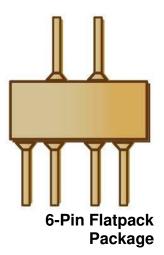




# NPN/PNP SILICON COMPLEMENTARY SMALL SIGNAL DUAL TRANSISTOR

Qualified per MIL-PRF-19500/421

**Qualified Levels:** JAN, JANTX, and **JANTXV** 


#### **DESCRIPTION**

This 2N3838 device in a 6-pin Flatpack package is military qualified up to a JANTXV level for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website <a href="http://www.microsemi.com">http://www.microsemi.com</a>.

#### **FEATURES**

- JAN, JANTX, and JANTXV qualifications also available per MIL-PRF-19500/421.
- RoHS compliant versions available (commercial grade only).



#### **APPLICATIONS / BENEFITS**

- Two complementary small signal silicon transistors in a single package design.
- Lightweight.

# Also available in:



芃 TO-78 package

(leaded) 2N4854



🄁 6-Pin U package (surface mount) 2N4854U

#### **MAXIMUM RATINGS**

| Parameters/Test Conditions                             | Symbol              | Value per          |                  | Unit |
|--------------------------------------------------------|---------------------|--------------------|------------------|------|
|                                                        |                     | Each<br>Transistor | Total<br>Package |      |
| Thermal Resistance Junction-to-Case                    | Rejc                | 250                | 125              | ºC/W |
| Thermal Resistance Junction-to-Ambient                 | R <sub>OJA</sub>    | 350                | 290              | ºC/W |
| Total Power Dissipation @ $T_A = +25  ^{\circ}C^{(1)}$ | P <sub>T</sub>      | 0.25               | 0.35             | W    |
| Total Power Dissipation @ T <sub>C</sub> = +25 °C (2)  | P <sub>T</sub>      | 0.7                | 1.4              | W    |
| Junction and Storage Temperature                       | $T_J$ and $T_{STG}$ | -65 to +200        |                  | °C   |
| Collector-Base Voltage, Emitter Open                   | V <sub>CBO</sub>    | 60                 |                  | V    |
| Emitter-Base Voltage, Collector Open                   | V <sub>EBO</sub>    | 5                  |                  | V    |
| Collector-Emitter Voltage, Base Open                   | V <sub>CEO</sub>    | 40                 |                  | V    |
| Collector Current, dc                                  | I <sub>C</sub>      | 600                |                  | mA   |
| Lead to Case Voltage                                   |                     | +/- 120            |                  | V    |
| Solder Temperature @ 10 s                              | T <sub>SP</sub>     | 260                |                  | °C   |

**Notes:** 1. For T<sub>A</sub> > +25 °C, derate linearly 1.43 mW/°C one transistor, 2.00 mW/°C both transistors.

2. For T<sub>C</sub> > +25 °C, derate linearly 4.0 mW/°C one transistor, 8.0 mW/°C both transistors.

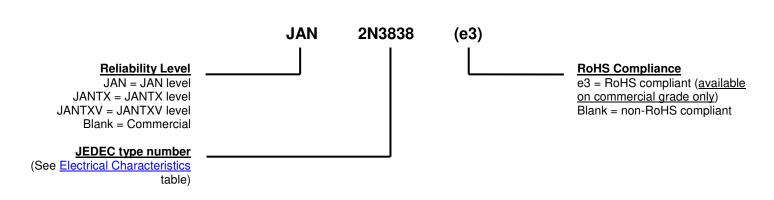
#### MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

#### MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

#### Website:


www.microsemi.com



# **MECHANICAL and PACKAGING**

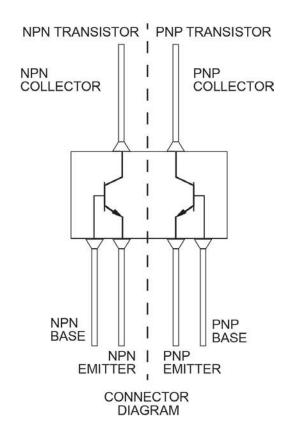
- CASE: Hermetic ceramic (white), Au over Ni plated kovar cover.
- TERMINALS: Au over Ni plated copper.
- MARKING: Manufacturer's ID, part number, date code, Pin 1 Identifier.
- POLARITY: See Case Outline.
- See <u>Package Dimensions</u> on last page.

# **PART NOMENCLATURE**



| SYMBOLS & DEFINITIONS |                                                                                                                                                          |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Symbol                | Definition                                                                                                                                               |  |  |  |  |
| Ι <sub>Β</sub>        | Base Current, dc.                                                                                                                                        |  |  |  |  |
| Ic                    | Collector Current, dc.                                                                                                                                   |  |  |  |  |
| I <sub>E</sub>        | Emitter Current, dc.                                                                                                                                     |  |  |  |  |
| lo                    | Average Rectified Output Current: The Output Current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle. |  |  |  |  |
| V <sub>CB</sub>       | Collector-Base Voltage (dc).                                                                                                                             |  |  |  |  |
| V <sub>CE</sub>       | Collector-Emitter Voltage, dc.                                                                                                                           |  |  |  |  |
| V <sub>EB</sub>       | Emitter-Base Voltage (dc).                                                                                                                               |  |  |  |  |





# **ELECTRICAL CHARACTERISTICS** @ T<sub>A</sub>= 25 <sup>o</sup>C unless otherwise noted.

| Characteristics                                                               | Symbol                             | Min.     | Max. | Unit   |
|-------------------------------------------------------------------------------|------------------------------------|----------|------|--------|
| OFF CHARACTERISTICS                                                           |                                    |          |      |        |
| Collector-Emitter Breakdown Current                                           | V <sub>(BR)CEO</sub>               | 40       |      | V      |
| $I_C = 10 \text{ mA (pulsed)}$                                                | V (BR)CEO                          | 40       |      | V      |
| Collector-Base Cutoff Current                                                 | 1                                  |          | 10   |        |
| $V_{EB} = 5 \text{ V}$                                                        | I <sub>CBO(1)</sub>                |          | 10   | μΑ     |
| Collector-Base Cutoff Current                                                 | 1                                  |          | 50   | Λ      |
| $V_{CB} = 50 \text{ V}$                                                       | I <sub>CBO(2)</sub>                |          | 50   | nA     |
| Emitter-Base Cutoff Current                                                   |                                    |          |      |        |
| $V_{EB} = 5.0 \text{ V}$                                                      | I <sub>EBO(1)</sub>                |          | 10   | μΑ     |
| $V_{EB} = 3.0 \text{ V}$                                                      | I <sub>EBO(2)</sub>                |          | 10   | nA     |
| ON CHARACTERISTICS                                                            |                                    |          |      |        |
| Forward-Current Transfer Ratio                                                |                                    |          |      |        |
| $I_C = 150 \text{ mA}, V_{CE} = 1 \text{ V}$                                  | h <sub>FE</sub>                    | 50       |      |        |
| $I_C = 100 \mu A, V_{CE} = 10 V$                                              |                                    | 35       |      |        |
| $I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}$                                 |                                    | 50       |      |        |
| $I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}$                                  |                                    | 75       |      |        |
| $I_C = 150 \text{ mA}, V_{CE} = 10 \text{ V}$                                 |                                    | 100      | 300  |        |
| $I_C = 300 \text{ mA}, V_{CE} = 10 \text{ V}$                                 |                                    | 35       |      |        |
| Collector-Emitter Saturation Voltage                                          | V <sub>CE(sat)</sub>               |          | 0.40 | V      |
| $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$                                   | ▼ GE(sat)                          |          | 0.10 | ,      |
| Base-Emitter Saturation Voltage                                               | V <sub>BE(sat)</sub>               | 0.80     | 1.25 | V      |
| $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$                                   | ▼BE(sat)                           | 0.00     | 1.25 | •      |
| DYNAMIC CHARACTERISTICS                                                       |                                    |          |      |        |
| Forward Current Transfer Ratio                                                | b.                                 | 60       | 300  |        |
| $I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}$            | h <sub>fe</sub>                    | 60       | 300  |        |
| Forward Current Transfer Ratio, Magnitude                                     | lhr. l                             | 2.0      | 10   |        |
| $I_C = 20 \text{ mA}, V_{CE} = 10 \text{ V}, f = 100 \text{ MHz}$             | h <sub>fe</sub>                    | 2.0      | 10   |        |
| Small-Signal Common Emitter Input Impedance                                   | h: -                               | 1.5      | 9.0  | kΩ     |
| $I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}$            | h <sub>ie</sub>                    | 1.5      | 3.0  | K22    |
| Small-Signal Common Emitter Output Admittance                                 | h                                  |          | 50   | μhmo   |
| $I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}$            | h <sub>oe</sub>                    |          | 30   | μιιιιο |
| Open Circuit Output Capacitance                                               | Calaa                              |          | 8.0  | pF     |
| $V_{CB} = 10 \text{ V}, I_{E} = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$ | C <sub>obo</sub>                   |          | 0.0  | ρı     |
| Noise Figure                                                                  | NF                                 |          | 8.0  | dB     |
| $I_C=100~\mu A,~V_{CE}=10~V,~f=1.0~kHz,~R_G=1.0~k\Omega$                      | INI                                |          | 0.0  | uБ     |
| SWITCHING CHARACTERISTICS                                                     |                                    |          |      |        |
| Turn-On Time (Saturated)                                                      | t                                  |          | 45   | ns     |
| (Reference MIL-PRF-19500/421, figure 7)                                       | <sup>t</sup> on                    | <u> </u> | 40   | 115    |
| Turn-Off Time (Saturated)                                                     | t <sub>off</sub>                   |          | 300  | ns     |
| (Reference MIL-PRF-19500/421, figure 8)                                       | 7011                               |          | 000  | 110    |
| Pulse Response (Non-Saturated)                                                | t <sub>on +</sub> t <sub>off</sub> |          | 18   | ns     |
| (Reference MIL-PRF-19500/421, figure 9)                                       | 011 + 011                          | 1        |      |        |
| Collector-Emitter Non-Latching Voltage                                        | $V_{CEO}$                          | 40       |      | V      |
| Compositor Entition Factoring Voltage                                         | 1 *0=0                             | 10       |      | "      |



# **PACKAGE DIMENSIONS**





| Ltr | Dimensions |      |             |      | Notes |
|-----|------------|------|-------------|------|-------|
|     | Inch       |      | Millimeters |      |       |
|     | Min        | Max  | Min         | Max  |       |
| Α   | .240       | .290 | 6.10        | 7.37 |       |
| В   | .115       | .160 | 2.92        | 4.06 |       |
| С   | .030       | .080 | 0.76        | 2.03 |       |
| D   | .003       | .006 | 0.08        | 0.15 | 4     |
| Е   | .005       | .035 | 0.13        | 0.89 |       |
| F   | .010       | .019 | 0.25        | 0.48 | 4, 6  |

| Ltr | Dimension |      |             |       | Notes |
|-----|-----------|------|-------------|-------|-------|
|     | Inch      |      | Millimeters |       |       |
|     | Min       | Max  | Min         | Max   |       |
| G   | .100 TP   |      | 2.54 TP     |       | 6,7   |
| Н   | -         | .050 | -           | 1.27  |       |
| J   | -         | .015 | -           | 0.38  | 5     |
| K   | .050 TP   |      | 1.27 TP     |       | 6,7   |
| L   | .070      | .250 | 1.78        | 6.35  | 3,4   |
| М   | .260      | .650 | 6.60        | 16.51 |       |

# NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Maximum limit of this dimension does not apply to device supplied in a carrier.
- 4. All six leads.
- 5. Lead dimensions are uncontrolled in this zone.
- 6. Dimensions "F", "G", and "K" to be measured in zone "H".
- 7. Leads within .005 inch (0.13 mm) total of true position (TP) at "H" with maximum material condition.
- 8. In accordance with ASME Y14.5M, diameters are equivalent to  $\Phi x$  symbology.