DUAL VIDEO 6dB AMPLIFIER WITH 75 Ω DRIVER

■ GENERAL DESCRIPTION

NJM2268 is a dual video 6dB amplifier with 75 Ω drivers for S-VHS VCRs, HI-BAND VCRs, etc..One channel has clamp function that fixes DC level of video signal and another one is bias type. Furthermore it has 75 Ω drivers to be connected to TV monitors directly and sag corrective circuits that prevent the generation of sag with smaller capacitance than ever.

Its operating supply voltage is 4.85 to 9V and bandwidth is 7MHz.

 V^{\dagger}

■ FEATURES

JRC

- Wide Operating Voltage (4.85 to 9.0V)
- Dual Channel (Clamp Type, Bias Type)
- Internal Driver Circuit For 75Ω Load
- SAG Corrective Function
- Wide Frequency Range 7MHz
- Low Operating Current 14.0mA (Dual)
- Package Outline DIP8, DMP8, SSOP8
- Bipolar Technology

RECOMMENDED OPERATING CONDITION

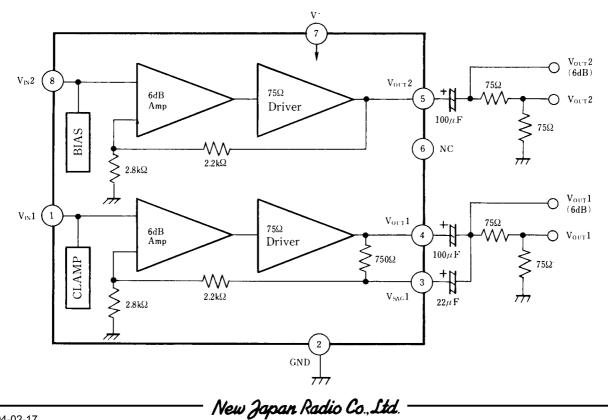
Operating Voltage

4.85 to 9.0V

■ APPLICATIONS

• VCR, Video Camera, TV, Video Disc Player

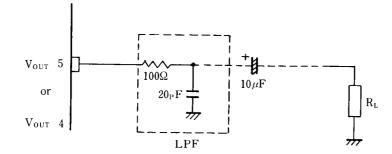
BLOCK DIAGRAM



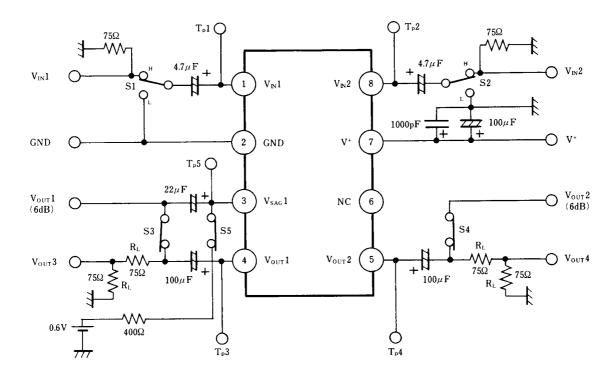
NJM2268D

NJM2268M

■ ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	RATINGS	UNIT				
Supply Voltage	V ⁺	10	V				
Power Dissipation	P _D	(DIP8) 500 (DMP8) 300 (SSOP8) 250	mW mW mW				
Operating Temperature Range	T _{opr}	-40 to +85	°C				
Storage Temperature Range	T _{stg}	-40 to +125	C°				


ELECTRICAL CHARACTERI	STICS				(V ⁺ =5V,	Ta=25°C)
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{CC}	No Signal	-	14.0	18.2	mA
Voltage Gain	Gv	V_{IN} =1MHz, 1 V_{P-P} Sinewave	5.7	6.2	6.7	dB
Frequency Characteristic	G _f	V_{IN} =1 V_{P-P} , Sinewave, 7MHz / 1MHz	-	-	±1.0	dB
Differential Gain*	DG	V _{IN} =1V _{P-P} , Staircase	-	1.0	3.0	%
Differential Phase*	DP	V_{IN} =1 V_{P-P} , Staircase	-	1.0	3.0	deg
Crosstalk	СТ	V_{IN} =4.43MHz, 1 V_{P-P} , Sinewave	-	-70	-	dB
Gain Offset	G _{CH}	V _{IN} =1MHz, 1V _{P-P} , G _{CH} =V _{OUT1} -V _{OUT2}	-	-	±0.5	dB
Input Clamp Voltage	VaL		1.79	1.91	2.03	V
Input Bias Voltage	V _{Bt}		2.56	2.84	3.12	V
SAG Terminal Gain	G _{SAG}		35	45	-	dB

NOTE: "*" is applied to clamp type input side only /

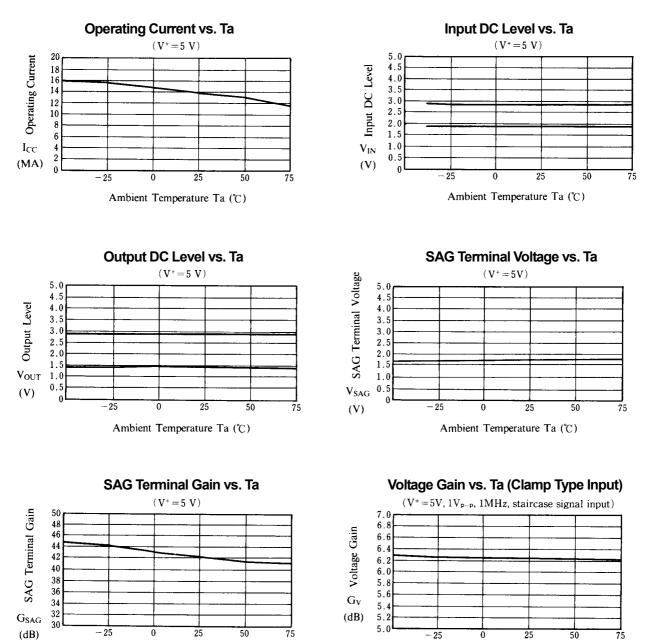

■ APPLICATION

Oscillation Prevention

It is much effective to insert LPF (Cutoff Frequency 70MHz) under light loading conditions (R_L » 1kΩ). This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

■ TEST CIRCUIT

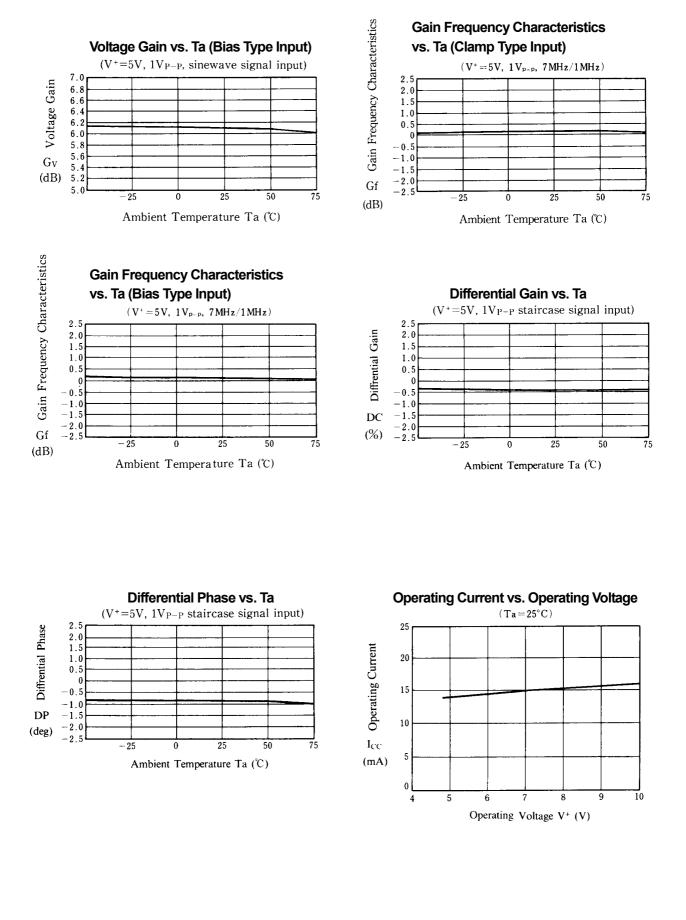
TEST METHODES

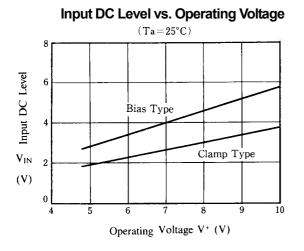

PARAMETER	SYMBOL	SWITCH CONDITIONS					;	CONDITIONS	
	OTMOOL	S1	S2	S3	S4	S5	S6	CONDITIONS	
Supply Current	Icc	Н	Н					7PIN Sink Current	
Voltage Gain	Gv	Н	Н	ON	ON			$V_{OUT1} / V_{IN1}, V_{OUT2} / V_{IN2}$ at $V_{IN1}(V_{IN2})=1MHz$, $1V_{P:P}$, Sinewave	
Frequency Characteristic	G _f	Н	Н	ON	ON			G_{V1M} ; Voltage Gain at V_{IN1} (V_{IN2})=1MHz, $1V_{\rm PP}$ G_{V10M} ; Voltage Gain at V_{IN1} (V_{IN2})=10MHz, $1V_{\rm PP}$ G_f = G_{V10M} - G_{V1M}	
Differential Gain	DG	Н	Н	ON	ON			Measuring V _{OUT3} at V _{IN1} =Staircase Signal	
Differential Phase	DP	Н	Н	ON	ON			Measuring VOUT3 at VIN1=Staircase Signal	
Crosstalk	СТ	Н	L	ON	ON			V_{OUT2} / V_{OUT1} at V_{IN1} =4.43MHz, 1V_PP, Sinewave V_{OUT1} / VIN2 at V_{IN2} =4.43MHz, 1V_PP, Sinewave	
Gain Offset	G _{CH}	Н	Н	ON	ON			G _{V1} =V _{OUT1} / V _{IN1} , G _{V2} =V _{OUT2} / V _{IN2} G _{CH} =G _{V1} -G _{V2}	
Input Clamp Voltage	V _{CL}	Н	Н					Measuring at TP1	
Input Bias Voltage	V _{Bt}	Н	Н					Measuring at TP2	
SAG Terminal Gain	G _{SAG}	H H	H H			ON	ON	$\label{eq:Voltage} TP3 \mbox{ Voltage; V}_{O1A}, TP5 \mbox{ Voltage; V}_{SO1A} \\ TP3 \mbox{ Voltage; V}_{O1B}, TP5 \mbox{ Voltage; V}_{SO1B} \\ G_{SAG} = 20 log \left\{ (V_{O1B} - V_{O1A}) / (V_{SO1A} - V_{SO1B}) \right\}$	

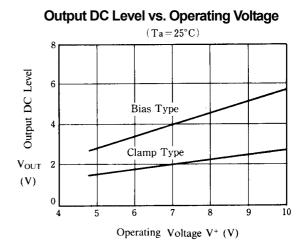
NJM2268

PIN No.	PIN NAME	SYMBOL	EQUIVALENT CIRCUIT	FUNCTIONS
1	Input Clamp Terminal	Vin1	V ⁺	Input terminal of 1V _{P-P} composite Signal or Y signal. Clamp level is 1.9V
2	GND	GND		Ground
3	SAG correction	V _{SAG1}	V	SAG caused by a coupling capacitor of the output can be prevented by connecting this terminal with the output terminal through an external capacitor.(see block diagram) When SAG correcting function is not necessary, this terminal must be connected with pin "4" directly.
4	Video Output1	Vout1	V ⁺ 2.2k 750 4 4	Output terminal (clamp side) that can drive 75Ω line.
5	Video Output2	Vout2	V ⁺ 3mA 5	Output terminal (bias side) that can drive 75Ω line.
6	No Connection	NC		
7	V ⁺	V ⁺		Supply Voltage
8	Input Clamp Terminal	V _{IN2}	V ⁺ 20k 300 20k 300 20k 4 250/c A	Input terminal of 1V _{PP} coler signal. Bias level is 2.8V.

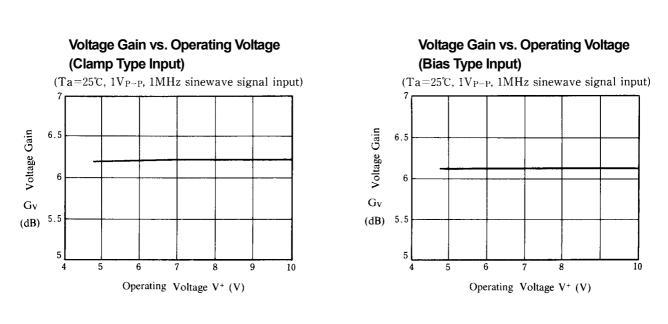
NJM2268

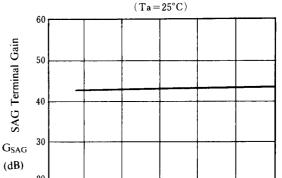

TYPICAL CHARACTERISTICS

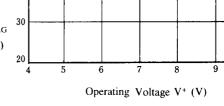

Ambient Temperature Ta (°C)


Ambient Temperature Ta (°C)

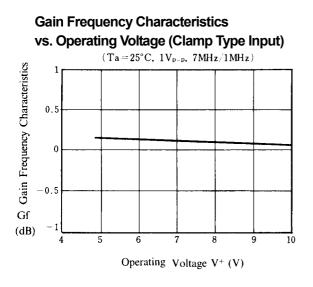
TYPICAL CHARACTERISTICS

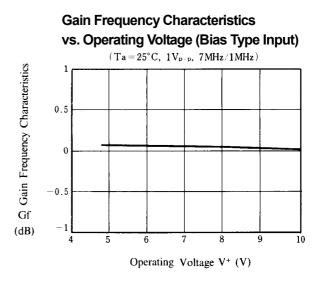


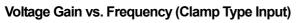

TYPICAL CHARACTERISTICS

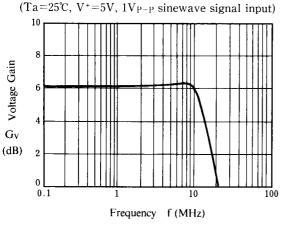


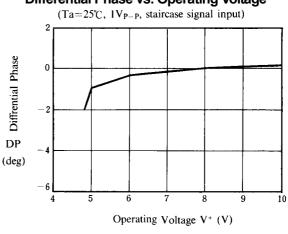
SAG Terminal Voltage vs. Operating Voltage $(Ta = 25^{\circ}C)$ 5 SAG Terminal Voltage 4 3 2 VSAG 1 (V) 0 10 5 6 7 8 9 Operating Voltage V⁺ (V)



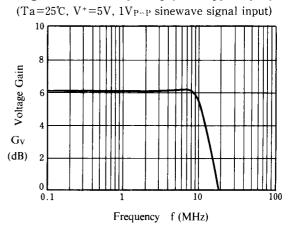

SAG Terminal Gain vs. Operating Voltage $(Ta = 25^{\circ}C)$

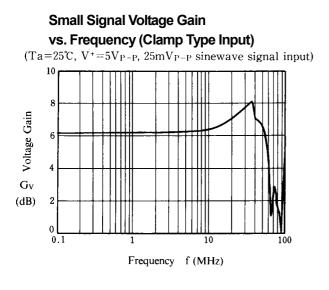

10

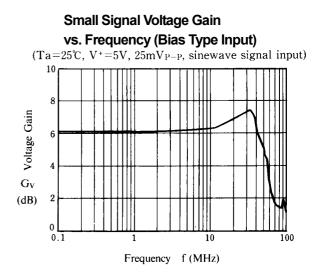

■ TYPICAL CHARACTERISTICS



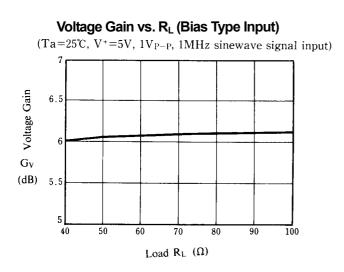
Differential Gain vs. Operating Voltage (Ta=25°C, 1V_{P-P}, staircase signal input) 2 Diffrential Gain - 2 DC (%) - 4 6 5 8 10 4 6 7 9 Operating Voltage V⁺ (V)



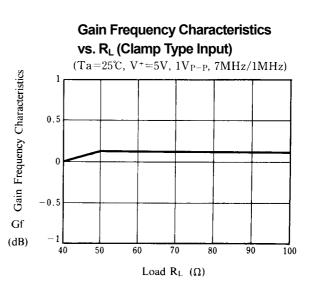

Differential Phase vs. Operating Voltage



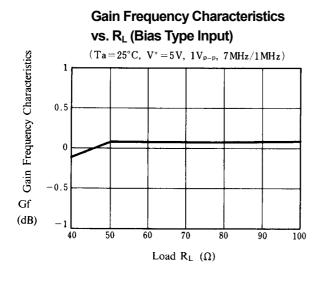
Voltage Gain vs. Frequency (Bias Type Input)

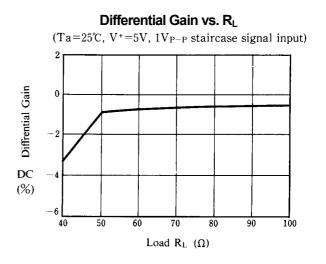


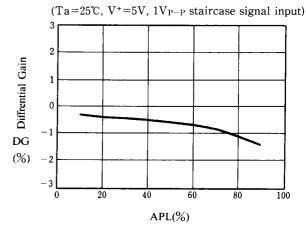
TYPICAL CHARACTERISTICS

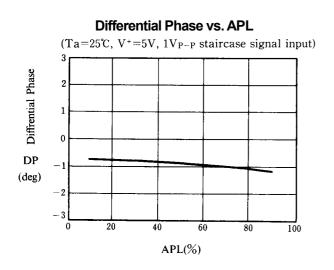


Cross Talk vs. Frequency (Ta=25°C, V⁺=5V, 1V_{P-P} sinewave signal input) y_{E} -20 -20 -20 -40 -40 -40 -40 -40 -40 -100

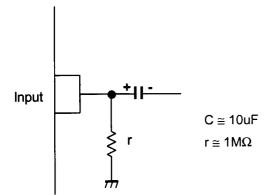



Voltage Gain vs. R_L (Clamp Type Input) (Ta=25°C, V⁺=5V, 1V_{P-P}, 1MHz, sinewave signal input)


■ TYPICAL CHARACTERISTICS



Differential Phase vs. R_L (Ta=25°C, V⁺=5V, 1V_{P-P}staircase signal input) Diffrential Phase 0 -2DC (deg) -4 - 6 50 60 70 40 80 90 100 Load R_L (Ω)



■ APPLICATION

This IC requires 1MΩ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

[CAUTION] The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.