

36V, 26A, THREE-PHASE INPUT



#### SEMI-REGULATED POWER SUPPLY

- Alternative or Replacement for AC Transformer
- Three Phase Input DC Output
- DIN-Rail Mountable
- Width only 96mm
- 95.5% Efficiency
- 125% Peak Power Capability
- No Input Inrush Current
- Active Input Transient Blocker
- Full Power Between -25°C and +60°C
- Easy Failure Diagnostics
- No Electrolytic Capacitors on Input Side
- Cost Effective and Robust
- 3 Year Warranty

#### **GENERAL DESCRIPTION**

The power supplies in the Dimension X-Series include a new and innovative concept for generating an isolated DC voltage from a three-phase mains system.

A semi-regulated resonant converter enables a very compact design, maximum efficiency and extremely competitive pricing with only a small compromise in the output voltage regulation, output ripple and hold-up time.

Weighing just 1.4 kg, the device provides 960 watts of continuous output power and an additional 25% power reserve for dynamic loads. The light-weight design along with compact dimensions facilitate straightforward mounting on DIN-rail.

Primary use are applications involving supplies to motors, valves and other load circuits with a high power consumption, where an accurate output voltage regulation which is standard on traditional switched-mode power supplies is not required. Furthermore, these switched-mode power supplies can often replace mains transformers with rectifiers.

# SHORT-FORM DATA

| Output voltage    | DC 36V         |                  |
|-------------------|----------------|------------------|
| Adjustment range  | none           |                  |
| Output current    | 26.6A          | continuous       |
|                   | 33.3A          | for typ. 15s     |
| Output power      | 960W           | continuous       |
|                   | 1200W          | for typ. 15s     |
| Output ripple     | < 2000mVpp     | 20Hz-2kHz        |
|                   | < 250mVpp      | 2kHz to 20MHz    |
| Input voltage     | 3AC 400V       | XT40.361         |
|                   | 3AC 480V       | XT40.362         |
| Mains frequency   | 50-60Hz        | ±6%              |
| AC Input current  | 1.65A / phase  | XT40.361, 3x400V |
|                   | 1.4A / phase   | XT40.362, 3x480V |
| Power factor      | 0.93           | 36V, 26.6A       |
| AC Inrush current | typ. 2A peak   |                  |
| Efficiency        | 95.5%          |                  |
| Losses            | 45.2W          |                  |
| Temperature range | -25°C to +70°C | operational      |
| Derating          | 24W/°C         | +60 to +70°C     |
| Dimensions        | 96x124x159mm   | WxHxD            |
|                   |                |                  |

## **ORDER NUMBERS**

Power Supply **XT40.241** 400V Input **XT40.242** 480V Input

**M**ARKINGS

UL 508

UL 60950-1

CB SCHEME
IEC 60950-1

 $\epsilon$ 



# XT40.361, XT40.362

36V, 26A, THREE-PHASE INPUT

| INDEX           | PAGE | INDEX                                                                                                                                                                                                                                                                                                                                                                                                   | PAGE     |
|-----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1. Intended Use |      | 19. Physical Dimensions an 20. Installation and Operat 21. Comparison between t and a Traditional Switched 22. Application Notes 22.1. Periodical Peak P 22.2. Charging of Batt 22.3. Output Circuit Br 22.4. External Input Pr 22.5. Back-feeding Loa 22.6. Parallel Use to In 22.7. Parallel Use for R 22.8. Series Operation 22.9. Inductive and Ca 22.10.Loss of One Input 22.11.Use in a Tightly S | d Weight |
|                 |      |                                                                                                                                                                                                                                                                                                                                                                                                         |          |

# **TERMINOLOGY AND ABREVIATIONS**

PE and symbol Earth, Ground T.b.d.

PE is the abbreviation for **P**rotective **E**arth and has the same meaning as the symbol \$.

This document uses the term "earth" which is the same as the U.S. term "ground".

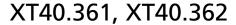
To be defined, value or description will follow later.

**3AC 400V** A figure displayed with the AC or DC before the value represents a nominal voltage with

standard tolerances (usually ±15%) included. 3AC means three phase input. E.g.: DC 12V describes a 12V battery disregarding whether it is charged (13.7V) or

discharged (10V).

As long as otherwise stated, 3AC 400V parameters are valid at 50Hz and 3AC 480V


parameters are valid at 60Hz mains frequency.

**3x 400Vac** A figure with the unit (Vac) at the end is a value which is used during testing without any

additional tolerances included. 3x 400Vac means a three phase input.

#### **DISCLAIMER**

The information presented in this document is believed to be accurate and reliable and may change without notice.





36V, 26A, THREE-PHASE INPUT

#### 1. INTENDED USE

This device is designed for installation in an enclosure and is intended for commercial use such as in industrial control, process control, monitoring and measurement equipment or the like. The principal use are applications such as motors, valves and other load circuits with high power consumption, where an accurate output voltage regulation and low amount of ripple voltage (standard on switch mode power supplies) is not required.

Do not use this device in equipment, where malfunctioning may cause severe personal injury or threaten human life without additional appropriate safety devices, that are suited for the end application.

If this device is used in a manner outside of its specification, the protection provided by the device may be impaired.

## 2. Installation Instructions

Install device in an enclosure providing protection against electrical, mechanical and fire hazards.

Install the device onto a DIN-rail according to EN 60715 with the input terminals on the bottom of the device. Other mounting orientations require a reduction in output current.

Make sure that the wiring is correct by following all local and national codes. Use appropriate copper cables that are designed for a minimum operating temperature of 60°C for ambient temperatures up to +45°C, 75°C for ambient temperatures up to +60°C and 90°C for ambient temperatures up to +70°C.

Ensure that all strands of a stranded wire enter the terminal connection. Use ferrules for wires on the input terminals. Unused screw terminals should be securely tightened.

The device is designed for pollution degree 2 areas in controlled environments. No condensation or frost is allowed.

The housing of the device provides a degree of protection of IP20. The housing does not provide protection against spilled liquids.

The isolation of the device is designed to withstand impulse voltages of overvoltage category III according to IEC 60664-1.

The device is designed as "Class of Protection I" equipment according to IEC 61140.

Do not use without a proper PE (Protective Earth) connection.

The device is suitable to be supplied from TN, TT or IT mains networks. The continuous voltage between the input terminal and the PE potential must not exceed 400Vac. The device is not designed to be used on corner grounded delta systems.

A disconnecting means shall be provided for the input of the device.

The device is designed for convection cooling and does not require an external fan. Do not obstruct airflow and do not cover ventilation grid!

The device is designed for altitudes up to 5000m (16400ft). Above 2000m (6560ft) a reduction in output current and over voltage category is required.

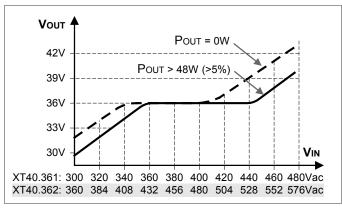
Keep the following minimum installation clearances: 40mm on top, 20mm on the bottom, 5mm left and right side. Increase the 5mm to 15mm in case the adjacent device is a heat source. When the device is permanently loaded with less than 50%, the 5mm can be reduced to zero.

The device is designed, tested and approved for branch circuits up to 16A (IEC) and 15A (UL) without additional protection device. If an external fuse is utilized, do not use circuit breakers smaller than 6A B- or 3A C-Characteristic to avoid a nuisance tripping of the circuit breaker.

The maximum surrounding air temperature is +70°C (+158°F). The operational temperature is the same as the ambient or surrounding air temperature and is defined 2cm below the device.

The device is designed to operate in areas between 5% and 95% relative humidity.

# 3. AC-INPUT


|                     |      | XT40.361         | XT40.362         |                                                                                                       |
|---------------------|------|------------------|------------------|-------------------------------------------------------------------------------------------------------|
| AC input            | nom. | 3AC 400V         | 3AC 480V         |                                                                                                       |
| Mains arrangement   |      | TN-, TT-         | or IT-Mains      | consult factory if one phase is earthed                                                               |
| AC input range      |      | 3x 360-440Vac    | 3x 432-528Vac    | fully regulated output (±2%), Pout > 48W                                                              |
|                     |      | 3x 300-460Vac *) | 3x 360-552Vac *) | permanently allowed,<br>see <b>Fig. 5-1</b> for output voltage regulation                             |
|                     | max. | 3x 475Vac        | 3x 565Vac        | Absolute maximum input voltage with no damage to the power supply. Output might be off at this level. |
| Input frequency     | nom. | 50 – 60Hz        | 50 – 60Hz        | ±6%                                                                                                   |
| Turn-on voltage     | typ. | 3x 325Vac        | 3x 390Vac        | see Fig. 5-2                                                                                          |
| Shut-down voltage   | typ. | 3x 295Vac        | 3x 355Vac        | see Fig. 5-2                                                                                          |
| Input current       | nom. | 1.65A            | 1.4A             | at 26.6A, symmetrical input, see Fig. 5-4                                                             |
| Power factor **)    | typ. | 0.93             | 0.93             | at 26.6A, symmetrical input, see Fig. 5-5                                                             |
| Turn-on overshoot   | typ. | 700mV            | 700mV            | see Fig. 5-3                                                                                          |
| Start-up delay ***) | typ. | 400ms            | 350ms            | over the entire load range, see Fig. 5-3                                                              |
| Rise time           | typ. | 40ms             | 40ms             | 0mF, 26.6A, see Fig. 5-3                                                                              |
|                     | typ. | 70ms             | 70ms             | 27mF, 26.6V, see Fig. 5-3                                                                             |

<sup>\*)</sup> A minimum voltage of 3x340Vac (XT40.361) or 3x408Vac (XT40.362) is required to turn the power supply on.

## **Input Voltage Range**

Changes of the input voltage will be fully regulated within certain limits. The output voltage will only start to change proportionally to the input voltage with extreme under or over-voltages. The yellow LED reports an input voltage problem if exceeded by a window of ±15%. The maximum increase of the output voltage is limited to the 42.5V OVP level. This level will be kept regulated for 2s before the power supply will shut down and reports "Shut-down" by the red LED.

Fig. 5-1 Output voltage vs. input voltage and input current



<sup>\*\*)</sup> The power factor is the ratio of the true (or real) power to the apparent power in an AC circuit.

<sup>\*\*\*)</sup> The start-up delay for mains voltage interruptions up to 350ms is zero. In such cases, the power supply will immediately generate the output voltage once the mains voltage interruption is over.



Fig. 5-2 Input voltage range

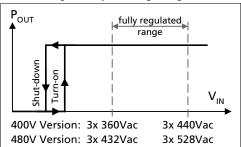



Fig. 5-4 Input current vs. output load

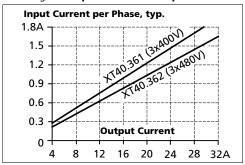



Fig. 5-3 Turn-on behavior definitions

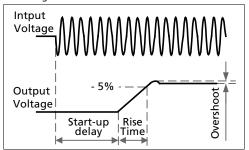
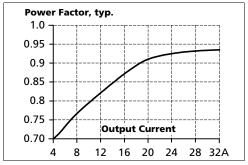
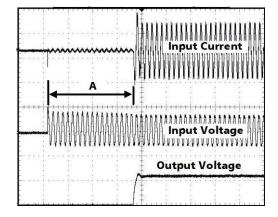




Fig. 5-5 Power factor vs. output load




## 4. INPUT INRUSH CURRENT

There is virtually no input inrush current surge as there are no electrolytic bulk-capacitors utilized on the input side of the power supply.

The charging current into the EMI suppression capacitors is disregarded for the first millisecond after switch-on.

|                |      | XT40.361          | XT40.362          |                              |
|----------------|------|-------------------|-------------------|------------------------------|
| Inrush current | max. | $4A_{peak}$       | $4A_{peak}$       | -25°C to +70°C, see Fig. 6-1 |
| Inrush energy  | max. | 5A <sup>2</sup> s | 5A <sup>2</sup> s | -25°C to +70°C, see Fig. 6-1 |
| Inrush delay   | typ. | 400ms             | 350ms             | see Fig. 6-1                 |

Fig. 6-1 Input inrush current, typical behavior



A: Inrush delay

XT40.361:

Input: 3x400Vac, only one phase shown

Output: 36V, 26A Ambient: 25°C

Upper curve: Input current 2A / DIV
Medium curve: Input voltage 500V / DIV

(measured between L and N)
Output voltage 30V / DIV

Lower curve: Output volta Time basis: 100ms / DIV



DIMONSION - X-Series

## 5. OUTPUT

| nom. | 36V                                            |                                                                                                            |
|------|------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|      | none                                           | The output voltage is fixed. No adjustment possible                                                        |
| nom. | 26.6A                                          | continuous, see Fig. 7-1                                                                                   |
|      | 33.3A                                          | up to 15s with full output voltage, see Fig. 7-1                                                           |
| min. | 115A                                           | load impedance 40mOhm, see Fig. 7-1                                                                        |
|      |                                                | Note: The short-circuit current is available for 0.1s                                                      |
| nom. | 960W                                           | continuous                                                                                                 |
|      | 1200W                                          | up to 15s                                                                                                  |
| max. | ±2%                                            | See Fig. 5-1                                                                                               |
| max. | 1200mV                                         | static value, $0A \rightarrow 26.6A \rightarrow 0A$                                                        |
| max. | 75mV                                           | static value, $3A \rightarrow 26.6A \rightarrow 3A$                                                        |
| max. | 2000mVpp                                       | 20Hz-2kHz, 50Ohm                                                                                           |
| max. | 250mVpp                                        | 2kHz to 20MHz, 50Ohm                                                                                       |
| typ. | 11 100µF                                       |                                                                                                            |
|      | nom.  min.  nom.  max.  max.  max.  max.  max. | none nom. 26.6A 33.3A min. 115A  nom. 960W 1200W max. ±2% max. 1200mV max. 75mV max. 2000mVpp max. 250mVpp |

<sup>\*)</sup> The ripple and noise voltage mostly consist of a mains ripple with 300Hz (50Hz mains) or 360Hz (60Hz mains). The ripple and noise voltage can be reduced by the utilization of external capacitors.

The power supply is also designed to support loads with a higher short-term current and power requirement. The short-term duration is firmware controlled by an output power manager. If the nominal output power is exceeded for a certain period of time which is defined in the zone A, B and C, the power supply responds with an automatic shutdown. Pressing the reset button or cycling the input power (10s off time is required) initiates an attempt to restart. If the fault has been cleared the device will operate normally.

The short term power can be used periodically. See chapter 25.1 for further information.

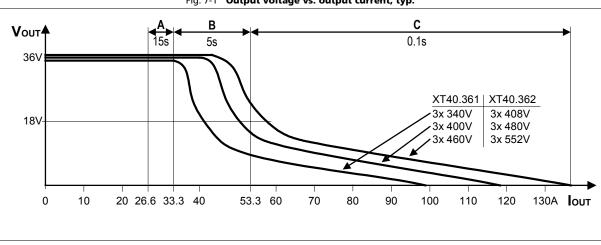



Fig. 7-1 Output voltage vs. output current, typ.

Zone A: 25% extra output power for typ. 15s Zone B: 100% higher output current for typ. 5s Zone C: Quick-acting shut-down after typ. 0.1s



### DIMONSION - X-Series

# 6. HOLD-UP TIME

|              |      | XT40.361 | XT40.362 |                                          |
|--------------|------|----------|----------|------------------------------------------|
| Hold-up Time | typ. | 2.6ms    | 2.6ms    | 26.6A, resistive load, see Fig. 8-2      |
|              | typ. | 2.2ms    | 2.2ms    | 26.6A, constant power load, see Fig. 8-2 |
|              | typ. | 5.2ms    | 5.2ms    | 13.3A, resistive load                    |
|              | typ. | 4.4ms    | 4.4ms    | 13.3A, constant power load               |
| Hold-up Time | min. | 2.1ms    | 2.1ms    | 26.6A, resistive load, see Fig. 8-2      |
|              | min. | 1.8ms    | 1.8ms    | 26.6A, constant power load, see Fig. 8-2 |
|              | min. | 4.2ms    | 4.2ms    | 13.3A, resistive load                    |
|              | min. | 3.5ms    | 3.5ms    | 13.3A, constant power load               |

The energy is stored in the output capacitor. As soon as the input is turned off, the output capacitor will be discharged and the voltage will dissipate according to the curves in Fig. 8-2. The lighter the load, the longer the hold-up time. Half the load means twice the hold-up time.

hold-up time depends on the load characteristic. The curves below show the hold-up time for a load with a resistive and a constant power characteristic.

The hold-up time is defined as the period of time when the input is turned off and until the output voltage falls below 36V -15% (30.6V). This value is defined in the IEC61131-2 as the lower limit for the supplying voltage.

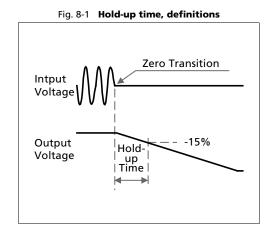
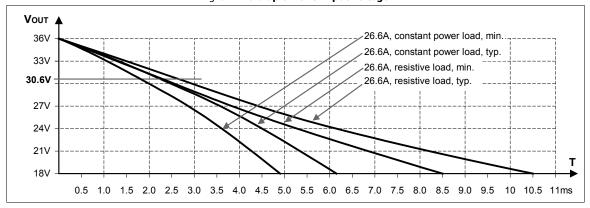




Fig. 8-2 Hold-up time vs. input voltage



Note: At no load, the hold-up time can be up to one minute. The green DC-ok LED is on during this time.



# 7. EFFICIENCY AND POWER LOSSES

|              |      | XT40.361 | XT40.362 |       |
|--------------|------|----------|----------|-------|
| Efficiency   | typ. | 95.5%    | 95.5%    | 26.6A |
| Power losses | typ. | 45.2W    | 45.2W    | 26.6A |
|              | typ. | 18.2W    | 18.2W    | 0A    |

Fig. 9-1 Efficiency vs. output current

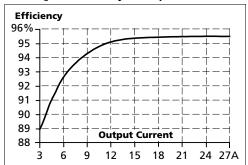



Fig. 9-3 Efficiency vs. input voltage, 36V, 26.6A

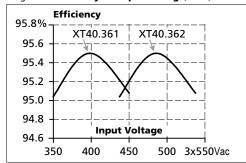



Fig. 9-2 Losses vs. output current

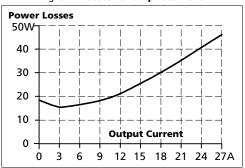
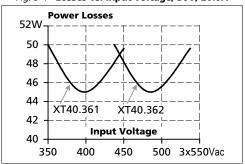
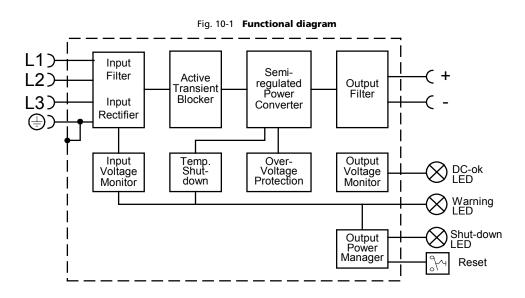





Fig. 9-4 Losses vs. input voltage, 36V, 26.6A



# 8. FUNCTIONAL DIAGRAM



## 9. FRONT SIDE AND USER ELEMENTS

**Output Terminals** Large screw terminal + Positive output - Negative (return) DC 36V 26.6A

output

See chapter 12 "Terminals and Wiring" to choose appropriate wire size.

#### **Input Terminals** Screw terminals L1, L2, L3: Line inputs PE (Protective

Earth) input

Overload III\_III. Check Input **JMMIL** Temperature 2ULS DIMENSION Reset (+)

Fig. 11-1 Front side of XT40.361

#### DC-ok LED (green)

Indicates a normal operation. The LED is on if the output voltage is higher than 32.4V.

#### Warning LED (yellow)

- A steady-state light indicates an output current higher than the nominal current and that the internal shutdown timer is running.
- A double flash indicates a phase-loss or too low / too high input voltage. (XT40.361: < 3x333Vac or > 3x467VacXT40.362: < 3x400Vac or > 3x560Vac)
- A fast flash warns of an impending temperature shut-down. A shut-down can be expected within 10 minutes, if the ambient temperature or the load current stays constant.

#### Shut-down LED (red) and reset button

The red LED flashes when the device has shut down. Pressing the reset button or cycling the input power (10s required) initiates a restart. If the fault has been cleared the device will operate normally.

36V, 26A, THREE-PHASE INPUT

## 10. TERMINALS AND WIRING

Use appropriate copper cables that are designed for a minimum operating temperatures of 60°C (for ambient up to 45°C) and 75°C (for ambient up to 60°C). Follow national installation codes and regulations! Ensure that all strands of a stranded wire enter the terminal connection! Do not use the power supply without PE (Ground) connection! Up to two stranded wires with the same cross section are permitted in one connection point (except PE wire). Ferrules are allowed, but not required.

|                               | Input                | Output                |  |
|-------------------------------|----------------------|-----------------------|--|
| Туре                          | Screw terminal       | Screw terminal        |  |
| Solid wire                    | 0.5-6mm <sup>2</sup> | 0.5-16mm <sup>2</sup> |  |
| Stranded wire                 | 0.5-4mm <sup>2</sup> | 0.5-10mm <sup>2</sup> |  |
| American wire gauge           | 20-10 AWG            | 22-8 AWG              |  |
| Wire stripping length         | 7mm / 0.26inch       | 12mm / 0.5inch        |  |
| Recommended tightening torque | 0.8Nm / 7lb.inch     | 1.2Nm / 10.6lb.inch   |  |

## 11. RELIABILITY

| Lifetime expectancy      | min. | 55 000h  | 40°C, 26.6A                     |
|--------------------------|------|----------|---------------------------------|
|                          | min. | 99 000h  | 40°C, 13.3A                     |
|                          | min. | 156 000h | 25°C, 26.6A                     |
| MTBF SN 29500, IEC 61709 |      | 529 000h | 40°C, 26.6A                     |
|                          |      | 959 000h | 25°C, 26.6A                     |
| MTBF MIL HDBK 217F       |      | 206 000h | 40°C, 26.6A, Ground Benign GB40 |
|                          |      | 276 000h | 25°C, 26.6A, Ground Benign GB25 |

The **Lifetime expectancy** shown in the table above indicates the operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors.

Lifetime expectancy is specified in operational hours and is calculated according to the capacitor's manufacturer specification. The prediction model allows a calculation of up to 15 years from date of shipment.

**MTBF** stands for **M**ean **T**ime **B**etween **F**ailure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product.

## 12. EMC

The power supply is suitable for applications in industrial environments as well as in residential, commercial and light industry environments without any restrictions. The CE mark is in conformance with EMC guideline 89/336/EEC and 93/68/EEC and the low-voltage directive (LVD) 73/23/EWG. A detailed EMC report is available on request.

| EMC Immunity             | EN 61000-6-1 and EN 6 | 51000-6-2                                                                                        | Generic standards                                |                                                                         |
|--------------------------|-----------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------|
| Electrostatic discharge  | EN 61000-4-2          | Contact discharge<br>Air discharge                                                               | 8kV<br>15kV                                      | Criterion A<br>Criterion A                                              |
| Electromagnetic RF field | EN 61000-4-3          | 80MHz-1GHz                                                                                       | 10V/m                                            | Criterion A                                                             |
| Fast transients (Burst)  | EN 61000-4-4          | Input lines<br>Output lines                                                                      | 4kV<br>2kV                                       | Criterion A<br>Criterion A                                              |
| Surge voltage on input   | EN 61000-4-5          | $L1 \rightarrow L2, L2 \rightarrow L3, L1 \rightarrow L3$<br>$L1/L2/L3 \rightarrow PE$           | 2kV<br>4kV                                       | Criterion A<br>Criterion A                                              |
| Surge voltage on output  | EN 61000-4-5          | + → -<br>+ / - → PE                                                                              | 500V<br>500V                                     | Criterion A<br>Criterion A                                              |
| Conducted disturbance    | EN 61000-4-6          | 0.15-80MHz                                                                                       | 10V                                              | Criterion A                                                             |
| Mains voltage dips       | EN 61000-4-11         | 0% of 400Vac<br>40% of 400Vac<br>70% of 100Vac<br>0% of 480Vac<br>40% of 480Vac<br>70% of 480Vac | 20ms<br>200ms<br>500ms<br>20ms<br>200ms<br>500ms | Criterion B Criterion C Criterion C Criterion B Criterion C Criterion C |
| Powerful transients      | VDE 0160              | over entire load range                                                                           | 1300V, 1.3ms                                     | Criterion D                                                             |

#### Criteria:

- A: Power supply shows normal operation behavior within the defined limits.
- **B:** During the mains voltage dip, the output voltage will decrease according to curves in the section "Hold-up Time". The unit works in normal mode once the voltage dip is over.
- C: Temporary loss of function is possible. Power supply might shut-down and restarts by itself. No damages or hazards for the power supply will occur.
- **D:** The input transient blocker opens and the main converter is without input power during such transients. The output voltage decreases similar as described in the hold-up time section during such an event.

| EMC Emission                  | EN 61000-6-3 and EN 61000-6-4                       | Generic standards     |
|-------------------------------|-----------------------------------------------------|-----------------------|
| Conducted emission            | EN 55011, EN 55032, FCC Part 15, CISPR 11, CISPR 32 | Class B, input lines  |
|                               | EN 55032                                            | Class B, output lines |
| Radiated emission             | EN 55011, EN 55032                                  | Class B               |
| Harmonic input current        | EN 61000-3-2                                        | Fulfilled, active PFC |
| Voltage fluctuations, flicker | EN 61000-3-3                                        | Fulfilled             |

This device complies with FCC Part 15 rules.

Operation is subjected to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

#### **Switching Frequency**

Switching frequency 36kHz nearly constant

# 13. ENVIRONMENT

| Operational temperature         | -25°C to +70°C (-13°F to 158°F)                             | reduce output power above +60°C                                   |
|---------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|
| Output de-rating                | 24W/°C                                                      | 60-70°C (140°F to 158°F), see Fig. 15-1                           |
| Storage temperature             | -40 to +85°C (-40°F to 185°F)                               | storage and transportation                                        |
| Humidity                        | 5 to 95% r.H.                                               | no condensation allowed                                           |
| Vibration sinusoidal            | 2-17.8Hz: ±1.6mm; 17.8-500Hz: 2g<br>2 hours / axis          | IEC 60068-2-6                                                     |
| Vibration random                | 0.5m <sup>2</sup> (s <sup>3</sup> )<br>2 hours / axis       | IEC 60068-2-64                                                    |
| Shock                           | 15g 6ms, 10g 11ms<br>3 bumps / direction, 18 bumps in total | IEC 60068-2-27                                                    |
| Altitude                        | 0 to 6000m (0 to 20 000ft)                                  | Reduce output power or ambient temperature above 2000m sea level. |
| Output de-rating (for altitude) | 60W/1000m or 5°C/1000m                                      | above 2000m, see Fig. 15-2                                        |
| Over-voltage category           | III                                                         | EN 50178, altitudes up to 2000m                                   |
|                                 | II                                                          | Altitudes from 2000m to 6000m                                     |
| Degree of pollution             | 2                                                           | EN 50178, non conductive                                          |
|                                 |                                                             |                                                                   |

Fig. 15-1 Output current vs. ambient temp.,

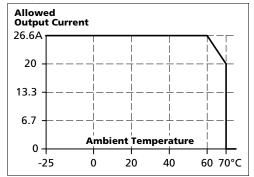
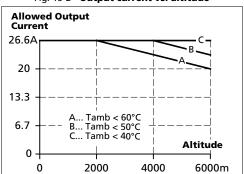



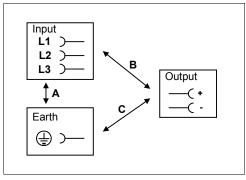

Fig. 15-2 Output current vs. altitude



The ambient temperature is defined 2cm below the unit.

## 14. Protection Features

| Output protection              | Electronically protected against overload, no load and short circuits *) |                                                                                                                                                               |  |  |
|--------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Output over-voltage protection | max. 42.5Vdc                                                             | In case of an internal power supply failure, a redund circuit limits the maximum output voltage. The output shuts-down and automatically attempts to restart. |  |  |
| Input overvoltage shut-down    | typ. 3x 470Vac                                                           | XT40.361                                                                                                                                                      |  |  |
|                                | typ. 3x 560Vac                                                           | XT40.362                                                                                                                                                      |  |  |
| Degree of protection           | IP 20                                                                    | EN/IEC 60529                                                                                                                                                  |  |  |
| Penetration protection         | > 3.5mm                                                                  | e.g. screws, small parts                                                                                                                                      |  |  |
| Over-temperature protection    | yes output shut-down, reset required                                     |                                                                                                                                                               |  |  |
| Input transient protection     | MOV (Metal Oxide Varistor) and active transient blocker                  |                                                                                                                                                               |  |  |
| Internal input fuse            | not included See section 25.4                                            |                                                                                                                                                               |  |  |


<sup>\*)</sup> An audible noise may be heard during a no load, overload or short circuit event.

## 15. SAFETY

| Input / output separation       | SELV                                        | IEC/EN 60950-1                       |  |
|---------------------------------|---------------------------------------------|--------------------------------------|--|
|                                 | PELV                                        | EN 60204-1, EN 50178, IEC 60364-4-41 |  |
|                                 | double or reinforced insulation             |                                      |  |
| Class of protection             | I PE (Protective Earth) connection required |                                      |  |
| Isolation resistance            | > 5MOhm                                     | input to output, 500Vdc              |  |
| PE resistance                   | < 0.10hm                                    | between housing and PE terminal      |  |
| Touch current (leakage current) | typ. 0.30mA                                 | XT40.361: 3x400V, 50Hz, TN mains     |  |
|                                 | < 0.35mA                                    | XT40.361: 3x440V, 50Hz, TN mains     |  |
|                                 | typ. 0.40mA                                 | XT40.362: 3x480V, 60Hz, TN mains     |  |
|                                 | < 0.45mA                                    | XT40.362: 3x524V, 60Hz, TN mains     |  |

## 16. DIELECTRIC STRENGTH

Fig. 18-1 Dielectric strength



|              |     | Α       | В       | C      |
|--------------|-----|---------|---------|--------|
| Type test    | 60s | 2500Vac | 3000Vac | 500Vac |
| Factory test | 5s  | 2500Vac | 2500Vac | 500Vac |
| Field test   | 5s  | 2000Vac | 2000Vac | 500Vac |

#### Type tests and factory tests:

Conducted by the manufacturer. Do not repeat these test in the field!

#### **Rules for field test:**

Use appropriate test equipment which applies the voltage with a slow ramp! Connect L1, L2 and L3 together as well as all output poles.

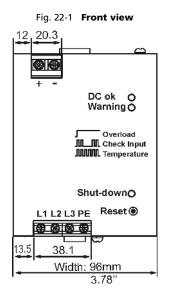
The output voltage is floating and has no ohmic connection to ground. Grounding of output allowed.

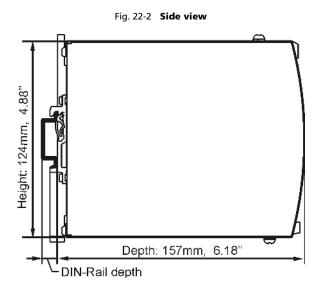
To fulfill the PELV requirements according to EN60204-1 paragraph 6.4.1, PULS recommend that either the + pole or the – pole shall be connected to the protective earth system. This helps to avoid situations in which a load starts unexpectedly or cannot be switched off when an unnoticed ground fault occurs.

36V, 26A, THREE-PHASE INPUT

# 17. APPROVALS AND FULFILLED STANDARD

| UL 508                                  | CUL US LISTED                           | UL Certificate<br>Listed equipment for category NMTR - Industrial Control Equipment<br>Applicable for US and Canada<br>E-File: E198865                                                                                                                           |
|-----------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IEC 60950-1                             | IECEE<br>CB SCHEME                      | CB Scheme Certificate<br>General safety requirements for Information Technology Equipment<br>(ITE)                                                                                                                                                               |
| UL 60950-1                              | c SUUs                                  | UL Certificate<br>Recognized component for category QQGQ - Information Technology<br>Equipment (ITE)<br>Applicable for US and Canada<br>E-File: E137006                                                                                                          |
| Corrosion<br>IEC 60068-2-60<br>Method 4 | Corrosion<br>IEC 60068-2-60<br>Method 4 | Manufacturer's Declaration (Online Document) IEC 60068-2-60 - Environmental Tests, Flowing Mixed Gas Corrosion Test Test Ke - Method 4 H2S: 10ppb NO2: 200ppb Cl2: 10ppb SO2: 200ppb Test Duration: 3 weeks, which simulates a service life of at least 10 years |
| Corrosion<br>G3-ISA-71.04               | Corrosion<br>G3-ISA-71.04               | Manufacturer's Declaration (Online Document) Airborne Contaminants Corrosion Test Severity Level: G3 Harsh H2S: 100ppb NOx: 1250ppb Cl2: 20ppb SO2: 300ppb Test Duration: 3 weeks, which simulates a service life of at least 10 years.                          |
| VDMA 24364                              | LABS<br>VDMA 24364-C1-L/W               | Paint Wetting Impairment Substances Test (or LABS-Test) Tested for Zone 2 and test class C1 according to VDMA 24364-C1-L/W for solvents and water-based paints                                                                                                   |


# 18. REGULATORY COMPLIANCE


| EU Declaration of<br>Conformity | CE      | The CE mark indicates conformance with the - EMC directive - Low-voltage directive (LVD) - RoHS directive                |
|---------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------|
| REACH Directive                 | REACH 🗸 | Manufacturer's Statement EU-Directive regarding the Registration, Evaluation, Authorisation and Restriction of Chemicals |
| EAC TR Registration             | EAC     | EAC Certificate<br>EAC EurAsian Conformity - Registration Russia, Kazakhstan and<br>Belarus<br>8504408200, 8504409000    |

# 19. PHYSICAL DIMENSIONS AND WEIGHT

| Weight   | 1400g / 3.09lb                                                                                                                                                                                |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DIN-Rail | Use 35mm DIN-rails according to EN 60715 or EN 50022 with a height of 7.5 or 15mm. The DIN-rail height must be added to the depth (157mm) to calculate the total required installation depth. |

CAD files with mechanical data can be downloaded at www.pulspower.com





#### 20. Installation and Operation Instructions

#### Mounting and installation:

Output terminal must be located on top and input terminal on the bottom. For other orientations see section 25.12. An appropriate electrical and fire end-product enclosure needs to be considered in the end use application.

#### Cooling:

Convection cooled, no forced air cooling required. Do not block ventilation grill by more than 30%!

#### **Installation clearances:**

40mm on top, 20mm on the bottom, 5mm on the left and right side are recommended when loaded permanently with full power. If the adjacent device is a heat source, 15mm clearance are recommended.

#### Risk of electrical shock, fire, personal injury or death!

Do not use the unit without proper earth connection (Protective Earth). Use the pin on the terminal block for earth connection and not one of the screws on the housing.

Turn power off before working on the power supply. Protect against inadvertent re-powering.

Make sure the wiring is correct by following all local and national codes.

Do not open, modify or repair the unit.

Use caution to prevent any foreign objects from entering into the housing.

Do not use in wet locations or in areas where moisture or condensation can be expected

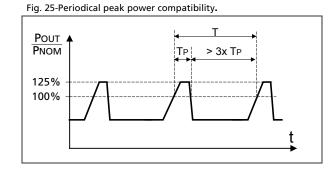
#### **Service parts:**

The unit does not contain any field replaceable parts. If damage or malfunctioning should occur, immediately turn power off and send the unit back to the factory for inspection!

# 21. COMPARISON BETWEEN THE XT40, A TRANSFORMER AND A TRADITIONAL SWITCHED-MODE POWER SUPPLY

|                           | XT40 Semi-<br>regulated power<br>supply | Traditional<br>switched-mode<br>power supply | Transformer<br>power supply |
|---------------------------|-----------------------------------------|----------------------------------------------|-----------------------------|
| Input voltage range       | +                                       | ++                                           | -                           |
| Inrush current surge      | ++                                      | +                                            | -                           |
| Hold-up time              | -                                       | +                                            | -                           |
| Phase-loss operation      | -                                       | +                                            | -                           |
| Efficiency                | +++                                     | ++                                           | -                           |
| Output voltage regulation | +                                       | ++                                           | -                           |
| Output adjustment range   | -                                       | ++                                           | -                           |
| Ripple & noise voltage    | -                                       | ++                                           | -                           |
| Error diagnostics         | ++                                      | ++                                           | -                           |
| Harmonic distortion (PFC) | +                                       | +                                            | -                           |
| EMC                       | ++                                      | ++                                           | +                           |
| Ease of installation      | ++                                      | ++                                           | -                           |
| Size                      | +++                                     | ++                                           | -                           |
| Weight                    | +++                                     | +                                            | -                           |

+++...very, very good ++...very good +...good -...poor


# 22. APPLICATION NOTES

#### 22.1. Periodical Peak Power Capability

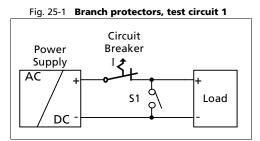
The short term power can be used periodically.

The duration of the peak power  $(T_P)$  must be shorter than 15s.

The time between two peak power pulses must be three times longer than the duration of the preceding pulse length.



#### 22.2. CHARGING OF BATTERIES


The power supply shall not be used to charge batteries.

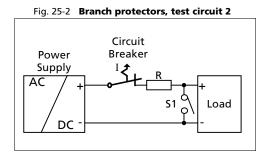
## 22.3. OUTPUT CIRCUIT BREAKERS

Standard miniature circuit breakers (MCB's or UL 1077 supplementary breakers) can be used for branch protection but ensure, that the MCB is rated for DC voltage too. The following tests show which circuit breakers the power supply typically will trip.

Circuit breakers have huge tolerances in their tripping behavior. Therefore, these typical tests can only be used as a recommendation or for comparing two different power supplies. Furthermore, the loop impedance has a major influence on whether a breaker trips or not. Two tests were performed, representing typical situations:

Test 1: Short circuit with S1 on the power supply end of the cable (loop impedance approx. 20mOhm)




Parameters:

Input voltage: 3x400Vac, load current: 0A

The following circuit breaker tripped during the test:

A- or Z- Characteristic:: equal or smaller 25A \*)
B- Characteristic: equal or smaller 32A \*)
C- Characteristic: equal or smaller 20A \*)

Test 2: Short circuit with S1 on the load end (additional impedance included; represents longer load wire length).



Parameters:

Input voltage: 3x400Vac, load current: 0A

The following circuit breaker tripped during the test:

A- or Z- Characteristic:: ≤ 25A and R= 50mOhm \*)
B- Characteristic: ≤ 32A and R= 29mOhm \*)
C- Characteristic: ≤ 13A and R= 120mOhm \*)

What does this resistance mean in wire length?

|         | 1.0mm <sup>2</sup> | 1.5mm <sup>2</sup> | 2.5mm <sup>2</sup> | 4.0mm <sup>2</sup> | 6.0mm <sup>2</sup> | 10mm <sup>2</sup> |
|---------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------|
| 29mOhm  | 1.6m               | 2.4m               | 4.0m               | 6.5m               | 9.7m               | 16.2m             |
| 50mOhm  | 2.8m               | 4.2m               | 7.0m               | 11.1m              | 16.7m              | 27.9m             |
| 120mOhm | 6.7m               | 10.0m              | 16.7m              | 26.7m              | 40.1m              | 66.9m             |

<sup>\*)</sup> A list of the circuit breakers under test is available on request.

#### Example:

Which wire gauge must be used at a length of 8.5m before a B-Characteristic circuit breaker with 32A will trip? Answer: A 32A B-Characteristic circuit breaker requires a loop impedance of less than 29mOhm based on the test results. The wire length table shows that a length of 9.7m with a cross section of 6.0mm² has an impedance of 29mOhm. A wire not smaller than 6.0mm² shall be used.

#### 22.4. EXTERNAL INPUT PROTECTION

The power supply has no internal input fuses included. The unit is tested and approved for branch circuits up to 16A (U.S.A 15A). External protection is only required if the supplying branch has an ampacity greater than this. In some countries local regulations might apply so check all local codes and requirements. If an external fuse is necessary or utilized, minimum requirements need to be considered to avoid nuisance tripping of the fuse.

|          |      | B-Characteristic | C-Characteristic |
|----------|------|------------------|------------------|
| Ampacity | max. | 20A              | 20A              |
|          | min. | 6A               | 3A               |

#### 22.5. BACK-FEEDING LOADS

Loads such as decelerating motors and inductors can feed voltage back to the power supply. This feature is also called return voltage immunity or resistance against Back- E.M.F. (Electro Magnetic Force).

This power supply is resistant and does not show adverse effects when a load feeds back voltage to the power supply. It does not matter, whether the power supply is on or off.

If the power supply is fully loaded after a return-feeding event, the output voltage can dip to 21V for approx 20ms.

The maximum allowed feed back voltage is 41.1Vdc. The absorbing energy can be calculated according to the built-in large sized output capacitor which is specified in chapter 7.

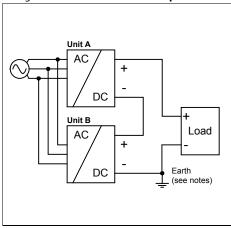
#### 22.6. Parallel Use to Increase Output Power

The XT40 Series of power supplies shall not be paralleled to increase the output power.

#### 22.7. Parallel Use for Redundancy

Power supplies can be paralleled for a 1+1 redundancy to gain a higher system availability and reliability. Redundant systems require a certain amount of extra power to support the load in case one power supply unit fails. The simplest way is to put two X-Series power supplies in parallel which is called a 1+1 redundancy. In case one power supply unit fails, the other one is automatically able to support the load current without any interruption.

**Please note:** This simple way to build a redundant system does not cover failures such as an internal short circuit on the secondary side of the power supply. In such a condition, the shorted unit becomes a load for the other power supplies and the output voltage can not be maintained. This can be avoided by utilizing decoupling diodes.


Recommendations for building redundant power systems:

- a) Use separate input fuses for each power supply.
- b) Monitor the individual power supply units.

#### 22.8. SERIES OPERATION

The power supplies of the X-Series can be put in series to increase the output voltage.

Fig. 25-3 Schematic for series operation



#### Installation notes for use in series:

- a) It is possible to connect as many units in series as needed, providing the sum of the output voltage does not exceed 150Vdc.
- b) Voltages with a potential above 60Vdc are no longer rated SELV and can be hazardous in some situations. Such voltages must be installed with a protection to make the unit touch-safe.
- c) For serial operation use power supplies of the same type.
- d) Earthing of the output is required when the sum of the output voltage is above 60Vdc.
- Keep an installation clearance of 15mm (left/right) between two power supplies and avoid installing the power supplies on top of each other.

<u>Note:</u> Avoid return voltage (e.g. from a decelerating motor or battery) which is applied to the output terminals.

#### 22.9. INDUCTIVE AND CAPACITIVE LOADS

The unit is designed to supply any kind of loads, including inductive loads or capacitive loads with a capacity of up to 140 mF.

#### 22.10. LOSS OF ONE INPUT PHASE

The unit protects itself against a loss of one input phase and does not require an external protection device.

A phase-loss operation is possible for output currents below 6A. Above this level, the yellow LED indicates an impending shut-down. If the missing phase does not recover, the unit switches off after 3.5s. Pressing the reset button or cycling the input power (10s required) initiates a restart.

Please note that the input current and the output ripple are higher during the time when one phase is missing.

#### 22.11. Use in a Tightly Sealed Enclosure

When the power supply is installed in a tightly sealed enclosure, the temperature inside the enclosure will be higher than outside. The inside temperature defines the ambient temperature for the power supply.

Results from such an installation:

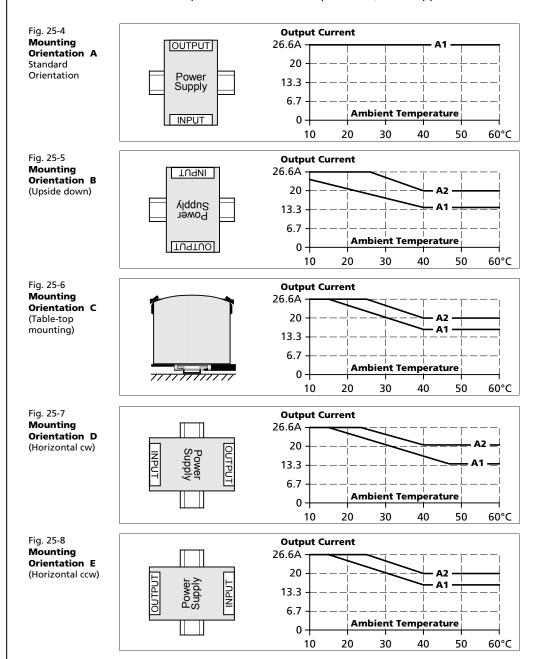
Power supply is placed in the middle of the box, no other heat producing equipment inside the box

Enclosure: Rittal Typ IP66 Box PK 9519 100, plastic, 180x180x165mm

Load: 36V, 21.3A (=80% of the rated current); load is placed outside the box

Input: 3x400Vac

Temperature inside the box: 54.9°C (in the middle of the right side of the power supply with a distance of 2cm)


Temperature outside the box: 25.7°C Temperature rise: 29.7K



#### 22.12. Mounting Orientations

Mounting orientations other than input terminals on the bottom and output on the top require a reduction in continuous output power or a limitation in the max. allowed ambient temperature. The amount of reduction defines the lifetime expectancy of the power supply. Therefore, two different derating curves for continuous operation can be found below:

**Curve A1** Recommended output current to achieve a minimum lifetime expectancy of 50 000h at 40°C ambient. **Curve A2** Max allowed output current for a safe operation (results approx. in half the lifetime expectancy of A1).

