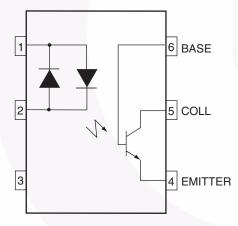


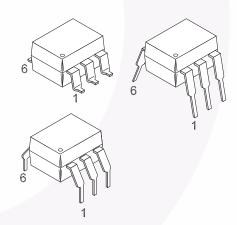
H11AA1M, H11AA2M, H11AA3M, H11AA4M AC Input/Phototransistor Optocouplers

Features

- Bi-polar emitter input
- Built-in reverse polarity input protection
- Underwriters Laboratory (UL) recognized File #E90700, Volume 2
- VDE approved File #102497 (ordering option 'V')


Applications

- AC line monitor
- Unknown polarity DC sensor
- Telephone line interface


Description

The H11AAXM series consists of two gallium-arsenide infrared emitting diodes connected in inverse parallel driving a single silicon phototransistor output.

Schematic

Package Outlines

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ Unless otherwise specified) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Device	Value	Units
TOTAL DEVIC	E			
T _{STG}	Storage Temperature	All	-40 to +150	°C
T _{OPR}	Operating Temperature	All	-40 to +100	°C
T _{SOL}	Lead Solder Temperature	All	260 for 10 sec	°C
P _D	Total Device Power Dissipation	All	250	mW
	Derate Linearly From 25°C		2.94	mW/°C
EMITTER				
IF	Continuous Forward Current	All	60	mA
I _F (pk)	Forward Current – Peak (1µs pulse, 300 pps)	All	±1.0	Α
P _D	LED Power Dissipation	All	120	mW
	Derate Linearly From 25°C		1.41	mW/°C
DETECTOR				
I _C	Continuous Collector Current	All	50	mA
P_{D}	Detector Power Dissipation	All	150	mW
	Derate linearity from 25°C		1.76	mW/°C

Electrical Characteristics ($T_A = 25$ °C Unless otherwise specified.)

Individual Component Characteristics

Symbol	Parameter	Test Conditions	Device	Min.	Тур.*	Max.	Unit
EMITTER	1	1	1	'			
V _F	Input Forward Voltage	$I_F = \pm 10 \text{mA}$	All		1.17	1.5	V
CJ	Capacitance	V _F = 0 V, f = 1.0MHz	All		80		pF
DETECTO	R						
BV _{CEO}	Breakdown Voltage Collector to Emitter	$I_C = 1.0 \text{mA}, I_F = 0$	All	30	100		V
BV _{CBO}	Collector to Base	$I_C = 100 \mu A, I_F = 0$	All	70	120		V
BV _{EBO}	Emitter to Base	$I_E = 100 \mu A, I_F = 0$	All	5	10		V
BV _{ECO}	Emitter to Collector	$I_E = 100 \mu A, I_F = 0$	All	7	10		V
I _{CEO}	Leakage Current Collector to Emitter	$V_{CE} = 10 \text{ V}, I_F = 0$	H11AA1M H11AA3M H11AA4M		1	50	nA
			H11AA2M	\ \	1	200	1
C _{CE}	Capacitance Collector to Emitter	V _{CE} = 0, f = 1MHz	All		10		pF
C _{CB}	Collector to Base	$V_{CB} = 0$, $f = 1MHz$	All		80		pF
C _{EB}	Emitter to Base	V _{EB} = 0, f = 1MHz	All		15		pF

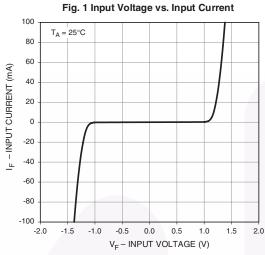
^{*}Typical values at T_A = 25°C

Transfer Characteristics

Symbol	Characteristics	Test Conditions	Device	Min.	Тур.*	Max.	Units
CTR _{CE}	Current Transfer Ratio,	$I_F = \pm 10 \text{mA}, V_{CE} = 10 \text{V}$	H11AA4M	100			%
	Collector to Emitter		H11AA3M	50			
			H11AA1M	20			
			H11AA2M	10			
	Current Transfer Ratio, Symmetry	$I_F = \pm 10 \text{mA}, V_{CE} = 10 \text{V}$ (Figure 11)	All	.33		3.0	
V _{CE(SAT)}	Saturation Voltage, Collector to Emitter	$I_F = \pm 10 \text{mA}, I_{CE} = 0.5 \text{mA}$	All			.40	V

Isolation Characteristics

Symbol	Characteristic	Test Conditions	Min.	Тур.*	Max.	Units
C _{I-O}	Package Capacitance Input/Output	$V_{I-O} = 0$, $f = 1MHz$		0.7		pF
V _{ISO}	Isolation Voltage	f = 60Hz, t = 1 sec.	7500			Vac(pk)
R _{ISO}	Isolation Resistance	V _{I-O} = 500 VDC	10 ¹¹			Ω


^{*}Typical values at $T_A = 25$ °C

Safety and Insulation Ratings

As per IEC 60747-5-2, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Installation Classifications per DIN VDE 0110/1.89 Table 1				
	For Rated Main Voltage < 150Vrms		I-IV		
	For Rated Main voltage < 300Vrms		I-IV		
	Climatic Classification		55/100/21		
	Pollution Degree (DIN VDE 0110/1.89)		2		
CTI	Comparative Tracking Index	175			
V _{PR}	Input to Output Test Voltage, Method b, V _{IORM} x 1.875 = V _{PR} , 100% Production Test with tm = 1 sec, Partial Discharge < 5pC	1594			V _{peak}
	Input to Output Test Voltage, Method a, V _{IORM} x 1.5 = V _{PR} , Type and Sample Test with tm = 60 sec, Partial Discharge < 5pC	1275			V _{peak}
V _{IORM}	Max. Working Insulation Voltage	850			V _{peak}
V_{IOTM}	Highest Allowable Over Voltage	6000			V _{peak}
	External Creepage	7			mm
	External Clearance	7			mm
	Insulation Thickness	0.5			mm
RIO	Insulation Resistance at Ts, V _{IO} = 500V	10 ⁹			Ω

Typical Performance Characteristics

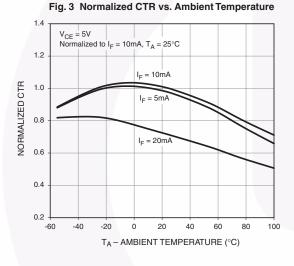


Fig. 5 CTR vs. RBE (Saturated)

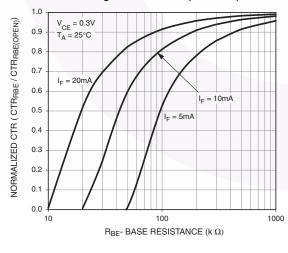


Fig. 2 Normalized CTR vs. Forward Current

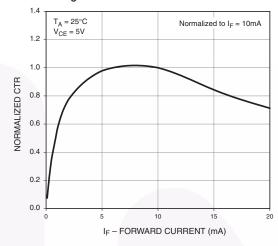
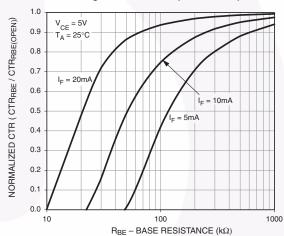
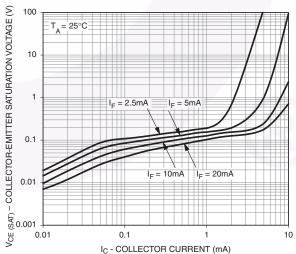
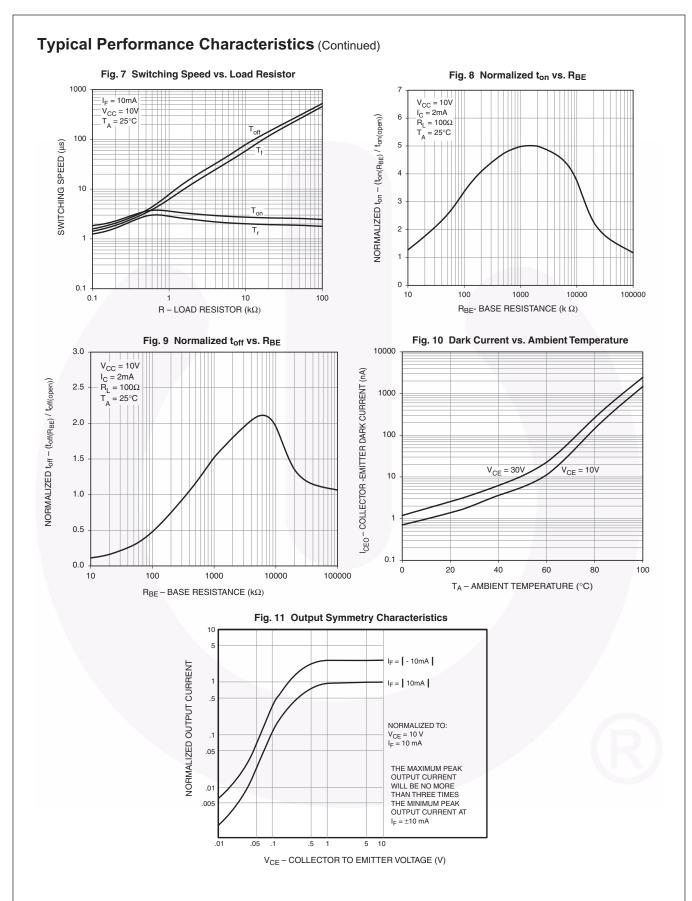
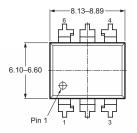
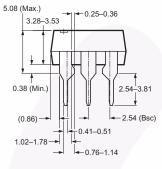
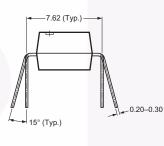


Fig. 4 CTR vs. RBE (Unsaturated)

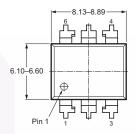




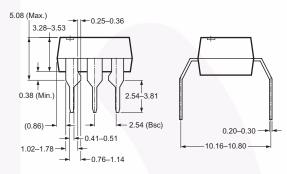

Fig. 6 Collector-Emitter Saturation Voltage vs Collector Current

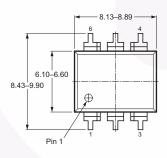


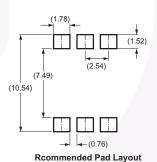


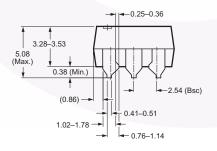
Package Dimensions

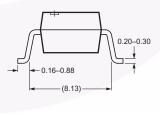

Through Hole



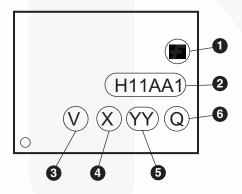



0.4" Lead Spacing





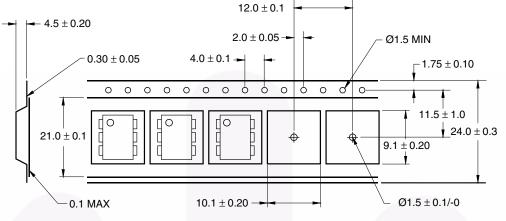
Surface Mount



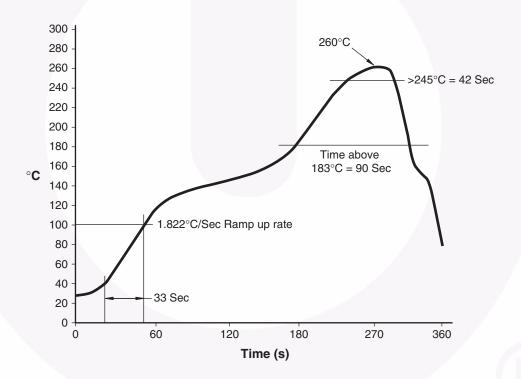
Note: All dimensions in mm.

Ordering Information

Option	Order Entry Identifier (Example)	Description
No option	H11AA1M	Standard Through Hole Device
S	H11AA1SM	Surface Mount Lead Bend
SR2	H11AA1SR2M	Surface Mount; Tape and Reel
Т	H11AA1TM	0.4" Lead Spacing
V	H11AA1VM	VDE 0884
TV	TV H11AA1TVM VDE 0884, 0.4" Lead Spacing	
SV	H11AA1SVM	VDE 0884, Surface Mount
SR2V	H11AA1SR2VM	VDE 0884, Surface Mount, Tape and Reel


Marking Information

Defir	Definitions					
1	Fairchild logo					
2	Device number					
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)					
4	One digit year code, e.g., '3'					
5	Two digit work week ranging from '01' to '53'					
6	Assembly package code					


*Note – Parts that do not have the 'V' option (see definition 3 above) that are marked with date code '325' or earlier are marked in portrait format.

Carrier Tape Specification

User Direction of Feed ----

Reflow Profile

Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
EcoSPARK®

EfficentMax™ EZSWITCH™* E7 ™*

Fairchild[®]
Fairchild Semiconductor[®]
FACT Quiet Series™
FACT[®]
FACT[®]

FACT[®]
FAST[®]
FastvCore™
FETBench™
FlashWriter[®]*
FPS™

FRFET^S
Global Power Resource
Green FPS™
Green FPS™ e-Series™

Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™

MICROCOUPLER™
MicroFET™
MicroPak™
MillerDrive™
MotionMax™
Motion-SPM™
OPTOLOGIC®
OPTOPLANAR®

PDP SPM™ Power-SPM™ Programmable Active Droop™

OFFT®

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SmartMax™

SMART STARTIM SPM® STEALTH™ SuperFET™ SuperSOT™.3 SuperSOT™.6 SuperSOT™.8 SuperMOS™ SyncFET™

SupreMOS™
SyncFET™
Sync-Lock™
SYSTEM ®*

Franchise
TinyBoost™
TinyBoost™
TinyBuck™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TriFault Detect™
TRUECURRENT™*
SerDes™

SerDes
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
XS™

Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources, Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms