August 2005

FDN352AP Single P-Channel, PowerTrench[®] MOSFET

Features

- -1.3 A, -30V $R_{DS(ON)} = 180 \text{ m}\Omega @ V_{GS} = -10V$
- -1.1 A, -30 V $\text{R}_{\text{DS(ON)}} = 300 \text{ m}\Omega @ \text{V}_{\text{GS}} = -4.5 \text{V}$
- High performance trench technology for extremely low R_{DS(ON)}.
- High power version of industry Standard SOT-23 package. Identical pin-out to SOT-23 with 30% higher power handling capability.

Applications

Notebook computer power management

General Description

This P-Channel Logic Level MOSFET is produced using Fairchild Semiconductor advanced Power Trench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss is needed in a very small outline surface mount package.

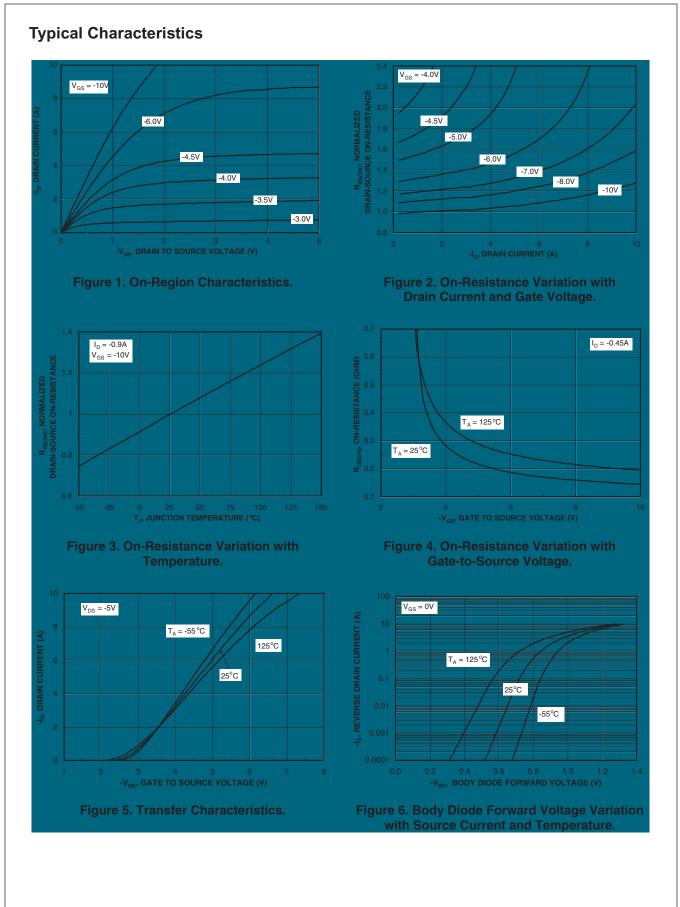
Absolute Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

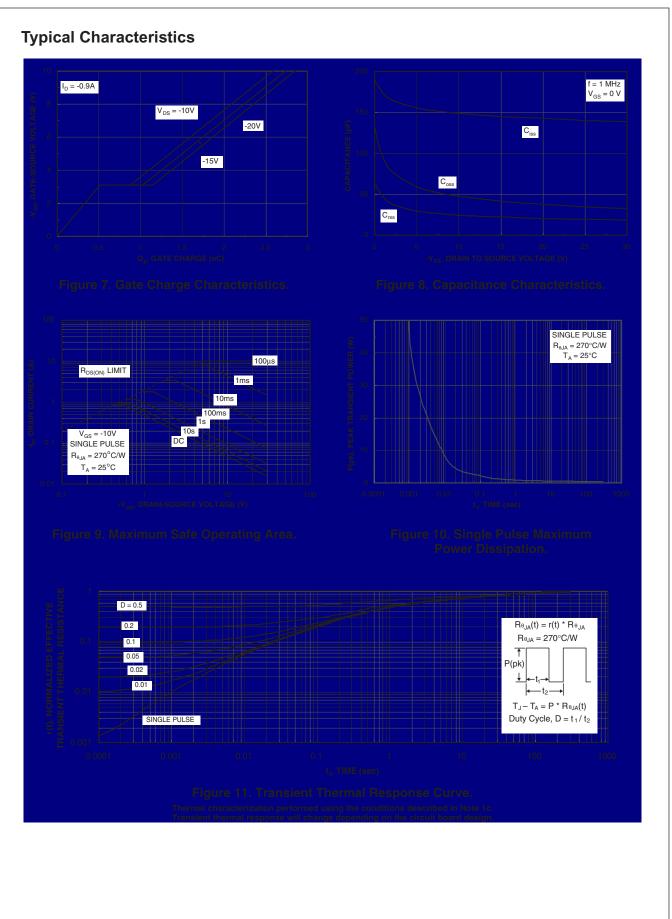
Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-Source Voltage		-30	V	
V _{GSS}	Gate-Source Voltage		±25	V	
I _D	Drain Current – Continuous	(Note 1a)	-1.3	A	
	– Pulsed		-10	1	
P _D	Power Dissipation for Single Operation	(Note 1a)	0.5	W	
		(Note 1b)	0.46	1	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	
Thermal Cha	aracteristics			•	
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	250	°C/W	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	75	7	

Package Marking and Ordering Information

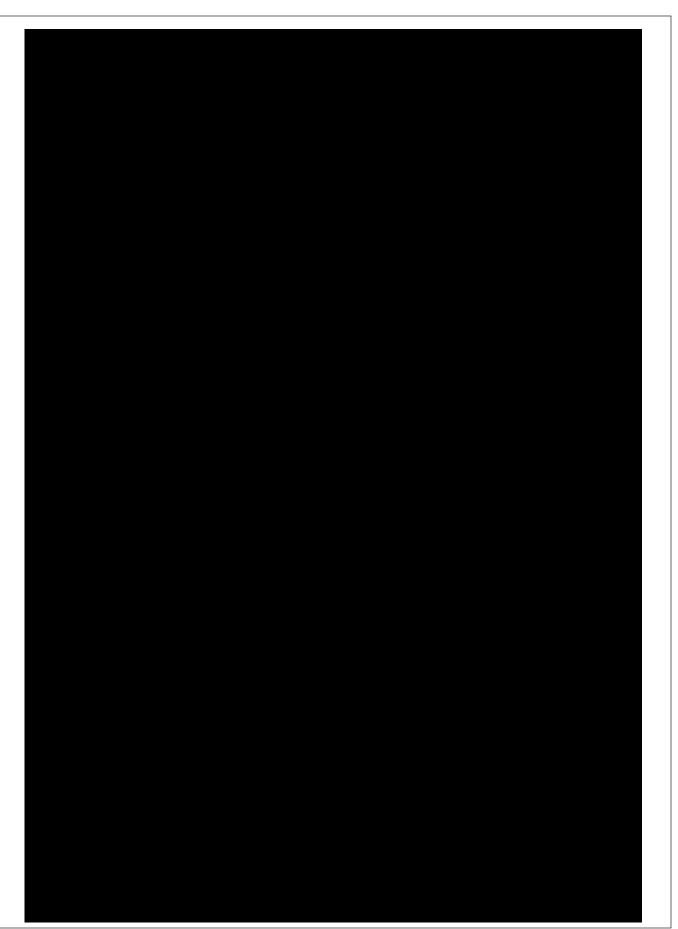
Device Marking	Device	Reel Size	Tape width	Quantity
52AP	FDN352AP	7"	8mm	3000 units

FDN352AP
Single
P-Channel,
Power Trench [®]
MOSFET


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Charac	teristics				ļ	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$	-30			V
$\frac{\Delta BV_{\text{DSS}}}{\Delta T_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		-17		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μA
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Charac	teristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$	-0.8	-2.0	-2.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{l} V_{GS} = -10 \; V, \; I_D = -1.3 \; A \\ V_{GS} = -4.5 \; V, \; I_D = -1.1 \; A \\ V_{GS} = -4.5 \; V, \; I_D = -1.1 \; A, \; T_J = 125^\circ C \end{array} $	T _J = 125°C		180 300 400	mΩ
9 _{FS}	Forward Transconductance	$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -0.9 \text{ A}$		2.0		S
Dynamic C	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$		150		pF
C _{oss}	Output Capacitance			40		pF
C _{rss}	Reverse Transfer Capacitance			20		pF
Switching	Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -1 \text{ A},$		4	8	ns
t _r	Turn–On Rise Time	$V_{GS} = -10$ V, $R_{GEN} = 6 \Omega$		15	28	ns
t _{d(off)}	Turn–Off Delay Time			10	18	ns
t _f	Turn–Off Fall Time			1	2	ns
Qg	Total Gate Charge	$V_{DS} = -10V, I_D = -0.9 A,$		1.4	1.9	nC
Q _{gs}	Gate–Source Charge	$V_{GS} = -4.5 V$		0.5		nC
Q _{gd}	Gate-Drain Charge			0.5		nC
Drain–Sou	rce Diode Characteristics and Maximum Ra	atings				
I _S	Maximum Continuous Drain-Source Diode Forward Current				-0.42	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V, I_S = -0.42 A$ (Note 2)		-0.8	-1.2	V
t _{rr}	Diode Reverse Recovery Time	I _F = -3.9 A,		17		ns
Q _{rr}	Diode Reverse Recovery Charge	dl _F /dt = 100 A/µs		7		nC


Notes:
1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design.

(a) $R_{\theta JA} = 250^{\circ}C/W$ when mounted on a 0.02 in² pad of 2oz. copper.


(b) $R_{\theta JA} = 270^{\circ}C/W$ when mounted on a 0.001 in² pad of 2oz. copper.

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

4

