

 $\frac{1}{2}$ Buy

[TPS53124](http://www.ti.com/product/tps53124?qgpn=tps53124)

SLUS825C –FEBRUARY 2008–REVISED AUGUST 2014

TPS53124 Dual Synchronous Step-Down Controller For Low-Voltage Power Rails

-
-
-
-
-
-
-
-
-
- Built-In 5-V Linear Regulator 6.0 and 1.76 V to 5.5 V.

-
- Networking Home Terminal **Example 18 and Struck** range.
-

1 Features 3 Description

Tools & **[Software](http://www.ti.com/product/TPS53124?dcmp=dsproject&hqs=sw&#desKit)**

High Efficiency, Low-Power Consumption The TPS53124 is a dual, Adaptive on-time DCAP™
D Cap Mede Enghles Feet Transient Bespanse mode synchronous controller. The part enables D-Cap Mode Enables Fast Transient Response

system designers to cost effectively complete the

suite of digital TV power bus requisitors with the suite of digital TV power bus regulators with the Low Output Ripple

Mide Input Veltere Benge: 4.5 V to 24 V

standby consumption. The main control loop for the

Mide Input Veltere Benge: 4.5 V to 24 V Wide Input Voltage Range: 4.5 V to 24 V
TPS53124 uses the D-CAP™ mode that optimized
For low FSR output capacitors such as POSCAP or for low ESR output capacitors such as POSCAP or Low-Side $R_{DS(on)}$ Loss-less Current Sensing S P-CAP promises fast transient response with no Adaptive Gate Drivers with Integrated Boost Diode external compensation. The part provides a

convenient and efficient operation with conversion convenient and efficient operation with conversion • Internal 1.2-ms Voltage-Servo Soft Start voltages from 4.5 V to 24 V and output voltage from

2 Applications
 2 Applications
 2 Applications
 2 Applications
 2 Power Supply
 2 Power Supply specified from -40 $^{\circ}$ C to 85 $^{\circ}$ C ambient temperature

• Digital STB **Device Information[\(1\)](#page-0-0)**

(1) For all available packages, see the orderable addendum at the end of the datasheet.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, **44** intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

Texas
Instruments

5 Pin Configuration and Functions

[TPS53124](http://www.ti.com/product/tps53124?qgpn=tps53124) SLUS825C –FEBRUARY 2008–REVISED AUGUST 2014 **www.ti.com**

Texas
Instruments

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 Handling Ratings

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

 (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

SLUS825C –FEBRUARY 2008–REVISED AUGUST 2014 **www.ti.com**

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

6.4 Thermal Information

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, [SPRA953](http://www.ti.com/lit/pdf/spra953).

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

SLUS825C –FEBRUARY 2008–REVISED AUGUST 2014 **www.ti.com**

Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

(1) Ensured by design. Not production tested.

6.6 Typical Characteristics

7 Detailed Description

7.1 Overview

The TPS53124 is a dual, Adaptive on-time DCAP™ mode synchronous controller. The part enables system designers to cost effectively complete the suite of digital TV power bus regulators with the absolute lowest external component count and lowest standby consumption. The main control loop for the TPS53124 uses the D-CAP™ mode that optimized for low ESR output capacitors such as POSCAP or SP-CAP promises fast transient response with no external compensation. The part provides a convenient and efficient operation with conversion voltages from 4.5 V to 24 V and output voltage from 0.76 V to 5.5 V.

7.2 Functional Block Diagram

Functional Block Diagram (continued)

7.3 Feature Description

7.3.1 PWM Operation

The main control loop of the switching mode power supply (SMPS) is designed as an adaptive on-time pulse width modulation (PWM) controller. It supports a proprietary D-CAP™ Mode. D-CAP™ Mode uses internal compensation circuit and is suitable for low external component count configuration with appropriate amount of ESR at the output capacitor(s). The output ripple bottom voltage is monitored at a feedback point voltage.

At the beginning of each cycle, the synchronous high-side MOSFET is turned on, or becomes ON state. This MOSFET is turned off, or becomes OFF state, after internal one-shot timer expires. This one shot is determined by the converter's input voltage ,VIN, and the output voltage ,VOUT, to keep frequency fairly constant over the input voltage range, hence it is called adaptive on-time control. The high-side MOSFET is turned on again when feedback information indicates insufficient output voltage. Repeating operation in this manner, the controller regulates the output voltage.

7.3.2 Low-Side Driver

The low-side driver is designed to drive high current low $R_{DS(on)}$ N-channel MOSFET(s). The drive capability is represented by its internal resistance. A dead time to prevent shoot through is internally generated between highside MOSFET off to low-side MOSFET on, and low-side MOSFET off to high-side MOSFET on. 5-V bias voltage is delivered from internal regulator VREG5 output. The instantaneous drive current is supplied by an input capacitor connected between VREG5 and GND. The average drive current is equal to the gate charge at $V_{\text{GS}} = 5$ V times switching frequency. This gate drive current as well as the high-side gate drive current times 5 V makes the driving power which need to be dissipated from TPS53124 package.

7.3.3 High-Side Driver

The high-side driver is designed to drive high current, low $R_{DS(on)}$ N-channel MOSFET(s). When configured as a floating driver, 5-V bias voltage is delivered from VREG5 supply. The average drive current is also calculated by the gate charge at $V_{GS} = 5$ V times switching frequency. The instantaneous drive current is supplied by the flying capacitor between VBSTx and LLx pins. The drive capability is represented by its internal resistance.

7.3.4 PWM Frequency and Adaptive On-Time Control

TPS53124 employs adaptive on-time control scheme and does not have a dedicated oscillator on board. However, the part runs with pseudo-constant frequency by feed-forwarding the input and output voltage into the on-time one-shot timer. The on-time is controlled inverse proportional to the input voltage and proportional to the output voltage so that the duty ratio will be kept as VOUT/VIN technically with the same cycle time.

7.3.5 Soft Start

The TPS53124 has an internal, 1.2 ms, voltage servo soft start for each channel. When the ENx pin becomes high, an internal DAC begins ramping up the reference voltage to the PWM comparator. Smooth control of the output voltage is maintained during start up. As TPS53124 shares one DAC with both channels, if ENx pin is set to high while another channel is starting up, soft start is postponed until another channel soft start has completed. If both of EN1 and EN2 are set high at a same time, both channels start up at same time.

7.3.6 Output Discharge Control

TPS53124 discharges the output when ENx is low, or the controller is turned off by the protection functions (OVP, UVP, UVLO, and thermal shutdown). TPS53124 discharges outputs using an internal 40-Ω MOSFET which is connected to VOx and PGNDx. The external low-side MOSFET is not turned on for the output discharge operation to avoid the possibility of causing negative voltage at the output.

This discharge ensures that, on start, the regulated voltage always start from zero volts.

Feature Description (continued)

7.3.7 Current Protection

TPS53124 has cycle-by-cycle over current limiting control. The inductor current is monitored during the 'OFF' state and the controller keeps the OFF state during the inductor current is larger than the over-current trip level. In order to provide both good accuracy and cost effective solution, TPS53124 supports temperature compensated MOSFET $R_{DS(on)}$ sensing. TRIPx pin should be connected to GND through the trip voltage setting resistor, R_{TRIP} . TRIPx terminal sources 10-µA I_{TRIP} current at the ambient temperature and the trip level is set to the OCL trip voltage V_{TRIP} as below:

$$
V_{TRIP}(mV) = R_{TRIP}(k\Omega) \times 10(\mu A)
$$
\n⁽¹⁾

The trip level should be in the range of 30 mV to 200 mV over all operational temperature. The inductor current is monitored by the voltage between PGNDx pin and LLx pin. I_{RIP} has 4000ppm/°C temperature slope to compensate the temperature dependency of the $R_{DS(on)}$. PGNDx is used as the positive current sensing node so that PGNDx should be connected to the source terminal of the bottom MOSFET.

As the comparison is done during the OFF state, V_{TRIP} sets valley level of the inductor current. Thus, the load current at over-current threshold, I_{OCP} , can be calculated as follows:

$$
I_{OCP} = \frac{V_{TRIP}}{R_{DS(on)}} + \frac{I_{RIPPLE}}{2} = \frac{V_{TRIP}}{R_{DS(on)}} + \frac{1}{2 \times L \times f} \times \frac{(V_{IN} - V_{OUT}) \times V_{OUT}}{V_{IN}}
$$
(2)

In an over-current condition, the current to the load exceeds the current to the output capacitor; thus the output voltage tends to fall off. Eventually, it will end up with crossing the under voltage protection threshold and shutdown.

7.3.8 Over/Under Voltage Protection

TPS53124 monitors a resistor divided feedback voltage to detect over and under voltage. When the feedback voltage becomes higher than 115% of the target voltage, the OVP comparator output goes high and the circuit latches as the high-side MOSFET driver OFF and the low-side MOSFET driver ON.

When the feedback voltage becomes lower than 70% of the target voltage, the UVP comparator output goes high and an internal UVP delay counter begins counting. After 30 μs, TPS53124 latches OFF both top and bottom MOSFET drivers, and shut off both drivers of another channel. This function is enabled approximately 2.0 ms.

7.3.9 UVLO Protection

TPS53124 has V5FILT Under Voltage Lock Out protection (UVLO). When the V5FILT voltage is lower than UVLO threshold voltage TPS53124 is shut off. This is non-latch protection.

7.3.10 Thermal Shutdown

TPS53124 monitors the temperature of itself. If the temperature exceeds the threshold value (typically 150°C), the switchers will be shut off as both DRVH and DRVL at low, the output discharge function enabled. Then TPS53124 is shut off. This is non-latch protection.

7.4 Device Functional Modes

The TPS53124 has two operating modes. The TPS53124 is in shut down mode when the EN1 and EN2 pins are low. When the EN1 and EN2 pins is pulled high, the TPS53124 enters the normal operating mode.

8 Application and Implementation

8.1 Application Information

The TPS53124 is a dual, Adaptive on-time DCAP™ mode synchronous controller. The part enables system designers to cost effectively complete the suite of digital TV power bus regulators with the absolute lowest external component count and lowest standby consumption. The main control loop for the TPS53124 uses the D-CAP™ mode that optimized for low ESR output capacitors such as POSCAP or SP-CAP promises fast transient response with no external compensation. The part provides a convenient and efficient operation with conversion voltages from 4.5 V to 24 V and output voltage from 0.76 V to 5.5 V.

8.2 Typical Application

The TPS53124 is a Step-Down Controller in a realistic cost-sensitive application. Providing both a low core-type 1.05 V and I/O type 1.8 V output from a loosely regulated 12 V source. Idea applications are: Digital TV Power Supply, Networking Home Pin and Digital Set-Top Box (STB).

Figure 6. TPS53124 Typical Application Circuit (QFN)

Typical Application (continued)

Figure 7. TSSOP

Typical Application (continued)

8.2.1 Design Requirements

8.2.2 Detailed Design Procedure

8.2.2.1 Choose Inductor

The inductance value is selected to provide approximately 30% peak to peak ripple current at maximum load. Larger ripple current increases output ripple voltage, improve S/N ratio and contribute to stable operation.

[Equation 3](#page-15-0) can be used to calculate L1.

$$
L1 = \frac{(V_{IN(MAX)} - V_O1)}{V_{L1(RIPPLE)} \times f_{SW}} \times \frac{V_O1}{V_{IN(MAX)}} = \frac{(V_{IN(MAX)} - V_O1)}{0.3 \times I_O1 \times f_{SW}} \times \frac{V_O1}{V_{IN(MAX)}}
$$
(3)

The inductors current ratings needs to support both the RMS (thermal) current and the Peak (saturation) current. The RMS and peak inductor current can be estimated as follows.

$$
I_{L1(RIPPLE)} = \frac{(V_{IN(MAX)} - V_{O}1)}{L1 \times f_{SW}} \times \frac{V_{O}1}{V_{IN(MAX)}}
$$
(4)

$$
I_{L1(PEAK)} = \frac{V_{TRIP}}{R_{DS(ON)}} + I_{L1(RIPPLE)}
$$
(5)

$$
I_{L1(RMS)} = \sqrt{I_{O}1^{2} + \frac{1}{12} (I_{L1(RIPPLE)})^{2}}
$$
(6)

NOTE

The calculation above shall serve as a general reference. To further improve transient response, the output inductance could be reduced further. This needs to be considered along with the selection of the output capacitor.

8.2.2.2 Loop Compensation and External Parts Selection

A buck converter system using D-CAP™ Mode can be simplified as below.

Figure 8. Simplifying the Modulator

The output voltage is compared with internal reference voltage after divider resistors, R1 and R2. The PWM comparator determines the timing to turn on top MOSFET. The gain and speed of the comparator is high enough to keep the voltage at the beginning of each on cycle (or the end of off cycle) substantially constant. The DC output voltage may have line regulation due to ripple amplitude that slightly increases as the input voltage increase.

For the loop stability, the 0-dB frequency, f_0 , defined below need to be lower than 1/3 of the switching frequency.

$$
f_{\rm O} = \frac{1}{2\pi \times \text{ESR} \times \text{C}_{\rm O} \le \frac{f_{\rm SW}}{3}}\tag{7}
$$

Although D-CAP™ Mode provides many advantages such as ease-of-use, minimum external components configuration and extremely short response time, a sufficient amount of feedback signal needs to be provided by external circuit to reduce jitter level. This is due to not employing an error amplifier in the loop. The required signal level is approximately 10 mV at the comparing point (VFB terminal). This gives Vripples at the output node becomes [Equation 8.](#page-16-0)The output capacitor's ESR should meet this requirement.

$$
V_{RIPPLE} = \frac{V_{OUT}}{V_{FBx}} \times 10 \text{ mV}
$$

(8)

SLUS825C –FEBRUARY 2008–REVISED AUGUST 2014 **www.ti.com**

8.2.2.3 Choose Input Capacitor

The TPS53124 requires an input decoupling capacitor and a bulk capacitor is needed depending on the application. A minimum 10-μF high-quality ceramic capacitor is recommended for the input capacitor. The capacitor voltage rating needs to be greater than the maximum input voltage.

8.2.2.4 Choose Bootstrap Capacitor

The TPS53124 requires a bootstrap capacitor from SW to VBST to provide the floating supply for the high-side drivers. A minimum 0.1-μF high-quality ceramic capacitor is recommended. The voltage rating should be greater than 10 V.

8.2.2.5 Choose VREG5 and V5FILT Capacitor

The TPS53124 requires both the VREG5 regulator and V5FILT input are bypassed. A minimum 4.7-μF highquality ceramic capacitor must be connected between the VREG5 and GND for proper operation. A minimum 1 μF high-quality ceramic capacitor must be connected between the V5FILT and GND for proper operation. Both of these capacitors' voltage ratings should be greater than 10 V.

8.2.2.6 Choose Output Voltage Set Point Resistors

The output voltage is set with a resistor divider from the output voltage node to the VFBx pin. It is recommended to use 1% tolerance or better resisters. Select R2 between 10 kΩ and 100 kΩ and use [Equation 9](#page-17-0) or [Equation 10](#page-17-1) to calculate R1.

$$
V_{\text{swinj}} = (V_{\text{IN}} - V_{\text{O}} 1 \times 0.5875) \times \left(\frac{1}{f_{\text{SW}}}\right) \times \left(\frac{V_{\text{O}} 1}{V_{\text{IN}}}\right) \times 4975
$$

$$
R1 = \left(\frac{V_{\text{O}} 1}{V_{\text{FB(RIPPLE)}} + V_{\text{swinj}}} - 1\right) \times R2
$$
 (9)

Where

FB

 $V_{FB} + \frac{P_{D(NIFFLE})}{2}$

 $V_{FB(RIPPLE)} =$ Ripple voltage at VFB V_{swini} = Ripple voltage at error comparator

 $\left(V_{FB} + \frac{V_{FB}(\text{RIPPLE}) + V_{swinj}}{2}\right)$

8.2.2.7 Choose Over Current Set Point Resistor

$$
V_{TRIP} = \left(I_{OCL} - \frac{(V_{IN} - V_O)}{2 \times L1 \times f_{SW}} \times \frac{V_O}{V_{IN}} \right) \times R_{DS(ON)}
$$

\n
$$
V_{TRIP} = \left(I_{OCL} - \frac{(V_{IN} - V_O)}{2 \times L1 \times f_{SW}} \times \frac{V_O}{V_{IN}} \right) \times R_{DS(ON)}
$$
\n(12)

Where

 $R_{DS(ON)}$ = Low-side FET on-resistance $I_{TRIP(min)} = TRIP$ pin source current (8.5 µA) $V_{\text{OCl off}}$ = Minimum over current limit offset voltage (-20 mV)

 I_{OCI} = Over current limit

8.2.2.8 Choose Soft Start Capacitor

Soft-start time equation is as follows.

$$
C_{SS} = \frac{T_{SS} \times I_{SSC}}{V_{FB}}
$$

(13)

(10)

8.2.3 Application Curves (QFN)

9 Power Supply Recommendations

The devices are designed to operate from an input voltage supply range between 4.5 V and 24 V. This input supply must be well regulated. If the input supply is located more than a few inches from the TPS53124 device additional 0.1 µF ceramic capacitance may be required in addition to the ceramic bypass capacitors, 10 µF.

10 Layout

10.1 Layout Guidelines

- Keep the input switching current loop as small as possible. (VIN ≥ C3 ≥ PNGD ≥ Sync FET ≥ SW ≥ Control FET)
- Place the input capacitor (C3) close to the top switching FET. The output current loop should also be kept as small as possible.
- Keep the SW node as physically small and short as possible as to minimize parasitic capacitance and inductance and to minimize radiated emissions. Kelvin connections should be brought from the output to the feedback terminal (FBx) of the device.
- Keep analog and non-switching components away from switching components.
- Make a single point connection from the signal ground to power ground.
- Do not allow switching current to flow under the device.
- DRVH and DRVL line should not run close to SW node or minimize it.
- GND terminals for capacitors of SSx and V5FILT and resistors of feedback and TRIPx should be connected to SGND.
- GND terminals for capacitors of VREG5 and VIN should be connected to PGND.
- Signal lines should not run under/near output inductor or minimize it.

10.2 Layout Example

Figure 15. Layout Example for QFN

11 Revision History

12 Device and Documentation Support

12.1 Trademarks

DCAP is a trademark of Texas Instruments.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

[SLYZ022](http://www.ti.com/lit/pdf/SLYZ022) — *TI Glossary*.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

TEXAS

TAPE AND REEL INFORMATION

ISTRUMENTS

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Pack Materials-Page 1

www.ti.com www.ti.com 4-May-2023

PACKAGE MATERIALS INFORMATION

*All dimensions are nominal

TEXAS NSTRUMENTS

www.ti.com

www.ti.com 4-May-2023

TUBE

B - Alignment groove width

*All dimensions are nominal

PW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

This drawing is subject to change without notice. **B.**

 $\hat{\mathbb{C}}$ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

 $\hat{\mathbb{D}}$ Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: All linear dimensions are in millimeters. A.

- B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate design.
-
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

GENERIC PACKAGE VIEW

RGE 24 VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

PACKAGE OUTLINE

RGE0024B VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

EXAMPLE BOARD LAYOUT

RGE0024B VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

RGE0024B VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](https://www.ti.com/legal/terms-conditions/terms-of-sale.html) or other applicable terms available either on [ti.com](https://www.ti.com) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated