V
V _{IL}	Low Level Input Voltage			GND		0.8	V
V _{OH}	High Level Output Voltage	$I_{OH} = -0.4 \text{ mA}$		2.7	3.3		V
V _{OL}	Low Level Output Voltage	I _{OL} = 2 mA			0.06	0.3	V
V _{CL}	Input Clamp Voltage	$I_{CL} = -18 \text{ mA}$			-0.79	-1.5	V
I _{IN}	Input Current	$V_{IN} = V_{CC}$, GND, 2.5V	or 0.4V		±5.1	±10	μΑ
Ios	Output Short Circuit Current	V _{OUT} = 0V			-60	-120	mA
LVDS D	C SPECIFICATIONS			•		•	
V _{OD}	Differential Output Voltage	$R_L = 100\Omega$		250	345	450	mV
ΔV_{OD}	Change in V _{OD} between					35	mV
	complimentary output states						
Vos	Offset Voltage (Note 4)						V
ΔV_{OS}	Change in V _{OS} between					35	mV
	complimentary output states						
I _{os}	Output Short Circuit Current	$V_{OUT} = 0V, R_L = 100\Omega$			-3.5	-5	mA
l _{oz}	Output TRI-STATE® Current	Power Down = 0V,			±1	±10	μΑ
		$V_{OUT} = 0V \text{ or } V_{CC}$					
V _{TH}	Differential Input High Threshold	V _{CM} = +1.2V				+100	mV
V _{TL}	Differential Input Low Threshold			-100			mV
I _{IN}	Input Current	$V_{IN} = +2.4V, V_{CC} = 3.6$	V			±10	μΑ
		$V_{IN} = 0V, V_{CC} = 3.6V$			±10	μΑ	
TRANS	MITTER SUPPLY CURRENT			•	•		
ICCTW	Transmitter Supply Current	$R_{L} = 100\Omega,$ $C_{L} = 5 \text{ pF},$	f = 32.5 MHz		31	45	mA
	Worst Case	Worst Case Pattern		32	50	mA	

Electrical Characteristics (Continued)

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditio	Min	Тур	Max	Units			
TRANSMITTER SUPPLY CURRENT									
		(Figures 1, 3), T _A = -40°C to +85°C	f = 65 MHz		42	55	mA		
ICCTG	Transmitter Supply Current	$R_{L} = 100\Omega,$ $C_{L} = 5 \text{ pF},$	f = 32.5 MHz		23	35	mA		
	16 Grayscale	16 Grayscale Pattern	f = 37.5 MHz		28	40	mA		
		(Figures 2, 3), T _A = -40°C to +85°C	f = 65 MHz		31	45	mA		
ICCTZ	Transmitter Supply Current	Power Down = Low	Power Down = Low			55	μA		
	Power Down	Driver Outputs in TRI-S	Driver Outputs in TRI-STATE® under						
		Power Down Mode							
RECEIV	ER SUPPLY CURRENT	·							
ICCRW	Receiver Supply Current	C _L = 8 pF,	f = 32.5 MHz		49	65	mA		
	Worst Case	Worst Case Pattern	f = 37.5 MHz		53	70	mA		
		(Figures 1, 4), T _A = -40°C to +85°C	f = 65 MHz		78	105	mA		
ICCRG	Receiver Supply Current,	C _L = 8 pF,	f = 32.5 MHz		28	45	mA		
	16 Grayscale	16 Grayscale Pattern	f = 37.5 MHz		30	47	mA		
		(Figures 2, 4), T _A = -40°C to +85°C	f = 65 MHz		43	60	mA		
ICCRZ	Receiver Supply Current	Power Down = Low			10	55	μA		
	Power Down	Receiver Outputs Stay L	ow during						
		Power Down Mode							

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise specified (except V_{OD} and ΔV_{OD}).

Note 4: V_{OS} previously referred as V_{CM} .

Transmitter Switching Characteristics

Over recommended operating supply and -40°C to +85°C ranges unless otherwise specified

Symbol	Parameter	Min	Тур	Max	Units	
LLHT	LVDS Low-to-High Transition Time (Figure 3)			0.75	1.5	ns
LHLT	LVDS High-to-Low Transition Time (Figure 3)			0.75	1.5	ns
TCIT	TxCLK IN Transition Time (Figure 5)				5	ns
TCCS	TxOUT Channel-to-Channel Skew (Figure 6)			250		ps
TPPos0	Transmitter Output Pulse Position for Bit 0 (Figure 17)	f = 65 MHz	-0.4	0	0.3	ns
TPPos1	Transmitter Output Pulse Position for Bit 1		1.8	2.2	2.5	ns
TPPos2	Transmitter Output Pulse Position for Bit 2		4.0	4.4	4.7	ns
TPPos3	Transmitter Output Pulse Position for Bit 3	6.2	6.6	6.9	ns	
TPPos4	Transmitter Output Pulse Position for Bit 4		8.4	8.8	9.1	ns
TPPos5	Transmitter Output Pulse Position for Bit 5		10.6	11	11.3	ns
TPPos6	Transmitter Output Pulse Position for Bit 6		12.8	13.2	13.5	ns
TCIP	TxCLK IN Period (Figure 7)		15	Т	50	ns
TCIH	TxCLK IN High Time (Figure 7)		0.35T	0.5T	0.65T	ns
TCIL	TxCLK IN Low Time (Figure 7)		0.35T	0.5T	0.65T	ns
TSTC	TxIN Setup to TxCLK IN (Figure 7)	2.5			ns	
THTC	TxIN Hold to TxCLK IN (Figure 7)	1	0			ns
TCCD	TxCLK IN to TxCLK OUT Delay 25°C, V _{CC} = 3.3V (Figure 9)	•	3.0	3.7	5.5	ns

Note 2: Typical values are given for $V_{CC} = 3.3V$ and $T_A = +25C$.

Transmitter Switching Characteristics (Continued)

Over recommended operating supply and -40°C to +85°C ranges unless otherwise specified

Symbol	Parameter	Тур	Max	Units	
TPLLS	Transmitter Phase Lock Loop Set (Figure 11)			10	ms
TPDD	Transmitter Power Down Delay (Figure 15)			100	ns

Receiver Switching CharacteristicsOver recommended operating supply and -40°C to +85°C ranges unless otherwise specified

Symbol	Parameter		Min	Тур	Max	Units
CLHT	CMOS/TTL Low-to-High Transition Time (Figure 4)			2.2	5.0	ns
CHLT	CMOS/TTL High-to-Low Transition Time (Figure 4)			2.2	5.0	ns
RSPos0	Receiver Input Strobe Position for Bit 0 (Figure 18)	f = 65 MHz	0.7	1.1	1.4	ns
RSPos1	Receiver Input Strobe Position for Bit 1		2.9	3.3	3.6	ns
RSPos2	Receiver Input Strobe Position for Bit 2		5.1	5.5	5.8	ns
RSPos3	Receiver Input Strobe Position for Bit 3		7.3	7.7	8.0	ns
RSPos4	Receiver Input Strobe Position for Bit 4		9.5	9.9	10.2	ns
RSPos5	Receiver Input Strobe Position for Bit 5	11.7	12.1	12.4	ns	
RSPos6	Receiver Input Strobe Position for Bit 6		13.9	14.3	14.6	ns
RSKM	RxIN Skew Margin (Note 5) (Figure 19)	f = 65 MHz	400			ps
RCOP	RxCLK OUT Period (Figure 8)		15	Т	50	ns
RCOH	RxCLK OUT High Time (Figure 8)	f = 65 MHz	7.3	8.6		ns
RCOL	RxCLK OUT Low Time (Figure 8)		3.45	4.9		ns
RSRC	RxOUT Setup to RxCLK OUT (Figure 8)		2.5	6.9		ns
RHRC	RxOUT Hold to RxCLK OUT (Figure 8)		2.5	5.7		ns
RCCD	RxCLK IN to RxCLK OUT Delay 25°C, V _{CC} = 3.3V (Figure 10)		5.0	7.1	9.0	ns
RPLLS	Receiver Phase Lock Loop Set (Figure 12)				10	ms
RPDD	Receiver Power Down Delay (Figure 16)				1	μs

Note 5: Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account the transmitter pulse positions (min and max) and the receiver input setup and hold time (internal data sampling window-RSPOS). This margin allows for LVDS interconnect skew, inter-symbol interference (both dependent on type/length of cable), and clock jitter (less than 250 ps).

AC Timing Diagrams

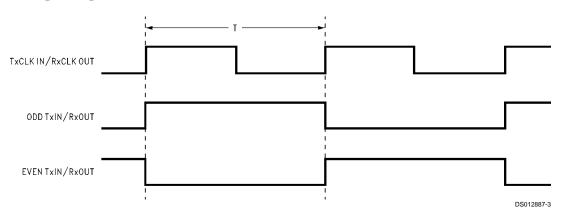


FIGURE 1. "Worst Case" Test Pattern

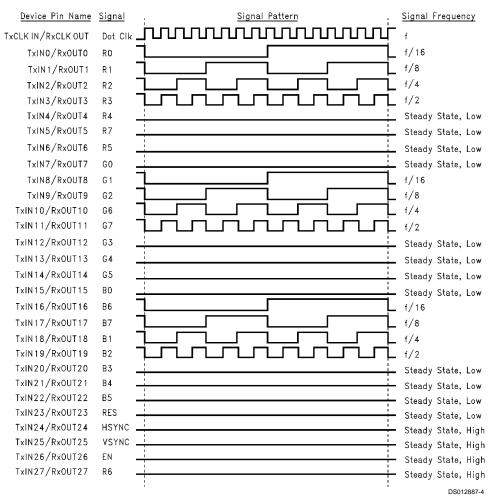


FIGURE 2. "16 Grayscale" Test Pattern (Notes 6, 7, 8, 9)

Note 6: The worst case test pattern produces a maximum toggling of digital circuits, LVDS I/O and CMOS/TTL I/O.

Note 7: The 16 grayscale test pattern tests device power consumption for a "typical" LCD display pattern. The test pattern approximates signal switching needed to produce groups of 16 vertical stripes across the display.

Note 8: Figures 1, 2 show a falling edge data strobe (TxCLK IN/RxCLK OUT).

Note 9: Recommended pin to signal mapping. Customer may choose to define differently.

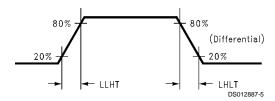


FIGURE 3. DS90C383 (Transmitter) LVDS Output Load and Transition Times

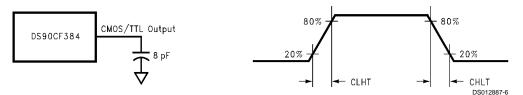


FIGURE 4. DS90CF384 (Receiver) CMOS/TTL Output Load and Transition Times

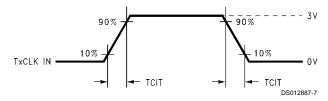
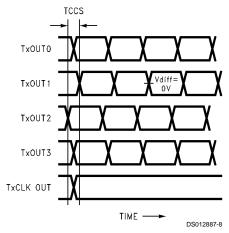



FIGURE 5. DS90C383 (Transmitter) Input Clock Transition Time

Measurements at $V_{\text{diff}} = 0V$ TCCS measured between earliest and latest LVDS edges.

TxCLK Differential Low → High Edge

FIGURE 6. DS90C383 (Transmitter) Channel-to-Channel Skew

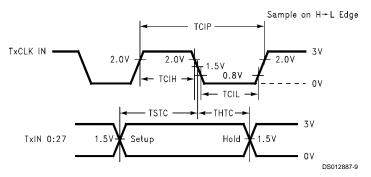


FIGURE 7. DS90C383 (Transmitter) Setup/Hold and High/Low Times (Falling Edge Strobe)

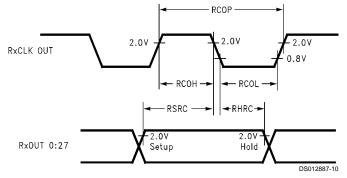


FIGURE 8. DS90CF384 (Receiver) Setup/Hold and High/Low Times

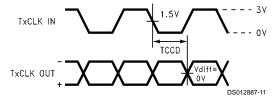


FIGURE 9. DS90C383 (Transmitter) Clock In to Clock Out Delay (Falling Edge Strobe)

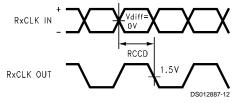


FIGURE 10. DS90CF384 (Receiver) Clock In to Clock Out Delay

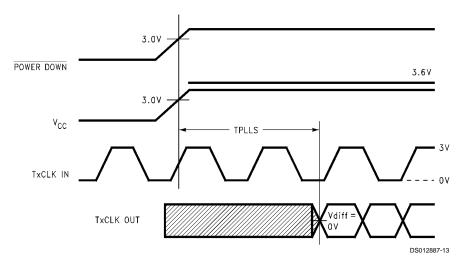


FIGURE 11. DS90C383 (Transmitter) Phase Lock Loop Set Time

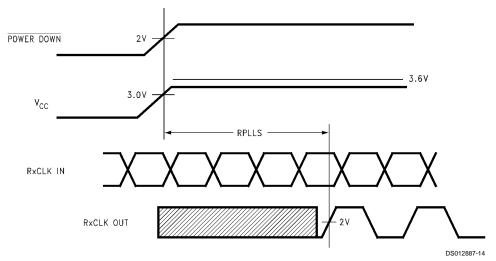


FIGURE 12. DS90CF384 (Receiver) Phase Lock Loop Set Time

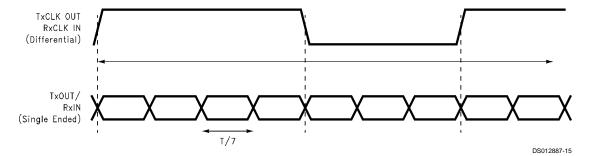


FIGURE 13. Seven Bits of LVDS in Once Clock Cycle

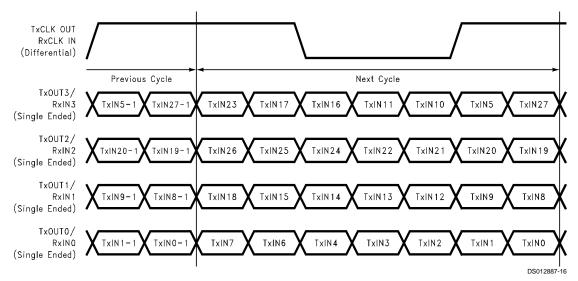


FIGURE 14. 21 Parallel TTL Data Inputs Mapped to LVDS Outputs

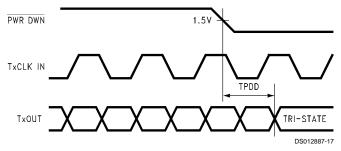


FIGURE 15. Transmitter Power Down Delay

AC Timing Diagrams (Continued) 1.5٧-POWER DOWN RxCLK IN RPDD-RxOUT Low DS012887-18 FIGURE 16. Receiver Power Down Delay T_{CLK} TxCLK OUT (Differential) Previous Cycle Next Cycle TxOUT3/ TxIN5-1 TxIN27 TxIN23 TxIN17 TxIN16 TxIN11 TxIN10 TxIN5 TxIN27 (Single Ended) TxOUT2/ TxIN20-TxIN19-TxIN26 TxIN25 TxIN24 TxIN22 TxIN21 TxIN20 TxIN19 (Single Ended) Tx0UT1/ TxIN8-1 TxIN18 TxIN15 TxIN14 TxIN13 TxIN8 TxIN9-1 $TxIN\,1\,2$ TxIN9 (Single Ended) TxOUT0/ TxIN0-1 TxIN7 TxIN6 TxIN4 TxIN3 TxIN1 TxIN1-1 TxIN2 TxIN0 (Single Ended) TPPos0 TPPos 1 TPPos2 TPPos3 TPPos4 TPPos5 TPPos6

FIGURE 17. Transmitter LVDS Output Pulse Position Measurement

DS012887-26

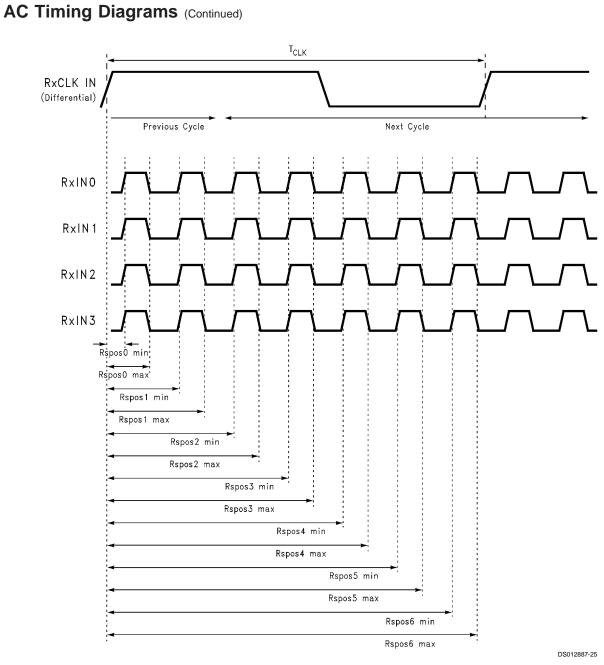
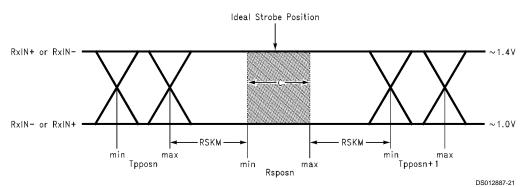



FIGURE 18. Receiver LVDS Input Strobe Position

 $C-Setup \ and \ Hold \ Time \ (Internal \ data \ sampling \ window) \ defined \ by \ Rspos \ (receiver \ input \ strobe \ position) \ min \ and \ max$

Tppos — Transmitter output pulse position (min and max)

RSKM = Cable Skew (type, length) + Source Clock Jitter (cycle to cycle) (Note 10) + ISI (Inter-symbol interference) (Note 11)

Cable Skew — typically 10 ps-40 ps per foot, media dependent

Note 10: Cycle-to-cycle jitter is less than 250 ps at 65 MHZ

Note 11: ISI is dependent on interconnect length; may be zero

FIGURE 19. Receiver LVDS Input Skew Margin

Applications Information

The DS90C383 and DS90CF384 are backward compatible with the existing 5V FPD Link transmitter/receiver pair (DS90CR583, DS90CR584, DS90CF583 and DS90CF584). To upgrade from a 5V to a 3.3V system the following must be addressed:

- Change 5V power supply to 3.3V. Provide this supply to the V_{CC}, LVDS V_{CC} and PLL V_{CC} of both the transmitter and receiver devices. This change may enable the removal of a 5V supply from the system, and power may be supplied from an existing 3V power source.
- 2. The DS90C383 (transmitter) incorporates a rise/fall strobe select pin. This select function is on pin 17, formerly a V_{CC} connection on the 5V products. When the rise/fall strobe select pin is connected to V_{CC}, the part is configured with a rising edge strobe. In a system currently using a 5V rising edge strobe transmitter (DS90CR583), no layout changes are required to accommodate the new rise/fall select pin on the 3.3V transmitter. The V_{CC} signal may remain at pin 17, and the device will be configured with a rising edge strobe.

When converting from a 5V falling edge transmitter (DS90CF583) to the 3V transmitter a minimal board layout change is necessary. The 3.3V transmitter will not be configured with a falling edge strobe if $V_{\rm CC}$ remains connected to the select pin. To guarantee the 3.3V transmitter functions with a falling edge strobe pin 17 should be connected to ground OR left unconnected. When not connected (left open) and internal pull-down resistor ties pin 17 to ground, thus configuring the transmitter with a falling edge strobe.

The DS90C383 transmitter input and control inputs accept 3.3V TTL/CMOS levels. They are not 5V tolerant.

DS90C383 TSSOP Package Pin Description — FPD Link Transmitter

Pin Name	I/O	No.	Description
TxIN	I	28	TTL level input. This includes: 8 Red, 8 Green, 8 Blue, and 4 control lines—FPLINE,
			FPFRAME and DRDY (also referred to as HSYNC, VSYNC, Data Enable).
TxOUT+	0	4	Positive LVDS differential data output.
TxOUT-	0	4	Negative LVDS differential data output.
FPSHIFT IN	I	1	TTL level clock input. The falling edge acts as data strobe. Pin name TxCLK IN.
R_FB	I	1	Programmable strobe select.
RTxCLK OUT+	0	1	Positive LVDS differential clock output.
TxCLK OUT-	0	1	Negative LVDS differential clock output.
PWR DOWN	I	1	TTL level input. When asserted (low input) TRI-STATES the outputs, ensuring low current at
			power down.
V _{CC}	I	3	Power supply pins for TTL inputs.
GND	I	4	Ground pins for TTL inputs.
PLL V _{CC}	I	1	Power supply pin for PLL.
PLL GND	I	2	Ground pins for PLL.
LVDS V _{CC}	I	1	Power supply pin for LVDS outputs.
LVDS GND	I	3	Ground pins for LVDS outputs.

DS90C383SLC SLC64A (FBGA) Package Pin Summary — FPD Link Transmitter

Pin Name	I/O	No.	Description
TxIN	I	28	TTL level input.
TxOUT+	0	4	Positive LVDS differential data output.
TxOUT-	0	4	Negative LVDS differential data output.
TxCLKIN	I	1	TTL level clock input. The rising edge acts as data strobe. Pin name TxCLK IN.
TxCLK OUT+	0	1	Positive LVDS differential clock output.
TxCLK OUT-	0	1	Negative LVDS differential clock output.
PWR DWN	I	1	TTL level input. Assertion (low input) TRI-STATES the outputs, ensuring low current at
			power down.
R_FB	I	1	Programmable strobe select. HIGH = rising edge, LOW = falling edge.
V _{CC}	I	3	Power supply pins for TTL inputs.
GND	I	5	Ground pins for TTL inputs.
PLL V _{CC}	I	1	Power supply pin for PLL.
PLL GND	I	2	Ground pins for PLL.
LVDS V _{CC}	I	2	Power supply pin for LVDS outputs.
LVDS GND	I	4	Ground pins for LVDS outputs.
NC		6	Pins not connected.

DS90C383SLC SLC64A (FBGA) Package Pin Description — FPD Link Transmitter

	By Pin			By Pin Type	
Pin	Pin Name	Туре	Pin	Pin Name	Туре
A1	TxIN27	I	D3	GND	G
A2	TxOUT0-	0	E4	GND	G
А3	TxOUT0+	0	E8	GND	G
A4	LVDS VCC	Р	G1	GND	G
A5	LVDS VCC	Р	G6	GND	G
A6	TxCLKOUT-	0	В3	LVDS GND	G

DS90C383SLC SLC64A (FBGA) Package Pin Description — FPD Link Transmitter (Continued)

	By Pin			By Pin Type	1
A7	TxCLKOUT+	0	B4	LVDS GND	G
48	TxOUT3+	0	B7	LVDS GND	G
31	TxIN1	I	D5	LVDS GND	G
32	TxIN0	I	C6	PLL GND	G
33	LVDS GND	G	D6	PLL GND	G
34	LVDS GND	G	D7	PWR DWN	I
35	TxOUT2-	0	G5	R_FB	I
36	TxOUT3-	0	C8	TxCLKIN	I
37	LVDS GND	G	B2	TxIN0	I
38	NC		B1	TxIN1	I
C1	TxIN3	I	D2	TxIN2	I
C2	NC		C1	TxIN3	I
 C3	NC		D1	TxIN4	ı
C4	TxOUT1-	0	F1	TxIN5	ı
C5	TxOUT2+	0	E2	TxIN6	I
26	PLL GND	G	E3	TxIN7	ı
27	PLL VCC	P	G2	TxIN8	
C8	TxCLKIN	i	H1	TxIN9	i
D1	TxIN4	I	G3	TxIN10	Ī
D2	TxIN2	I	H3	TxIN11	I
D3	GND	G	F4	TxIN12	
D4	TxOUT1+	0	G4	TxIN13	
05	LVDS GND	G	H4	TxIN14	
D6	PLL GND	G	H5	TxIN15	1
07	PWD DWN		E5	TxIN16	
D8	TxIN26	i	F5	TxIN17	i
<u>= </u>	VCC	 P	H6	TxIN18	i
<u> </u>	TxIN6	i	H7	TxIN19	Ī
<u>=</u> 3	TxIN7	Ī	H8	TxIN20	i
<u>-</u> ∃4	GND	G	G7	TxIN21	1
<u>=</u> 5	TxIN16	1	F7	TxIN22	1
=6 =6	VCC	P	G8	TxIN23	1
<u> </u>	TxIN24	1	E7	TxIN24	I
=- =8	GND	G	F8	TxIN25	i
	TxIN5	ı	D8	TxIN26	i
<u>.</u> -2	NC	•	A1	TxIN27	i
- =3	NC		A6	TxCLKOUT-	0
- 4	TxIN12	I	A7	TxCLKOUT+	0
	TxIN17	ı I	A2	TxOUT0-	0
- 6	NC		A3	TxOUT0+	0
- 7	TxIN22	I	C4	TxOUT1-	0
- -8	TxIN25	i	D4	TxOUT1+	0
31	GND	G	B5	TxOUT2-	0
31 32	TxIN8		C5	TxOUT2+	0
33	TxIN10	<u>.</u>	B6	TxOUT3-	0
34 34	TxIN13	<u>.</u>	A8	TxOUT3+	0
35	R_FB	<u>.</u>	A4	LVDS VCC	P
36	GND	G	A5	LVDS VCC	P

DS90C383SLC SLC64A (FBGA) Package Pin Description — FPD Link Transmitter (Continued)

	By Pin			By Pin Type	
G7	TxIN21	I	C7	PLL VCC	Р
G8	TxIN23	I	E1	VCC	Р
H1	TxIN9	I	E6	VCC	Р
H2	VCC	Р	H2	VCC	Р
H3	TxIN11	I	B8	NC	
H4	TxIN14	I	C2	NC	
H5	TxIN15	I	C3	NC	
H6	TxIN18	I	F2	NC	
H7	TxIN19	I	F3	NC	
H8	TxIN20	I	F6	NC	

 $[\]mathsf{G}:\mathsf{Ground}$

DS90CF384 MTD56 TSSOP Package Pin Description — FPD Link Receiver

Pin Name	I/O	No.	Description
RxIN+	I	4	Positive LVDS differential data inputs.
RxIN-	I	4	Negative LVDS differential data inputs.
RxOUT	0	28	TTL level data outputs. This includes: 8 Red, 8 Green, 8 Blue, and 4 control lines—FPLINE, FPFRAME, DRDY (also referred to as HSYNC, VSYNC, Data Enable).
RxCLK IN+	I	1	Positive LVDS differential clock input.
RxCLK IN-	I	1	Negative LVDS differential clock input.
FPSHIFT OUT	0	1	TTL level clock output. The falling edge acts as data strobe. Pin name RxCLK OUT.
PWR DOWN	I	1	TTL level input. When asserted (low input) the receiver outputs are low.
V _{CC}	I	4	Power supply pins for TTL outputs.
GND	I	5	Ground pins for TTL outputs.
PLL V _{CC}	I	1	Power supply for PLL.
PLL GND	I	2	Ground pin for PLL.
LVDS V _{CC}	I	1	Power supply pin for LVDS inputs.
LVDS GND	I	3	Ground pins for LVDS inputs.

DS90CF384 64 ball FBGA Package Pin Description — FPD Link Receiver

Pin Name	I/O	No.	Description
RxIN+	I	4	Positive LVDS differential data inputs.
RxIN-	I	4	Negative LVDS differential data inputs.
RxOUT	0	28	TTL level data outputs. This includes: 8 Red, 8 Green, 8 Blue, and 4 control lines—FPLINE, FPFRAME, DRDY (also referred to as HSYNC, VSYNC, Data Enable).
RxCLK IN+	I	1	Positive LVDS differential clock input.
RxCLK IN-	I	1	Negative LVDS differential clock input.
FPSHIFT OUT	0	1	TTL level clock output. The falling edge acts as data strobe. Pin name RxCLK OUT.
PWR DOWN	I	1	TTL level input. When asserted (low input) the receiver outputs are low.
V _{CC}	I	4	Power supply pins for TTL outputs.
GND	I	5	Ground pins for TTL outputs.
PLL V _{CC}	I	1	Power supply for PLL.
PLL GND	I	2	Ground pin for PLL.
LVDS V _{CC}	I	2	Power supply pin for LVDS inputs.

I : Input

O : Output

P : Power

NC : No Connect

${\tt DS90CF384~64~ball~FBGA~Package~Pin~Description} - {\tt FPD~Link~Receiver}$

(Continued)

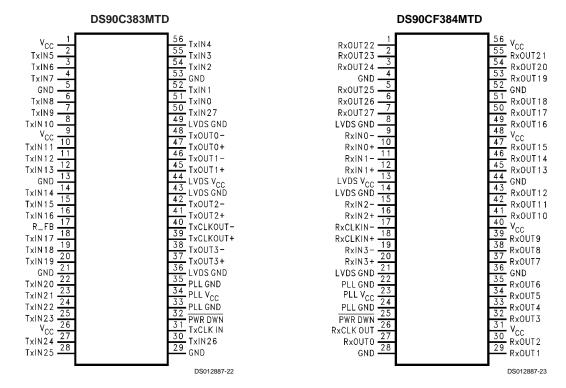
Pin Name	I/O	No.	Description
LVDS GND	I	4	Ground pins for LVDS inputs.
NC		6	Pins not connected.

DS90CF384 64 ball, FBGA Package Pin Definition — FPD Link Receiver

	By Pin			By Pin Type		
Pin	Pin Name	Туре	Pin	Pin Name	Туре	
A1	RxOUT17	0	A4	GND	G	
A2	VCC	Р	B1	GND	G	
A3	RxOUT15	0	B6	GND	G	
A4	GND	G	D8	GND	G	
A5	RxOUT12	0	E3	GND	G	
A6	RxOUT8	0	E5	LVDS GND	G	
A7	RxOUT7	0	G3	LVDS GND	G	
A8	RxOUT6	0	G7	LVDS GND	G	
B1	GND	G	H5	LVDS GND	G	
B2	NC		F6	PLL GND	G	
B3	RxOUT16	0	G8	PLL GND	G	
B4	RxOUT11	0	E6	PWR DWN	I	
B5	VCC	Р	H6	RxCLKIN-	I	
B6	GND	G	H7	RxCLKIN+	I	
B7	RxOUT5	0	H2	RxIN0-	I	
B8	RxOUT3	0	H3	RxIN0+	I	
C1	RxOUT21	0	F4	RxIN1-	I	
C2	NC		G4	RxIN1+	I	
C3	RxOUT18	0	G5	RxIN2-	I	
C4	RxOUT14	0	F5	RxIN2+	I	
C5	RxOUT9	0	G6	RxIN3-	I	
C6	RxOUT4	0	H8	RxIN3+	I	
C7	NC		E7	RxCLKOUT	0	
C8	RxOUT1	0	E8	RxOUT0	0	
D1	VCC	Р	C8	RxOUT1	0	
D2	RxOUT20	0	D7	RxOUT2	0	
D3	RxOUT19	0	B8	RxOUT3	0	
D4	RxOUT13	0	C6	RxOUT4	0	
D5	RxOUT10	0	B7	RxOUT5	0	
D6	VCC	Р	A8	RxOUT6	0	
D7	RxOUT2	0	A7	RxOUT7	0	
D8	GND	G	A6	RxOUT8	0	
E1	RxOUT22	0	C5	RxOUT9	0	
E2	RxOUT24	0	D5	RxOUT10	0	
E3	GND	G	B4	RxOUT11	0	
E4	LVDS VCC	Р	A5	RxOUT12	0	
E5	LVDS GND	G	D4	RxOUT13	0	
E6	PWR DWN	I	C4	RxOUT14	0	
E7	RxCLKOUT	0	A3	RxOUT15	0	
E8	RxOUT0	0	В3	RxOUT16	0	
F1	RxOUT23	0	A1	RxOUT17	0	

DS90CF384 64 ball, FBGA Package Pin Definition — FPD Link Receiver

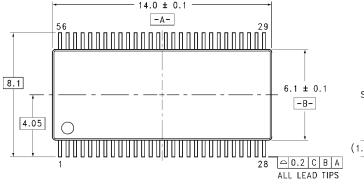
(Continued)


	By Pin	
F2	RxOUT26	0
F3	NC	
F4	RxIN1-	I
F5	RxIN2+	I
F6	PLL GND	G
F7	PLL VCC	Р
F8	NC	
G1	RxOUT25	0
G2	NC	
G3	LVDS GND	G
G4	RxIN1+	I
G5	RxIN2-	I
G6	RxIN3-	I
G7	LVDS GND	G
G8	PLL GND	G
H1	RxOUT27	0
H2	RxIN0-	I
H3	RxIN0+	I
H4	LVDS VCC	Р
H5	LVDS GND	G
H6	RxCLKIN-	I
H7	RxCLKIN+	I
H8	RxIN3+	I

	By Pin Type	
C3	RxOUT18	0
D3	RxOUT19	0
D2	RxOUT20	0
C1	RxOUT21	0
E1	RxOUT22	0
F1	RxOUT23	0
E2	RxOUT24	0
G1	RxOUT25	0
F2	RxOUT26	0
H1	RxOUT27	0
E4	LVDS VCC	Р
H4	LVDS VCC	Р
F7	PLL VCC	Р
A2	VCC	Р
B5	VCC	Р
D1	VCC	Р
D6	VCC	Р
B2	NC	
C2	NC	
C7	NC	
F3	NC	
F8	NC	
G2	NC	

G : Ground
I : Input
O : Output
P : Power

NC : Not Connect


Pin Diagrams for TSSOP Packages

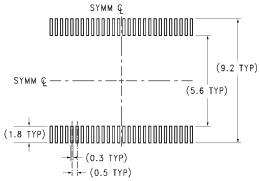
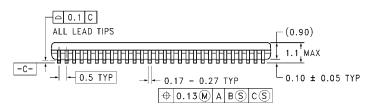
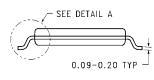
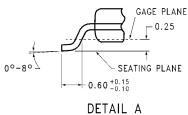


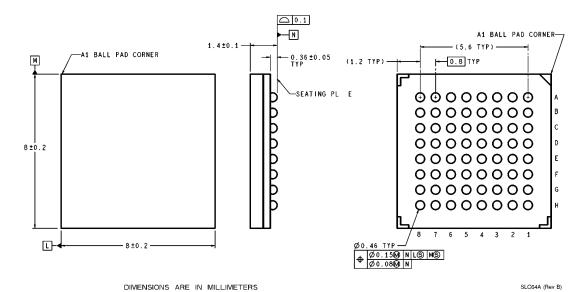
TABLE 1. Programmable Transmitter


Pin	Condition	Strobe Status
R_FB	$R_FB = V_{CC}$	Rising edge strobe
R_FB	R_FB = GND	Falling edge strobe


Physical Dimensions inches (millimeters) unless otherwise noted



LAND PATTERN RECOMMENDATION



TYPICAL

MTD56 (REV B)

56-Lead Molded Thin Shrink Small Outline Package, JEDEC Dimensions show in millimeters
Order Number DS90C383MTD, DS90CF384MTD
NS Package Number MTD56

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

64 ball, 0.8mm fine pitch ball grid array (FBGA) Package
Dimensions show in millimeters only
Order Number DS90CF384SLC or DS90C383SLC
NS Package Number SLC64A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas Tel: 1-800-272-9959

Fax: 1-800-737-7018 Email: support@nsc.com www.national.com National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171

English Tel: +44 (0) 870 24 0 217 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Response Group

Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560

Fax: 81-3-5639-7507

www.ti.com 12-Oct-2023

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
DS90C383MTD	LIFEBUY	TSSOP	DGG	56	34	Non-RoHS & Green	Call TI	Level-2-235C-1 YEAR		DS90C383MTD >B	
DS90C383MTD/NOPB	NRND	TSSOP	DGG	56	34	RoHS & Green	SN	Level-2-260C-1 YEAR		DS90C383MTD >B	
DS90C383MTDX/NOPB	NRND	TSSOP	DGG	56	1000	RoHS & Green	SN	Level-2-260C-1 YEAR		DS90C383MTD >B	
DS90CF384MTD/NOPB	ACTIVE	TSSOP	DGG	56	34	RoHS & Green	SN	Level-2-260C-1 YEAR	-40 to 85	DS90CF384MTD >B	Samples
DS90CF384MTDX/NOPB	ACTIVE	TSSOP	DGG	56	1000	RoHS & Green	SN	Level-2-260C-1 YEAR	-40 to 85	DS90CF384MTD >B	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

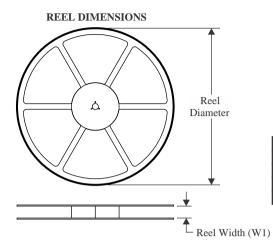
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

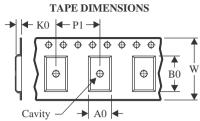
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

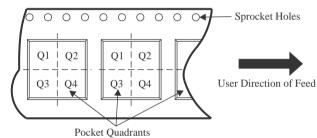
www.ti.com 12-Oct-2023


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

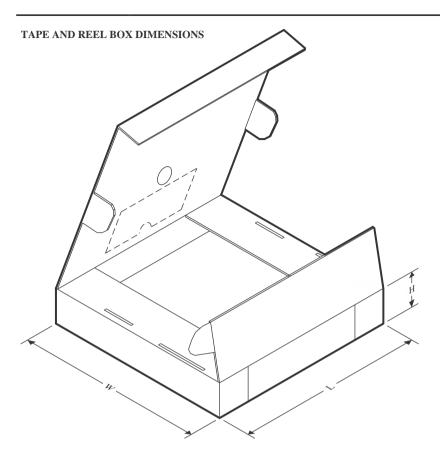

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Aug-2022


TAPE AND REEL INFORMATION

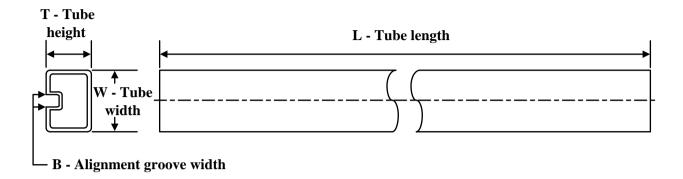
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS90C383MTDX/NOPB	TSSOP	DGG	56	1000	330.0	24.4	8.6	14.5	1.8	12.0	24.0	Q1
DS90CF384MTDX/NOPB	TSSOP	DGG	56	1000	330.0	24.4	8.6	14.5	1.8	12.0	24.0	Q1

www.ti.com 9-Aug-2022

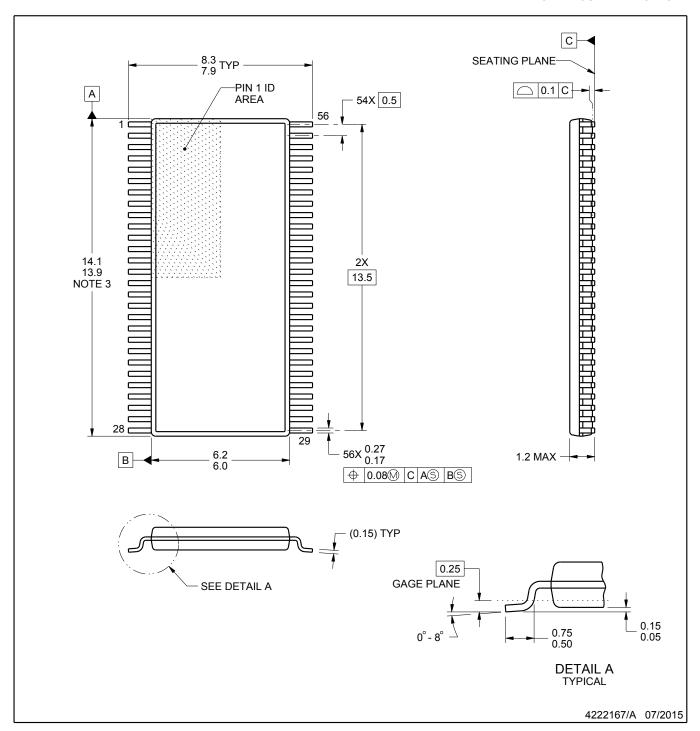

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS90C383MTDX/NOPB	TSSOP	DGG	56	1000	367.0	367.0	45.0
DS90CF384MTDX/NOPB	TSSOP	DGG	56	1000	367.0	367.0	45.0

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Aug-2022

TUBE

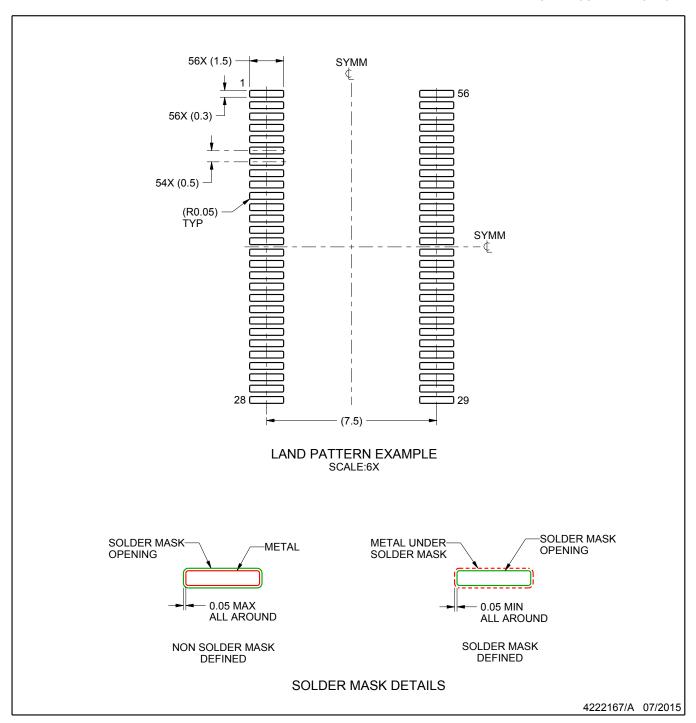


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
DS90C383MTD	DGG	TSSOP	56	34	495	10	2540	5.79
DS90C383MTD	DGG	TSSOP	56	34	495	10	2540	5.79
DS90C383MTD/NOPB	DGG	TSSOP	56	34	495	10	2540	5.79
DS90CF384MTD/NOPB	DGG	TSSOP	56	34	495	10	2540	5.79

SMALL OUTLINE PACKAGE

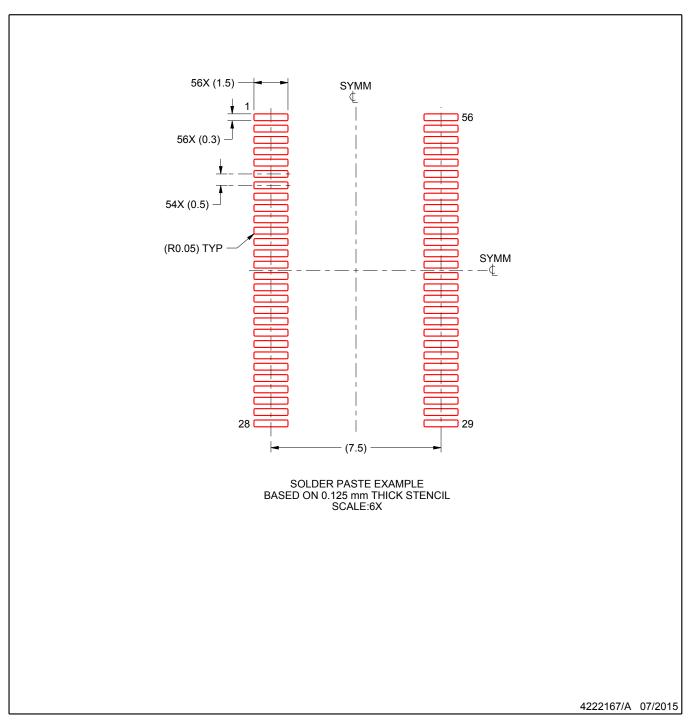
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated