


Isolated DC-DC converter for PoE PD



## FEATURES

- Support IEEE802.3at class4
- 25.5W DC-DC converter
- Support Type2 PSE Indicator
- Support Adapter ORing
- 37-57V Input Voltage range
- 22.4 x 35.5 x 10.55mm Size
- 92.5% efficiency (typical, 12Vout)
- Surface mount module
- 2250Vdc Input-Output Isolation
- Operating Temperature range -40 to +85 °C

## PRODUCT OVERVIEW

The MYBSP0122BABFT / MYBSP0055AABFT is an isolated, regulated, DC-DC converter for PoE PD that has an input range of 37-57Vdc with a typical efficiency of 92.5%(12Vout), and full 2250 Volt DC isolation.

The MYBSP0122BABFT / MYBSP0055AABFT is ideal for IEEE 802.3at Compliant Devices. Module has self-protection features. These include input undervoltage lockout and output current limit. The outputs current limit is using the hiccup autorestart technique.

And the module has detection and classification for compliant IEEE802.3at. MYBSP0122BABFT / MYBSP0055AABFT has three additional pins for Type2 PSE Indicator and Adapter ORing compared to MYBSP0122BABF/ MYBSP0055AABF.

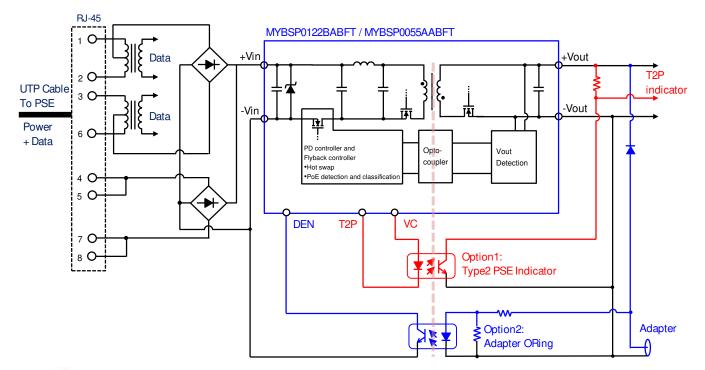


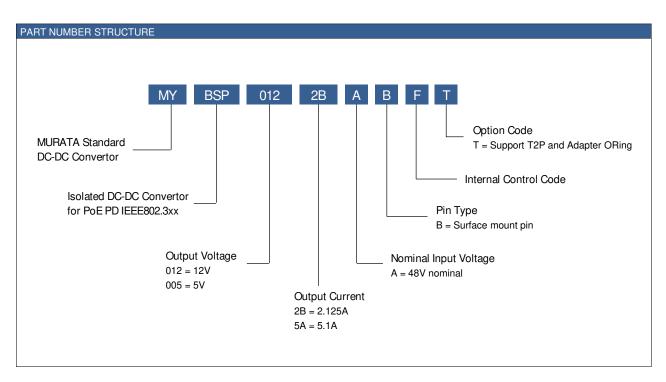



Figure 1. Simplified Block Diagram Typical topology is shown.

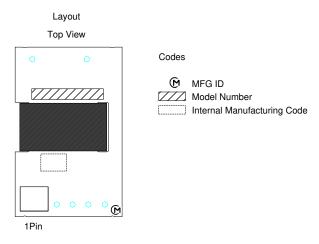
http://www.murata.com/products/power

Export Control Code : X0863 Document No : D90DH - 00043

MYBSP0122BABFT / MYBSP0055AABFT A01 Page 1 of 16




## Isolated DC-DC converter for PoE PD


| PERFORMANCE S  | PERFORMANCE SPECIFICATIONS SUMMARY AND ORDERING GUIDE |          |      |                     |                 |          |               |       |                  |                 |      |      |                       |  |
|----------------|-------------------------------------------------------|----------|------|---------------------|-----------------|----------|---------------|-------|------------------|-----------------|------|------|-----------------------|--|
| Output         |                                                       |          |      |                     | Input           |          |               |       | Efficiency       |                 |      |      |                       |  |
| Model Number   | Vout lout<br>(Vdc) (A,Max                             | lout     |      | R/N Max.<br>(mVp-p) | Regulation Typ. |          | Vin           | Range | lin, no          | lin, full       | (%)  |      | Package<br>(mm)       |  |
|                |                                                       | (A,Max.) |      |                     | Line (%)        | Load (%) | Nom.<br>(Vdc) | (Vdc) | load<br>Typ.(mA) | load<br>Typ.(A) | Min. | Тур. | ()                    |  |
| MYBSP0122BABFT | 12                                                    | 2.125    | 25.5 | 150                 | ±0.1            | ±0.1     | 48            | 37-57 | 3                | 0.57            | 90   | 92.5 | - 22.4 x 35.5 x 10.55 |  |
| MYBSP0055AABFT | 5                                                     | 5.1      | 25.5 | 150                 | ±0.1            | ±0.1     | 48            | 37-57 | 5                | 0.59            | 88   | 90.5 |                       |  |

1. Please refer to the Part Number Structure for additional ordering information and options.

2. All specifications are at nominal line voltage, full load, +25  $^{\circ}\text{C}$  unless otherwise stated.



## Product Marking



http://www.murata.com/products/power



Isolated DC-DC converter for PoE PD

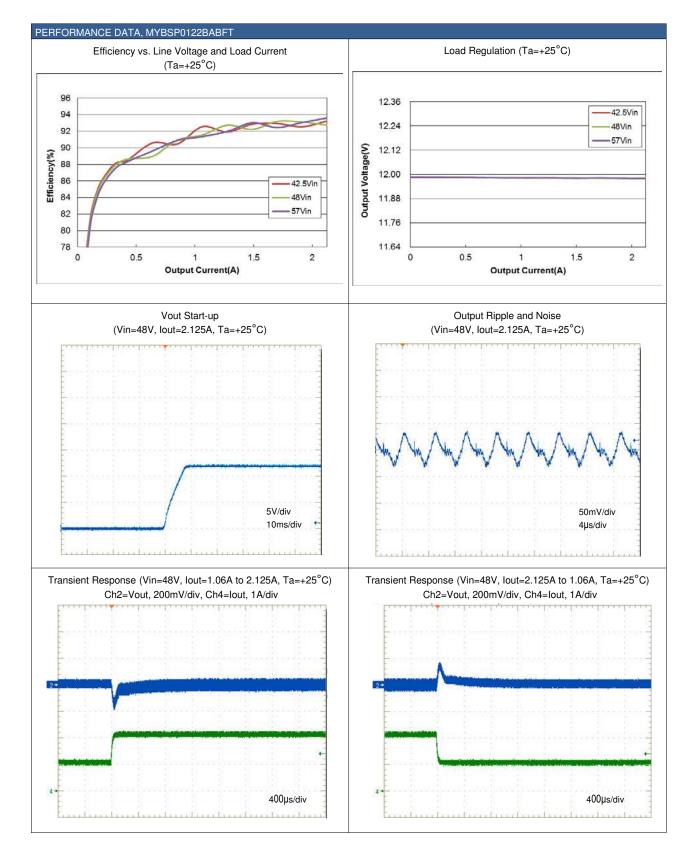
## FUNCTIONAL SPECIFICATIONS, MYBSP0122BABFT

| ABSOLUTE MAXIMUM RATINGS                  | Conditions                                                           | Minimum               | Typical / Nominal         | Maximum                | Units                   |
|-------------------------------------------|----------------------------------------------------------------------|-----------------------|---------------------------|------------------------|-------------------------|
| Input Voltage, Continuous                 |                                                                      | 0                     |                           | 57                     | Vdc                     |
| Input Voltage, Transient                  | 100ms max. duration                                                  |                       |                           | 60                     | Vdc                     |
| Isolation Voltage                         | Input to output, Leak current 1mA max<br>for 1minute at +25°C/60%RH. |                       |                           | 2250                   | Vdc                     |
| Output Power                              |                                                                      | 0                     |                           | 25.5                   | w                       |
| Output Current                            | Current-limited, no damage, short-circuit protected                  | 0                     |                           | 2.125                  | А                       |
| Storage Temperature Range                 | Vin = Zero (no power)                                                | -40                   |                           | 90                     | °C                      |
| Absolute maximums are stress ratings.     | Exposure of devices to greater than any of t                         | hese conditions ma    | y adversely affect long-t | erm reliability. Prope | er operation            |
| under conditions other than those listed  | in the Performance/Functional Specification                          | ns Table is not impli | ed or recommended.        |                        |                         |
| INPUT                                     |                                                                      |                       |                           |                        |                         |
| Operating Voltage Range                   |                                                                      | 37                    | 48                        | 57                     | Vdc                     |
| Start-up threshold                        | Rising input voltage                                                 | 36.1                  |                           | 40.2                   | Vdc                     |
| Undervoltage shutdown                     | Falling input voltage                                                | 30.3                  |                           | 33.8                   | Vdc                     |
| Internal Filter Type                      |                                                                      |                       | Pi                        |                        |                         |
| Input current                             |                                                                      |                       |                           |                        | ·                       |
| Full Load Conditions                      | Vin = nom., lout = max                                               |                       | 0.57                      |                        | A                       |
| Low Line Input current                    | Vin = min., lout = max.                                              |                       | 0.64                      |                        | A                       |
| No Load Current                           | Vin = nom., lout = 0A.                                               |                       | 3                         |                        | mA                      |
| On Resistance of Internal Hotswap         |                                                                      |                       | 0.45                      |                        | Ω                       |
| Resistance for detection                  | Vin=2.7 to 10.1V                                                     |                       | 24.9                      |                        | kΩ                      |
| Classification current                    | Vin=14.5 to 20.5V                                                    |                       | 40                        |                        | mA                      |
| GENERAL and SAFETY                        |                                                                      |                       |                           |                        |                         |
| Efficiency                                | Vin = 48V, full load                                                 | 90                    | 92.5                      |                        |                         |
| Isolation                                 |                                                                      |                       |                           |                        |                         |
| Isolation Voltage                         | Input to output, Leak current 1mA max<br>for 1minute at +25°C/60%RH. | 2250                  |                           |                        | Vdc                     |
| Insulation Safety Rating                  |                                                                      |                       | Functional                |                        |                         |
| Isolation Capacitance                     |                                                                      |                       | 1500                      |                        | pF                      |
| Calculated MTBF                           | Telcordia SR-332, issue 1, class 3,<br>ground fixed, Ta = +25°C      |                       | 2476                      |                        | Hours x 10 <sup>3</sup> |
| DYNAMIC CHARACTERISTIC                    |                                                                      |                       | ·                         |                        |                         |
| Fixed Switching Frequency *1              | lout = max                                                           |                       | 220                       |                        | kHz                     |
| Vout Rise Time                            | From 10%-90% of Vout                                                 |                       | 10                        |                        | ms                      |
| Dynamic Load Response                     | 50-100-50% load step to 1% of Vout                                   |                       | 150                       |                        | µSec                    |
| Dynamic Load Peak Deviation same as above |                                                                      |                       | ±200                      |                        | mVdc                    |

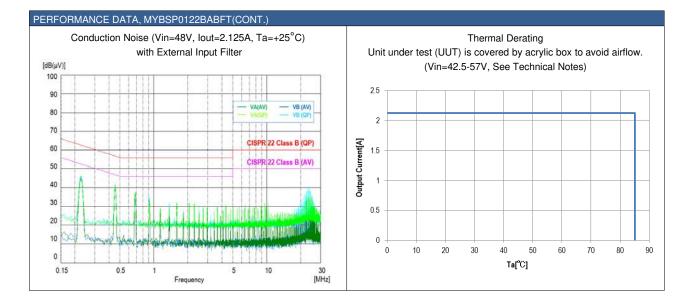


Isolated DC-DC converter for PoE PD

### FUNCTIONAL SPECIFICATIONS, MYBSP0122BABFT(CONT.)


| OUTPUT                          | Conditions                             | Minimum | Typical / Nominal   | Maximum | Units        |
|---------------------------------|----------------------------------------|---------|---------------------|---------|--------------|
| Total Output Power              |                                        | 0       |                     | 25.5    | W            |
| Voltage                         |                                        |         |                     |         |              |
| Nominal Output Voltage          | all conditions                         | 11.64   | 12                  | 12.36   | Vdc          |
| Overvoltage Protection          |                                        |         | None                |         | Vdc          |
| Current                         |                                        |         | 1                   |         |              |
| Output Current Range *2         |                                        | 0       |                     | 2.125   | A            |
| Current Limit Inception         |                                        | 2.2     |                     |         | A            |
| Short circuit protection method | Hiccup current limiting                |         | Non-latching        |         |              |
| Regulation                      |                                        |         |                     |         |              |
| Line Regulation                 | Vin=min. to max., Vout=nom., full load |         | ±0.1                |         | % of Vout    |
| Load Regulation                 | lout = min. to max.                    |         | ±0.1                |         | % of Vout    |
| Disale and Maine                | 150 MHz BW, Cout=1µF MLCC              |         |                     | 450     |              |
| Ripple and Noise                | paralleled with 10µF                   |         |                     | 150     | mV pk-pk     |
| Temperature Coefficient         | At all outputs                         |         | ±0.02               |         | % of Vout/°C |
| Maximum Capacitive Loading      | Low ESR                                | 0       |                     | 400     | μF           |
| T2P / VC / DEN                  |                                        |         |                     |         |              |
| T2P                             |                                        |         |                     |         |              |
| Sinking Current                 | After 2 event classification,          |         | 1.2                 |         |              |
| Sinking Current                 | T2P connect to VC                      |         | 1.2                 |         | mA           |
| VC                              |                                        |         |                     |         |              |
| Output Voltage                  | After start up                         |         | 8.5                 | 12      | V            |
| DEN                             |                                        |         |                     |         |              |
| Output Voltage                  | DEN=open                               |         |                     | +Vin    | V            |
| Output Current                  | DEN connect to -Vin                    |         |                     | 5       | mA           |
| Disable Voltage                 | Falling                                |         |                     | 2.8     | V            |
| MECHANICAL                      |                                        |         |                     |         |              |
| Outline Dimensions              | L x W x H                              |         | 22.4 x 35.5 x 10.55 |         | mm           |
| Weight                          |                                        |         | 13.1                |         | Grams        |
| Pin Diameter                    |                                        |         | 1.57                |         | mm           |
| Pin Material                    |                                        |         | Copper alloy        |         |              |
| ENVIRONMENTAL                   |                                        |         |                     |         |              |
| Operating Ambient Temperature   |                                        | -40     |                     | 85      | °c           |
| Range                           |                                        | -40     |                     | 85      | -            |
| Storage Temperature             | Vin = Zero (no power)                  | -40     |                     | 90      | °C           |
| Thermal Protection/Shutdown     | Measured at hotspot                    |         | None                |         | °C           |
| Electromagnetic Interference    | External filter is required            |         | В                   |         | Class        |
| Conducted, EN55022/CISPR22      |                                        |         | D                   |         | UIASS        |
| RoHS rating                     |                                        |         | RoHS-6              |         |              |

### **Specification Notes**


Unless otherwise noted, all specifications are typical at nominal input voltage, nominal output voltage and full load. General conditions are +25°C ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 0.1 $\mu$ F and 10 $\mu$ F output capacitors (See Technical Notes).

- \*1 Variable frequency operation at light load.
- \*2 Input current must be greater than or equal to 10mA if your application applies Maintain Power Signature(MPS) by IEEE802.3at. Please check with your application.











Isolated DC-DC converter for PoE PD

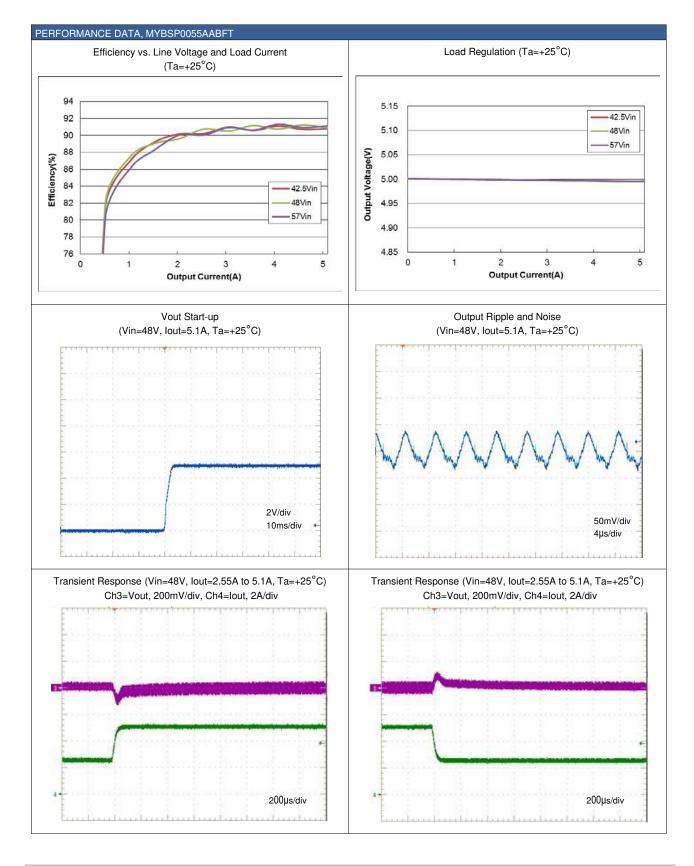
## FUNCTIONAL SPECIFICATIONS, MYBSP0055AABFT

| Conditions                                                                 | Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Typical / Nominal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 100ms max. duration                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Input to output, Leak current 1mA max<br>for 1minute at +25°C/60%RH.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Current-limited, no damage, short-circuit protected                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vin = Zero (no power)                                                      | -40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Exposure of devices to greater than any of                                 | these conditions may                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | adversely affect long-te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | erm reliability. Prope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| in the Performance/Functional Specification                                | ns Table is not implie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d or recommended.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                            | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Rising input voltage                                                       | 36.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Falling input voltage                                                      | 30.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Vin = nom., lout = max                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vin = min., lout = max.                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vin = nom., lout = 0A.                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vin=2.7 to 10.1V                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | kΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Vin=14.5 to 20.5V                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Vin = 48V, full load                                                       | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Input to output, Leak current 1mA max<br>for 1minute at +25°C/60%RH.       | 2250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Functional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Telcordia SR-332, issue 1, class 3,<br>ground fixed. Ta = $+25^{\circ}$ C. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hours x 10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| lout = max                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uSec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                            | 100ms max. duration<br>Input to output, Leak current 1mA max<br>for 1minute at +25°C/60%RH.<br>Current-limited, no damage, short-circuit<br>protected<br>Vin = Zero (no power)<br>Exposure of devices to greater than any of 1<br>in the Performance/Functional Specification<br>Rising input voltage<br>Falling input voltage<br>Falling input voltage<br>Vin = nom., lout = max.<br>Vin = nom., lout = max.<br>Vin = nom., lout = max.<br>Vin = nom., lout = 0A.<br>Vin=2.7 to 10.1V<br>Vin=14.5 to 20.5V<br>Vin = 48V, full load<br>Input to output, Leak current 1mA max<br>for 1minute at +25°C/60%RH. | 0     100ms max. duration       Input to output, Leak current 1mA max<br>for 1minute at +25°C/60%RH.     0       Current-limited, no damage, short-circuit<br>protected     0       Vin = Zero (no power)     -40       Exposure of devices to greater than any of these conditions may<br>in the Performance/Functional Specifications Table is not implie       37       Rising input voltage     36.1       Falling input voltage     30.3       Vin = nom., lout = max       Vin = nom., lout = max.       Vin = nom., lout = 0A.       Vin=14.5 to 20.5V       Vin = 48V, full load     88       Input to output, Leak current 1mA max<br>for 1minute at +25°C/60%RH.     2250       Telcordia SR-332, issue 1, class 3,<br>ground fixed, Ta = +25°C,       Iout = max       Iout = max       From 10%-90% of Vout | 0     0       100ms max. duration     0       Input to output, Leak current 1mA max<br>for 1minute at +25°C/60%RH.     0       Current-limited, no damage, short-circuit<br>protected     0       Vin = Zero (no power)     -40       Exposure of devices to greater than any of these conditions may adversely affect long-tr<br>in the Performance/Functional Specifications Table is not implied or recommended.       37     48       Rising input voltage     36.1       Falling input voltage     30.3       Vin = norm., lout = max     0.59       Vin = norm., lout = max     0.67       Vin = norm., lout = max     0.67       Vin = norm., lout = 0A.     5       0     0       Vin=14.5 to 20.5V     40       Vin = 48V, full load     88       90.5     1500       Telcordia SR-332, issue 1, class 3, ground fixed, Ta = +25°C,     2476       Iout = max     220       From 10%-90% of Vout     5 | 0         57           100ms max. duration         60           Input to output, Leak current 1mA max<br>for 1minute at +25°C/60%RH.         2250           0         25.5           Current-limited, no damage, short-circuit<br>protected         0         5.1           Vin = Zero (no power)         -40         90           Exposure of devices to greater than any of these conditions may adversely affect long-term reliability. Prope<br>in the Performance/Functional Specifications Table is not implied or recommended.         37         48         57           Rising input voltage         36.1         40.2         33.8           Vin = nom., lout = max         0.67         Vin = nom., lout = max.         0.67           Vin = nom., lout = max         0.67         Vin = nom., lout = 0A.         5           Vin = nom., lout = 0A.         5         0.45           Vin=2.7 to 10.1V         24.9         Vin=14.5 to 20.5V         40           Vin = 48V, full load         88         90.5         1500           Input to output, Leak current 1mA max<br>for 1minute at +25°C/60%RH.         2250         1500           Telcordia SR-332, issue 1, class 3,<br>ground fixed, Ta = +25°C,         2476         2476           Iout = max         220         5         1500 |

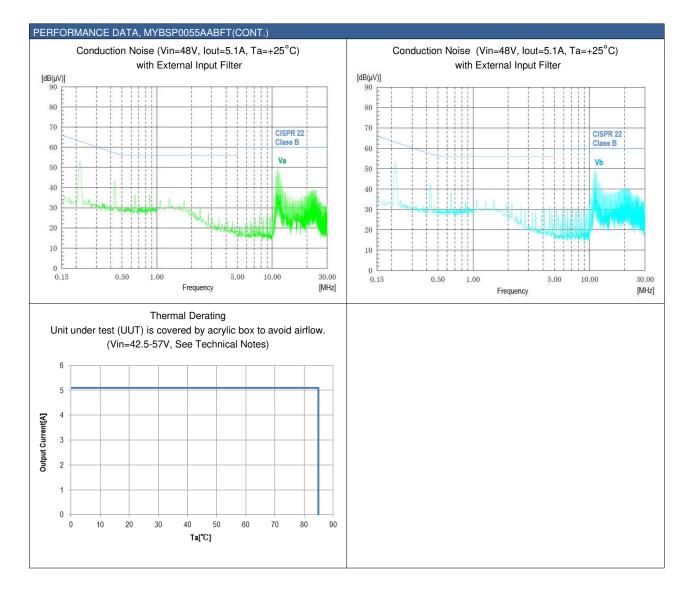


Isolated DC-DC converter for PoE PD

### FUNCTIONAL SPECIFICATIONS, MYBSP0055AABFT(CONT.)


| OUTPUT                          | Conditions                             | Minimum | Typical / Nominal   | Maximum | Units        |
|---------------------------------|----------------------------------------|---------|---------------------|---------|--------------|
| Total Output Power              |                                        | 0       |                     | 25.5    | W            |
| Voltage                         | · ·                                    |         |                     |         |              |
| Nominal Output Voltage          | all conditions                         | 4.85    | 5                   | 5.15    | Vdc          |
| Overvoltage Protection          |                                        |         | None                |         | Vdc          |
| Current                         |                                        |         | - 1 1               |         | -            |
| Output Current Range *2         |                                        | 0       |                     | 5.1     | A            |
| Current Limit Inception         |                                        | 5.3     |                     |         | А            |
| Short circuit protection method | Hiccup current limiting                |         | Non-latching        |         |              |
| Regulation                      | · · · ·                                |         |                     |         |              |
| Line Regulation                 | Vin=min. to max., Vout=nom., full load |         | ±0.1                |         | % of Vout    |
| Load Regulation                 | lout = min. to max.                    |         | ±0.1                |         | % of Vout    |
| Disarla and Main a              | 150 MHz BW, Cout=1µF MLCC              |         |                     | 450     |              |
| Ripple and Noise                | paralleled with 10µF                   |         |                     | 150     | mV pk-pk     |
| Temperature Coefficient         | At all outputs                         |         | ±0.02               |         | % of Vout/°C |
| Maximum Capacitive Loading      | Low ESR                                | 0       |                     | 400     | μF           |
| T2P / VC / DEN                  |                                        |         |                     |         |              |
| T2P                             |                                        |         |                     |         |              |
| Cipling Concept                 | After 2 event classification,          |         | 10                  |         |              |
| Sinking Current                 | T2P connect to VC                      |         | 1.2                 |         | mA           |
| VC                              |                                        |         |                     |         |              |
| Output Voltage                  | After start up                         |         | 8.5                 | 12      | V            |
| DEN                             |                                        |         |                     |         |              |
| Output Voltage                  | DEN=open                               |         |                     | +Vin    | V            |
| Output Current                  | DEN connect to -Vin                    |         |                     | 5       | mA           |
| Disable Voltage                 | Falling                                |         |                     | 2.8     | V            |
| MECHANICAL                      |                                        |         |                     |         |              |
| Outline Dimensions              | L x W x H                              |         | 22.4 x 35.5 x 10.55 |         | mm           |
| Weight                          |                                        |         | 13.1                |         | Grams        |
| Pin Diameter                    |                                        |         | 1.57                |         | mm           |
| Pin Material                    |                                        |         | Copper alloy        |         |              |
| ENVIRONMENTAL                   |                                        |         |                     |         |              |
| Operating Ambient Temperature   |                                        | -40     |                     | 05      | °C           |
| Range                           |                                        | -40     |                     | 85      | -            |
| Storage Temperature             | Vin = Zero (no power)                  | -40     |                     | 90      | °C           |
| Thermal Protection/Shutdown     | Measured at hotspot                    |         | None                |         | °C           |
| Electromagnetic Interference    | External filter is required            |         | В                   |         | Close        |
| Conducted, EN55022/CISPR22      | External filter is required            |         | В                   |         | Class        |
| RoHS rating                     |                                        |         | RoHS-6              |         |              |

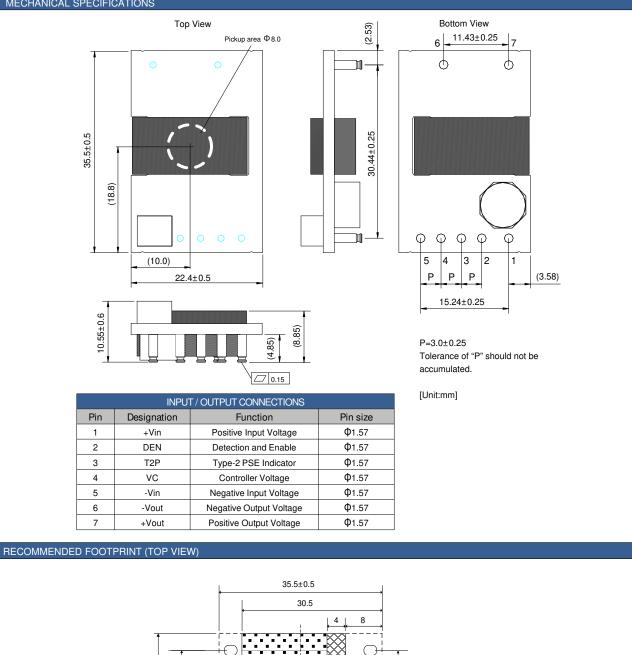
### **Specification Notes**


Unless otherwise noted, all specifications are typical at nominal input voltage, nominal output voltage and full load. General conditions are +25°C ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 0.1 $\mu$ F and 10 $\mu$ F output capacitors (See Technical Notes).

- \*1 Pulse skip operation at light load.
- \*2 Input current must be greater than or equal to 10mA if your application applies Maintain Power Signature(MPS) by IEEE802.3at. Please check with your application.












## Isolated DC-DC converter for PoE PD





11.43±0.25

Keep out area

for Isolation barrier

30.44±0.25

P=3.0±0.25

accumulated.

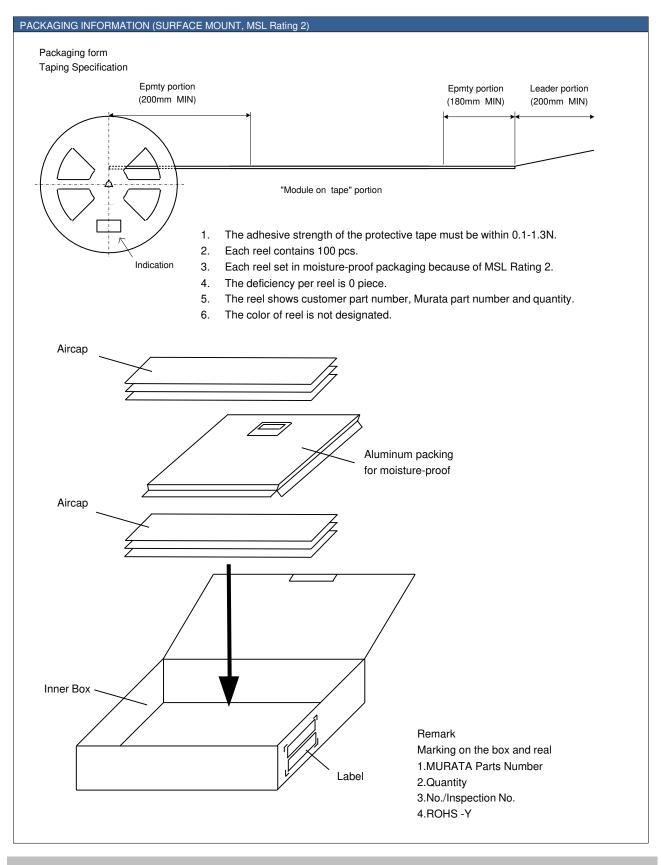
[Unit : mm]

Tolerance of "P" should not be

15.24±0.25 22.4±0.5

7-2.2×2.8 R1.0

۵ ۵


Only GND pattern

for primary side







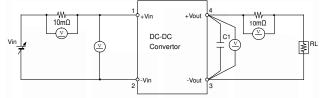




Isolated DC-DC converter for PoE PD

### **TECHNICAL NOTES**

### **Over Current Protection**

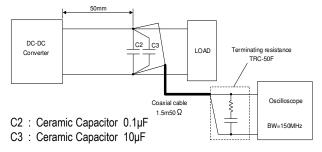

Over Current Protection operates with a controller circuit failure or over-load condition, and DC-DC converter will enter hiccup mode. After rejected the abnormal mode, DC-DC converter will automatically restart.

### **External Input Capacitor**

Do not connect any capacitor between positive input and negative input to avoid large inrush current. It is one of the requirements of IEEE802.3at standard.

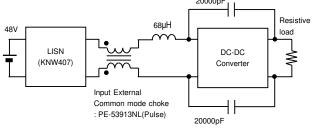
#### **Test Circuit**

The initial values in Functional Specification are measured in the following test circuit.



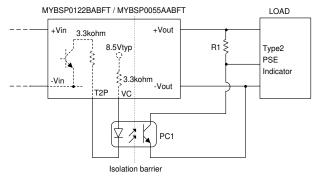

- C1 : Ceramic Capacitor 0~400µF
- RL : Electronic Load Device : LN-1000A-G7 KEISOKU GIKEN equivalent
- Vin : DC Power Supply :Model HP6675A KEYSIGHT equivalent
- U: Digital Multimeter :Model HP34401A KEYSIGHT equivalent

When deviating from the above, DC-DC converter may operate abnormally. It should be fully confirmed on your board before use.


#### **Ripple Noise Test**

Output ripple noise is measured using designated external output components, circuits and layout as shown below.




#### **Conduction Noise**

The external input filter is installed and the circuit diagram is shown below.



### Type2 PSE Indicator

T2P(Pin3) is open drain output. After 2 event classification, MYBSP0122BABFT / MYBSP0055AABFT pulls T2P low. Please pull up T2P by VC(Pin4). VC is source only for T2P. Do not apply VC for any other purpose. Appropriate board design for isolation barrier is required(Opto-coupler selection and Isolation distance). Also consider CTR of Opto-coupler which may affect value of R1. Keep T2P and VC open if you don't apply this function. Typical application circuit is below.



#### Example

R1: MYBSP0122BABFT: 33kohm 0.1W MYBSP0055AABFT: 15kohm 0.1W

PC1: TLP293(GRH (TOSHIBA)

| Classification | Type2 PSE Indicator |  |
|----------------|---------------------|--|
| 1-event        | High                |  |
| 2-event        | Low                 |  |

#### Adapter ORing

DEN(Pin2) handles Enable / Disable of MYBSP0122BABFT / MYBSP0055AABFT. In case of applying external power output by adapter, MYBSP needs to be disable. Connecting DEN to –Vin disable MYBSP. There is limitation for voltage from adapter. Please see chart next page. Keep open if you don't use this function. Typical application circuit is below.

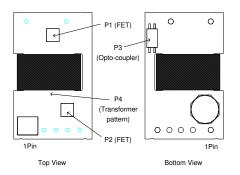


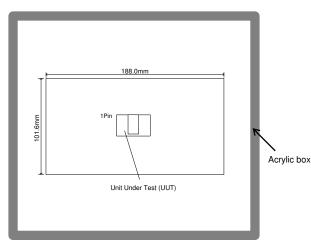
l imitation for adapter voltage

| Acceptable voltage range      |
|-------------------------------|
| from Adapter at Vout of MYBSP |
| 10.0 – 12.8V                  |
| 4.5 – 5.05V                   |
|                               |

### Thermal Derating Condition

The output current is limited by the derating curve. The derating curve in this datasheet illustrate typical operation under a variety of conditions.


DC-DC Converter is tested on a 101.6x188mm, 2 layers Copper evaluation board at Vin=48V.


The Unit Under Test (UUT) is set up as shown below.

UUT is covered by acrylic box to avoid airflow.

The temperature measurement points are shown below table. The temperature of measurement points should not exceed the maximum temperatures in the below table.

| Position | Description         | Max temperature            |
|----------|---------------------|----------------------------|
| P1       | FET                 | T <sub>P1MAX</sub> = 124°C |
| P2       | FET                 | T <sub>P2MAX</sub> = 124°C |
| P3       | Opto-coupler        | T <sub>P2MAX</sub> = 105°C |
| P4       | Transformer pattern | T <sub>P3MAX</sub> = 125°C |



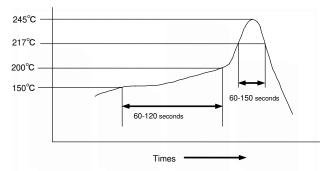


### Detection and Hardware Classification

DC-DC converter implements IEEE 802.3at compliant detection and hardware classification.

Isolated DC-DC converter for PoE PD

When DC-DC converter(PD) is connected to PSE, the PSE applies two voltages in the range of 2.8 V to 10 V and measures the corresponding current. Connection to PD is detected by measured current.(Detection)


After Detection, the PSE applies voltage in the range of 15.5 V to 20.5 V and measures the corresponding current. PD is classified by measured current.(Hardware Classification) Please check with your application.

### SMT Reflow Soldering Guidelines

The surface-mount reflow solder profile is shown below. This graph should be used only as a guideline.

Reflow Soldering Profiles : JEDEC IPC/JEDE J-STD-020D

| Soldering temperature | 245°C +0/-5°C                    |
|-----------------------|----------------------------------|
| Soldering time        | 30 seconds, 240°C-245°C          |
| Heating time          | $60\sim$ 150 seconds, 217°C min. |
| Preheat time          | 60~120 seconds, 150°C-200°C      |
| Programming rate      | 3°C /sec.max., 217°C-245°C       |
| Descending rate       | 6°C /sec.max.                    |
| Total soldering time  | 8 minutes max.,25°C-245°C        |
| Time                  | 1time                            |



Do not vibrate for the products on reflow. Please need to take care temperature control because mounted parts may come off if the product is left under the high temperature. Do not mount on backside of the board.

Many other factors influence the success of SMT reflow soldering. Since your production environment may differ, please thoroughly review these guidelines with your process engineers.

http://www.murata.com/products/power



## Isolated DC-DC converter for PoE PD

### **Functional Specifications**

Please contact Murata Sales before using this product for the applications listed below. These are applications that require very high reliability of prevention of defects which might directly cause damage to third party's life, body, or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (cars, buses, trucks, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention /crime prevention equipment
- 9. Data-processing equipment

10. Application of similar complexity and /or reliability listed as above.

### Storage

Please store this product in an environment where the temperature/humidity is stable in the range 0 to  $40^{\circ}$ C/10 to 75%RH and no direct sunlight. Use the product within 6 months after delivery.

Please avoid storage conditions where humidity and temperature change rapidly, as that may cause condensation on the product, which might degrade the quality of the product.

Please do not store the product environments that are dusty, in direct exposure to sea breeze, or in an atmosphere containing corrosive gas (Cl2, NH3, SO2, NOX and so on).

### Operational environment and operational conditions

This product is not chemical-proof or rust-proof.

In order to prevent this product from leakage of electricity and/or abnormal temperature increase, do not use the product under the following circumstances:

(1) in an atmosphere containing corrosive gas (Cl2, NH3, SO2, NOX and so on).

(2) in a dusty place.

(3) in a place exposed to direct sunlight.

(4) in such a place where water splashes or in such a humid place where water condenses.

(5) in a place exposed to sea breeze.

(6) in any other places similar to the above (1)through (5). Operational Conditions

Please use the product within specified values (power supply, temperature, input, output and load condition etc.). Input voltage drops for line impedance, so please make sure that input voltage is within in specified values.

If the product is used over the specified values, it may damage the product, reduce the quality, and even if the products can endure the condition for short time, it may cause degradation of the reliability.

### Note Prior to use

If you apply high static electricity, voltage higher than rated voltage or reverse voltage to the product, it may cause defects in the products or degrade the reliability.

Please avoid the following items:

1. Over rating power supply, reverse power supply or not-enough connection of input voltage and 0V(DC)line

- 2. Electrostatic discharge by production line and/or operator
- 3. Electrified product by electrostatic induction

Do not subject product to excessive mechanical shock. If you drop the product on the floor it might cause a crack to the core of inductors and monolithic ceramic capacitors.

Also please pay attention to handling; the mounted parts can be dislodged if subjected to excessive force.

### Transportation

If you transport the product, please pack it so that the package will not be damaged by mechanical vibration or mechanical shock, and please educate and guide the carrier to prevent rough handling.

### Note

1. Please make sure that the product has been evaluated and confirmed against your specifications when it is mounted to your product.

2. All the items and parameters in this product specification have been prescribed on the premise that our product is used for the purpose, under the conditions and in the environment agreed upon between you and us. You are requested not to use our product deviating from such agreement.

3. We consider it not appropriate to include other terms and conditions for transaction warranty in product specifications, drawings or other technical documents. Therefore, if your technical documents as above include such terms and conditions as warranty clause, product liability clause, or intellectual property infringement liability clause, we will not be able to accept such terms and conditions unless they are based on the governmental regulation or they are stated in a separate contract agreement.



This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>: Refer to: <u>https://power.murata.com/en/requirements</u>

Murata Manufacturing Co., Ltd makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Spec and cautions are subject to change without notice. © 2018 Murata Manufacturing Co., Ltd

Specifications are subject to change without notice.