Silicon Transistors for Quasi-Complementary-Symmetry Audio Amplifiers ## **TERMINAL DESIGNATIONS** JEDEC TO-204AA The RCA-BD550 and BD550B are silicon n-p-n transistors especially suitable for applications in audio-amplifier circuits, in which they may be used as either driver or output unit. The devices, together with a variety of other transistors that serve as input devices, V_{BE} amplifiers for biasing, current sources, load-line limiters (for overload protection), and predrivers, may be used to develop several hundred watts of audio output power in quasi-complementary-symmetry audio amplifier configurations that employ parallel output transistors. The BD-550-series is supplied in the JEDEC TO-204AA hermetic steel case. ## MAXIMUM RATINGS, Absolute-Maximum Values: | V _{CBO} | BD550
130
110
130 | BD550B
275
250
275 | V
V
V | |--|-----------------------------------|------------------------------------|-------------| | V EBO | | 5
7
2 | V
A | | $P_{\scriptscriptstyle T}$ At T $_{\scriptscriptstyle C} \leq$ 25° C | Se | | | | T _{stg} , T _J | | 230 | °C | ## ELECTRICAL CHARACTERISTICS, At Case Temperature (T_C) =25°C | | TEST CONDITIONS | | LIMITS | | | | |---|--|-----------|-----------|-----------|---------|-----| | CHARAC-
TERISTIC | | BD: | BD550 | | 8D550B• | | | TERISTIC | | Min. | Max. | Min. | Max. | | | l _{CER}
R _{BE} = 100 Ω | V _{CE} = 110 V
V _{CE} = 250 V | _
_ | 1 — | <u> </u> | _
1 | mA | | I _{CEO} | V _{CE} = 95 V
V _{CE} = 200 V | _ | 5 | | _
5 | mA | | I _{EBO} | V _{E8} = 5 V | - | 1 | | 1 | mA | | V _{CEO} | I _C = 0.2 A | 110 | _ | 250 | _ | V | | V _{CER} | I _C = 0.2 A; R _{BE} = 100 Ω | 130 | _ | 275 | _ | V | | f _T | I _C = 0.2 A; V _{CE} = 10 V | 5 t | yp. | 5 t | yp. | MHz | | h _{FE} | I _C = 4 A; V _{CE} = 4 V
I _C = 2A; V _{CE} = 4 V | 15
— | 75
— | -
10 | -
50 | | | V _{CE} (sat) | I _C = 4 A; I _B = 0.5 A
I _C = 2A; I _B = 0.25 A | _ | 2 | _ | _
2 | v | | V _{BE} | I _C = 4 A; V _{CE} = 4 V
I _C = 2 A; V _{CE} = 4 V | 0.75
— | 1.75
— | _
1 |
2 | ٧ | | I _{S/b} | V _{CE} = 80 V; t = 1 S
V _{CE} = 140 V; t = 1 S | 1.87 | _ | _
1.07 | | А | [▲]For characteristics curves and test conditions, refer to published data for prototype RCA8638D (File 1060). Fig. 1 — Derating curve for all types. Fig. 2 — Maximum operating areas for all types. ^{*}For characteristics curves and test conditions, refer to published data for prototype 2N5240 (File 321).