TERASIC

USERMANUAL

XTS-FMC

Copyright © Terasic Inc. All Rights Reserved.

TABLE OF CONTENTS

Chapter 1	Introduction2
1.1 Features	2
1.2 The Pack	kage Contents
1.3 Assembl	e XTS-FMC with FPGA Main board
1.4 Getting I	Help5
Chapter 2	Board Specification6
2.1 Layout a	and Components
2.2 Block Di	iagram7
2.3 Mechani	cal Specifications
2.4 How to c	distinguish the board revision9
Chapter 3	Board Components11
3.1 FMC Ex	pansion Connector
3.2 2x6 TMI	D GPIO Expansion Header15
Chapter 4	Demonstrations
4.1 XTS-FM	IC Loopback on the TR517
4.2 XTS-FM	IC Loopback on the Han Pilot Platform20
4.3 XTS-FM	IC SuperLite Loopback on the Han Pilot Platform23
Appendix	27

Revision History	27
------------------	----

1

www.terasic.com

Chapter 1 *Introduction*

The XTS-FMC daughter card is designed to convert FPGA transceiver channels to SMA connectors through a FPGA Mezzanine Card(FMC) interface. It is intended to allow users to evaluate the performance of transceiver-based host boards with FMC interface specifically the Stratix, Arria and Cyclone FPGA with integrated transceivers. Through the SMA connectors, the FPGA transceiver signals can be easily connected to measurement instruments as well as allowing gigabit data rate communication between multiple FPGA boards.

The XTS-FMC daughter card is the ideal platform to allow users to prototype and test their high-speed interfaces quickly and easily in support of transceiver performance for jitter, protocol compliance, and equalization.

1.1 Features

Figure 1-1 shows the photo of the XTS-FMC card. The important functions of the XTS-FMC card are listed below:

- Convert FPGA transceiver channels to SMA connectors through FMC connector
- Support maximum 4 transceiver channels (Depend on the FPGA host board)
- SMA connectors for external clock input
- Two 2x6 TMD(Terasic Mini Digital) Expansion Headers (since board version Rev.C)

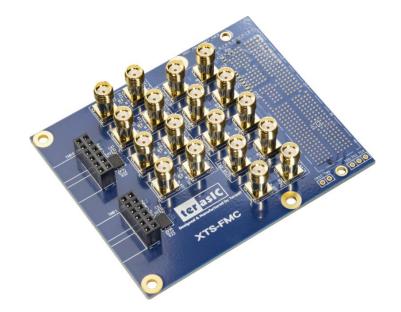


Figure 1-1 The XTS-FMC Card.

XTS-FMC User Manual 2

1.2 The Package Contents

The XTS-FMC kit comes with the following items (see Figure 1-2):

- 1. **XTS-FMC** Daughter Card
- 2. Screw & Copper Pillar Package
- 3. CD Download Guide

The system CD contains technical documents of the XTS-FMC card, which include component datasheets, demonstrations, schematic and user manual. Users can download the CD from the link below:

http://xts-fmc.terasic.com/cd

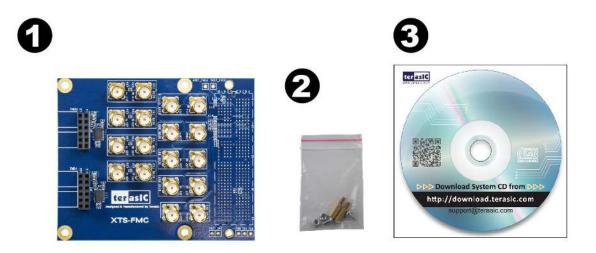


Figure 1-2 The contents of the XTS-FMC card.

1.3 Assemble XTS-FMC with FPGA Main board

In order to make the XTS-FMC daughter card and the FMC connector on the FMC card with more secure hookup, the FMC side of the XTS-FMC daughter card has reserved two screw holes, as shown in Figure 1-3. Users can use the screws, copper pillars, and nuts that come with the XTS-FMC, to secure the XTS-FMC on the FPGA main board, as shown in Figure 1-4. Because transceiver is mostly used for high-speed transmission applications, we strongly recommend that users use the screws to secure the connection between the FPGA main board and the XTS-FMC card.

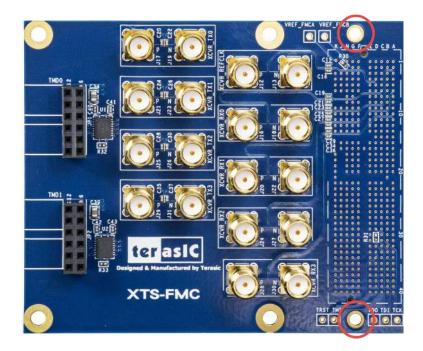


Figure 1-3 The two screw holes on XTS-FMC card.

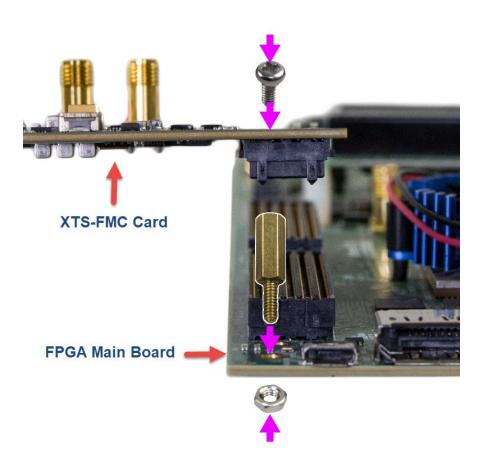


Figure 1-4 Secure the XTS-FMC on the FPGA main board

XTS-FMC User Manual 4

www.terasic.com

1.4 Getting Help

Here are the addresses where you can get help if you encounter any problems: Terasic Technologies 9F., No.176, Sec.2, Gongdao 5th Rd, East Dist, Hsinchu City, 30070. Taiwan Email: support@terasic.com Tel.: +886-3-575-0880 Website: xts-fmc.terasic.com

www.terasic.com

Chapter 2 *Board Specification*

This chapter describes the architecture of the XTS card including block diagram and components.

2.1 Layout and Components

The picture of the XTS-FMC card is shown in **Figure 2-1** and **Figure 2-2**. It depicts the layout of the board and indicates the locations of the connectors and key components.

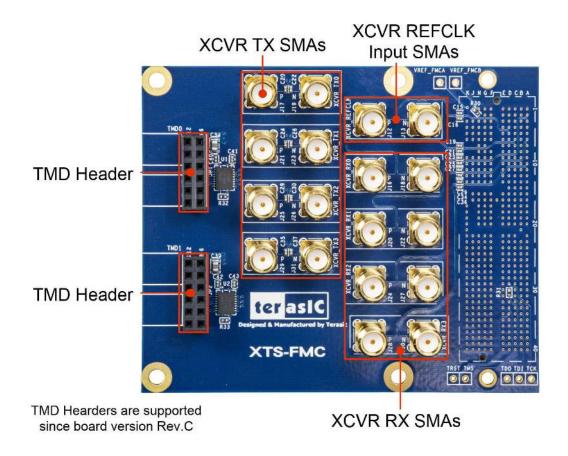


Figure 2-1 Mechanical Layout of the XTS-FMC card

www.terasic.com

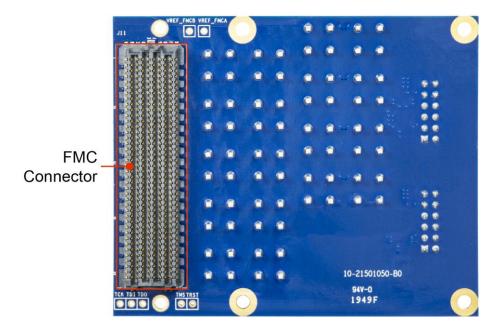


Figure 2-2 Mechanical Layout of the XTS-FMC card

The following components are provided on the XTS-FMC card:

- FMC expansion connector (J11)
- TX SMAs (J17/J19,J21/J23,J25/J26,J29/J31)
- RX SMAs (J16/J18,J20/J22,J24/J27,J28/J30)
- XCVR reference input SMAs (J12/J13)
- TMD Headers(JP1/JP2)

2.2 Block Diagram

Figure 2-3 is the block diagram of the XTS-FMC card.

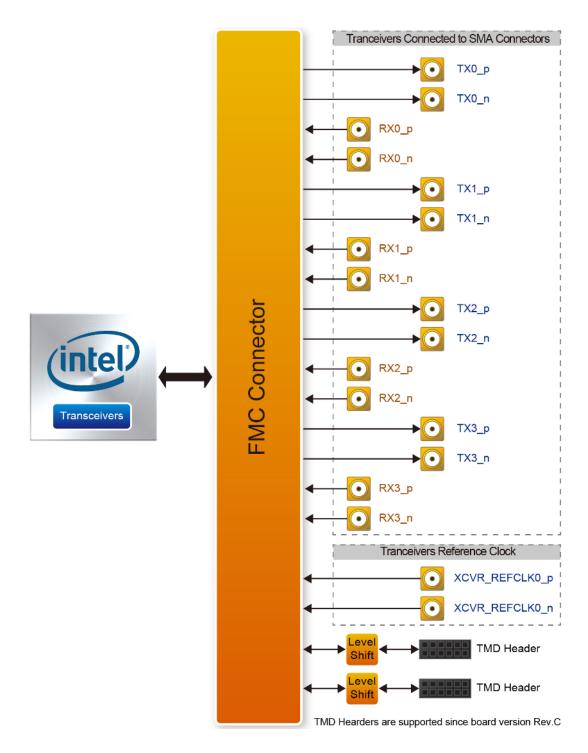


Figure 2-3 Block diagram of the XTS-FMC card

2.3 Mechanical Specifications

Figure 2-3 is the mechanical layout of the XTS-FMC board.

terasic XTS-FMC User Manual 8

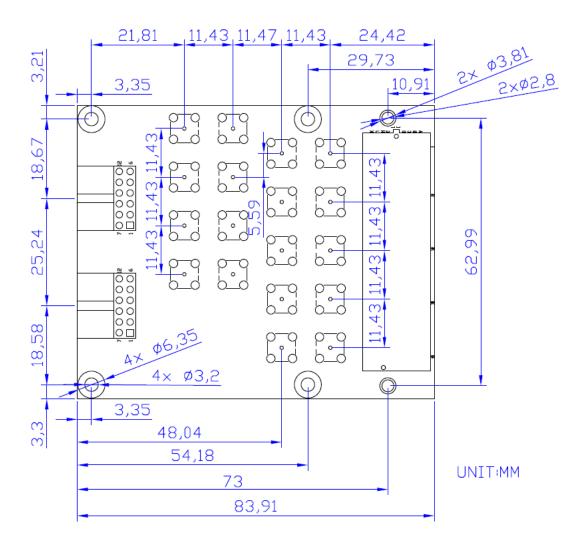


Figure 2-4 The mechanical layout of the XTS-FMC card

2.4 How to distinguish the board revision

On the bottom view of the PCB, there is a seal mark for the board hardware version. As shown in the figure below, if the letter inside the red circle is "B", it means that the PCB version is Rev. B.

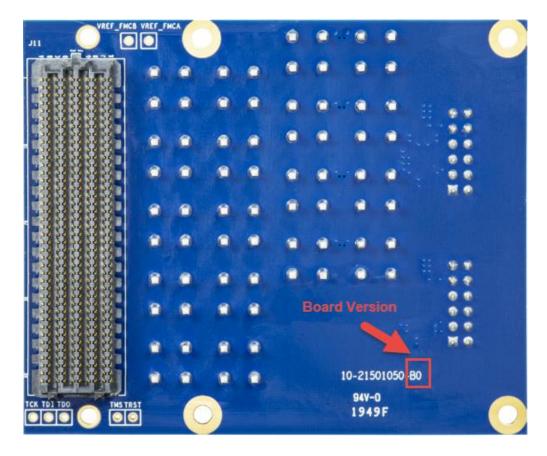


Figure 2-5 The mechanical layout of the XTS-FMC card

Chapter 3 Board Components

This chapter will describe the detailed information of the components, connector interface, and the pin mappings on the XTS-FMC card.

3.1 FMC Expansion Connector

The XTS-FMC card contains an FPGA Mezzanine Card (FMC) connector. All the other interfaces on the XTS-FMC card are connected to the FMC connector. Figure 3-1, Figure 3-2, Figure 3-4, and show the pin-outs of the FMC connector and Table 3-1 lists the description of each signals corresponding to the FMC connector.

		J11D	1	1 and	
XCVR_TX0_p	C2 ,	DP C2M P0	DP M2C P0	C6	XCVR_RX0_p
XCVR_TX0_n	C3		DP M2C P0	C7	XCVR_RX0_n
XCVR_TX1_p	A22	DP_C2M_N0 DP_C2M_P1	DP M2C P1	A2	XCVR_RX1_p
XCVR_TX1_n	A23	DP C2M N1	DP M2C PI	A3	XCVR_RX1_n
XCVR_TX2_p	A26	DP C2M P2	DP M2C P2	A6	XCVR_RX2_p
XCVR_TX2_n	A27	DP C2M N2	DP M2C N2	A7	XCVR_RX2_n
XCVR_TX3_p	A30	DP C2M P3	DP M2C P3	A10	XCVR RX3 p
XCVR_TX3_n	A31	DP C2M N3	DP M2C N3	A11	XCVR_RX3_n
		DF_CZM_N5	DF_WZG_WS	1000	
	× A34	DP C2M P4	DP M2C P4	A14	
	A35	DP C2M N4	DP M2C N4	A15 ×	
	A38	DP C2M P5	DP M2C P5	A18 ×	
	A39 B36	DP C2M N5	DP M2C N5	A19	
	× B30 B37	DP C2M P6	DP M2C P6	B16 B17	
	× B37	DP C2M N6	DP M2C N6	B12	
	B33	DP C2M P7	DP M2C P7	B13	
	X DOD	DP_C2M_N7	DP_M2C_N7	BISX	
	B28		55 M00 50	B8 🗸	
	C B29	DP_C2M_P8	DP_M2C_P8	B9 ×	
	C B24	DP_C2M_N8 DP_C2M_P9	DP_M2C_N8	D4 V	
	C B25	DP_C2M_P9 DP_C2M_N9	DP_M2C_P9 DP_M2C_N9	D3 V	
	C K22	DP C2M P10/HB TX P8	DP M2C P10/HA TX P8	N4 V	
	C K23	DP C2M N10/HB TX N8	DP M2C N10/HA TX N8	K5 X	
	C K25	DP C2M P11/HB RX P8	DP M2C P11/HA RX P8	N	
	× K26	DP C2M N11/HB RX N8	DP M2C N11/HA RX N8	K8 🔶	
	VK28			K10 V	
	× K20	DP C2M P12/HB TX P9	DP M2C P12/HA TX P9	K11	
	× K31	DP C2M N12/HB TX N9	DP M2C N12/HA TX N9	K13	
	× K32	DP_C2M_P13/HB_RX_P9	DP_M2C_P13/HA_RX_P9	K14	
	× K34	DP_C2M_N13/HB_RX_N9	DP_M2C_N13/HA_RX_N9	K16	
	× K35	DP_C2M_P14/HB_TX_P10	DP_M2C_P14/HA_TX_P10	K17 X	
	K37	DP_C2M_N14/HB_TX_N10	DP_M2C_N14/HA_TX_N10	K19	
	× K38	DP_C2M_P15/HB_RX_P10	DP_M2C_P15/HA_RX_P10	K20	
	XIII	DP_C2M_N15/HB_RX_N10	DP_M2C_N15/HA_RX_N10	X	
				1. C	

Figure 3-1 Signal names of XTS-FMC connector part 1

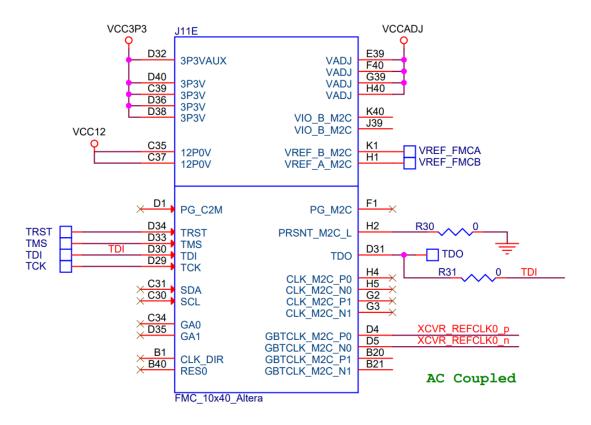


Figure 3-2 Signal names of XTS-FMC connector part 2



Figure 3-3 Signal names of XTS-FMC connector part 3

12

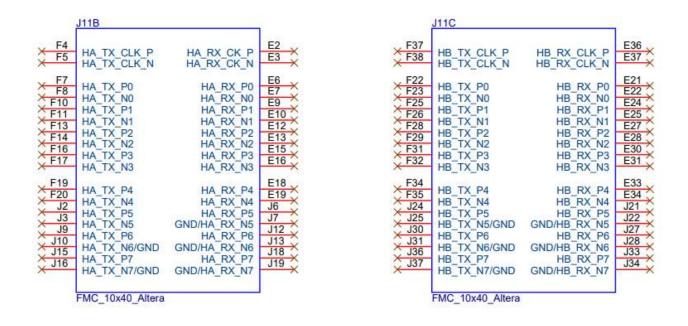


Figure 3-4 Signal names of XTS-FMC connector part 4

Signal Name	FMC Pin	Direction	FMC Pin	I/O Standard	Description
	No.				
XCVR_TX0_p	PIN_C2	Output	DP_C2M_P0	1.4-V PCML	SMA Transceiver
					Output Port0, connected
					to J17(SMA)
XCVR_TX0_n	PIN_C3	Output	DP_C2M_N0	1.4-V PCML	SMA Transceiver
					Output Port0, connected
					to J19(SMA)
XCVR_TX1_p	PIN_A22	Output	DP_C2M_P1	1.4-V PCML	SMA Transceiver
					Output Port1, connected
					to J21(SMA)
XCVR_TX1_n	PIN_A23	Output	DP_C2M_N1	1.4-V PCML	SMA Transceiver
					Output Port1, connected
					to J23(SMA)
XCVR_TX2_p	PIN_A26	Output	DP_C2M_P2	1.4-V PCML	SMA Transceiver
					Output Port2, connected
					to J25(SMA)
XCVR_TX2_n	PIN_A27	Output	DP_C2M_N2	1.4-V PCML	SMA Transceiver
					Output Port2, connected
					to J26(SMA)
XCVR_TX3_p	PIN_A30	Output	DP_C2M_P3	1.4-V PCML	SMA Transceiver

 Table 3-1 FMC Pin Assignments

www.terasic.com

					Output Port3, connected to J29(SMA)
XCVR_TX3_n	PIN_A31	Output	DP_C2M_N3	1.4-V PCML	SMA Transceiver Output Port3, connected to J31(SMA)
XCVR_RX0_p	PIN_C6	Input	DP_M2C_P0	1.4-V PCML	SMA Transceiver Input Port0, connected to J16(SMA)
XCVR_RX0_n	PIN_C7	Input	DP_M2C_N0	1.4-V PCML	SMA Transceiver Input Port0, connected to J18(SMA)
XCVR_RX1_p	PIN_A2	Input	DP_M2C_P1	1.4-V PCML	SMA Transceiver Input Port1, connected to J20(SMA)
XCVR_RX1_n	PIN_A3	Input	DP_M2C_N1	1.4-V PCML	SMA Transceiver Input Port1, connected to J22(SMA)
XCVR_RX2_p	PIN_A6	Input	DP_M2C_P2	1.4-V PCML	SMA Transceiver Input Port2, connected to J24(SMA)
XCVR_RX2_n	PIN_A7	Input	DP_M2C_N2	1.4-V PCML	SMA Transceiver Input Port2, connected to J27(SMA)
XCVR_RX3_p	PIN_A10	Input	DP_M2C_P3	1.4-V PCML	SMA Transceiver Input Port3, connected to J28(SMA)
XCVR_RX3_n	PIN_A11	Input	DP_M2C_N3	1.4-V PCML	SMA Transceiver Input Port3, connected to J30(SMA)
XCVR_REFCL K0_p	PIN_D4	Input	GBTCLK_M2C _P0	LVDS	External reference clock input, connected to J12(SMA)
XCVR_REFCL K0_n	PIN_D5	Input	GBTCLK_M2C _N0	LVDS	External reference clock input, connected to J13(SMA)
TMD_D0	PIN_H7	Inout	LA_TX_P0	3.3V	JP1 TMD GPIO Connection [0]
TMD_D1	PIN_H8	Inout	LA_TX_N0	3.3V	JP1 TMD GPIO Connection [1]
TMD_D2	PIN_H10	Inout	LA_TX_P1	3.3V	JP1 TMD GPIO Connection [2]
TMD_D3	PIN_H11	Inout	LA_TX_N1	3.3V	JP1 TMD GPIO Connection [3]

www.terasic.com

N_D11 Inou	t LA_TX_P2	3.3V	JP1 TMD GPIO
			Connection [4]
N_D12 Inou	t LA_TX_N2	3.3V	JP1 TMD GPIO
			Connection [5]
N_H13 Inou	t LA_TX_P3	3.3V	JP1 TMD GPIO
			Connection [6]
N_H14 Inou	t LA_TX_N3	3.3V	JP1 TMD GPIO
			Connection [7]
N_G9 Inou	t LA_RX_P0	3.3V	JP2 TMD GPIO
			Connection [0]
N_G10 Inou	t LA_RX_N0	3.3V	JP2 TMD GPIO
			Connection [1]
N_C10 Inou	t LA_RX_P1	3.3V	JP2 TMD GPIO
			Connection [2]
N_C11 Inou	t LA_RX_N1	3.3V	JP2 TMD GPIO
			Connection [3]
N_G12 Inou	t LA_RX_P2	3.3V	JP2 TMD GPIO
			Connection [4]
N_G13 Inou	t LA_RX_N2	3.3V	JP2 TMD GPIO
			Connection [5]
N_C14 Inou	t LA_RX_P3	3.3V	JP2 TMD GPIO
			Connection [6]
N_C15 Inou	t LA_RX_N3	3.3V	JP2 TMD GPIO
			Connection [7]
	N_D12 Inou N_H13 Inou N_H14 Inou N_G9 Inou N_G10 Inou N_C11 Inou N_G12 Inou N_C14 Inou	N_D12InoutLA_TX_N2N_H13InoutLA_TX_P3N_H14InoutLA_TX_N3N_G9InoutLA_RX_P0N_G10InoutLA_RX_N0N_C10InoutLA_RX_N1N_G12InoutLA_RX_P2N_G13InoutLA_RX_N2N_C14InoutLA_RX_P3	N_D12InoutLA_TX_N23.3VN_H13InoutLA_TX_P33.3VN_H14InoutLA_TX_N33.3VN_G9InoutLA_RX_P03.3VN_G10InoutLA_RX_N03.3VN_C10InoutLA_RX_P13.3VN_G12InoutLA_RX_P23.3VN_G13InoutLA_RX_N23.3VN_C14InoutLA_RX_P33.3V

3.2 2x6 TMD GPIO Expansion Header

The board has two 2x6 TMD (Terasic Mini Digital) expansion headers. The TMD header has 8 digital GPIO user pins connected to the FMC connector, two 3.3V power pins and two ground pins. In addition, a voltage level shift is left between the TMD and the FMC connector to allow the various VCCIO voltage level of different FPGA motherboards to be converted to 3.3v to the TMD header. Figure 2 24 shows the connection between the TMD header and FMC connector.

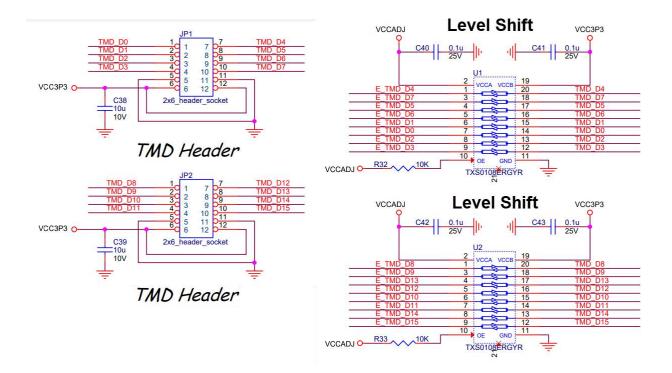


Figure 3-5 SMA loopback setup

Chapter 4 *Demonstrations*

This chapter illustrates the transcevier loopback reference design for the XTS-FMC card.

4.1 XTS-FMC Loopback on the TR5

The transceiver test code is used to verify 4 transceiver channels of the FMC connector through the XTS-FMC card and SMA cables. The transceiver channels are verified with PRBS31 test pattern and with the data rates. For 5SGXEA7N2F45C2 Device of the TR5 board, the data rate of the transceiver channel on the FMC connector runs at 12.5G bps.

Required Equipments

To enable an external loopback of transceiver channels, the following fixtures are required:

- TR5 board and XTS-FMC card.
- 8 SMA cables for loopback the TX and RX port on the XTS-FMC card.

Demonstration Setups

The transceiver test code is available in the folder System CD\Demonstrations\TR5\demo_batch. Here are the procedures to perform transceiver channel test:

1. Use the SMA cables to connect the TX ports and the RX ports on the XTS-FMC card to implement the loopback function (See **Figure 4-1**, **Figure 4-2**). There are four channels in total, note the difference between positive and negative ports.



Figure 4-1 SMA loopback setup

XTS-FMC User Manual www.terasic.com

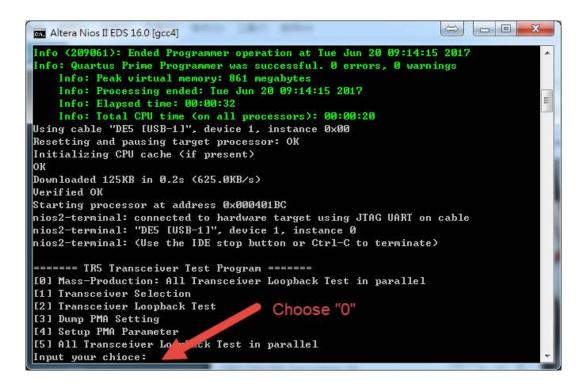

2. Connect the XTS-FMC card to the FMC D or FMC A connector of the TR5 board. Make sure the FMC connector between the two boards is locked with copper posts and screws (See section 1.3).

Figure 4-2 The Connections between the XTS-FMC card and TR5 board

- 3. Connect your TR5 board to your PC with a mini USB cable.
- 4. Connect Power to the TR5 board.
- 5. Copy the demo_batch folder (from System CD) to your local disk.
- 6. Power on the TR5 board.
- 7. Execute 'test.bat" in the demo_batch folder under your local disk.
- 8. The batch file will download .sof and .elf files, and start the test. The Nios-Terminal as shown in **Figure 4-3** will appear and choose "0" to test all the transceiver loopback test.

Figure 4-3 Choose the Test function

9. Then enter how many seconds you want to test the transmission (See Figure 4-4). For example, enter "60" for test 60 second.

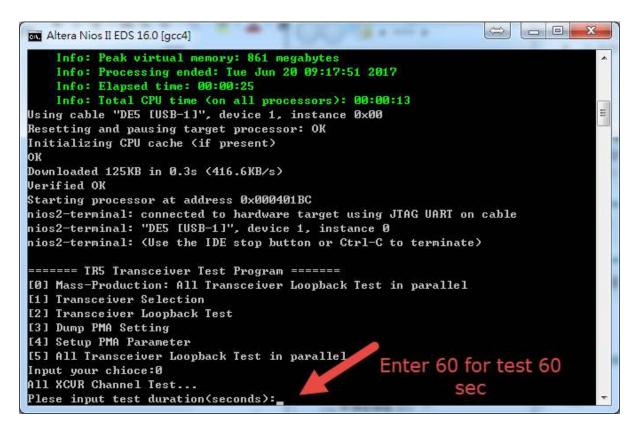


Figure 4-4 Choose test duration

10. The test result will be displayed after the test time has elapsed (See Figure 4-5). It should be noted that this test code will test all the transceivers of the FMC A and FMC D connectors on the TR5 board (8 pairs of transceivers for each connector). Since XTS-FMC card can only test 4 pairs of transceivers. So the test result will only show the first four transceivers (0~3) of FMC A or FMC D are PASS or NG. Other transceiver test results can be ignored.

FMCB_XCVR_0=NG
FMCD_XCUR_Ø=PASS
FMCD_XCUR_1=PASS FMCD_XCUR_2=PASS
FMCD_XCVR_2=FH88 FMCD_XCVR_3=PASS
FMCD_XCVR_4=NG
FMCD_XCVR_5=NG
FMCD_XCVR_6=NG
FMCD_XCVR_7=NG
FMCD_XCVR_8=NG
FMCD XCUR 9=NG

Figure 4-5 The test result of the transceiver loopback

4.2 XTS-FMC Loopback on the Han Pilot Platform

This section describes the use of the XTS-FMC card to test the FPGA's transceiver loopback on the HAN pilot platform. The basic operation is roughly the same as section 4.1, except that the FPGA board is replaced. The following is a detailed test procedure.

Required Equipments

To enable an external loopback of transceiver channels, the following fixtures are required:

- HAN Pilot Platform and XTS-FMC card.
- 8 SMA cables for loopback the TX and RX ports on the XTS-FMC card.

Demonstration Setups

The transceiver test code is available in the folder System CD\Demonstrations\HAN\XCVT loopback. Here are the procedures to perform transceiver channel test:

- 1. Use the SMA cables to connect the TX ports and the RX ports on the XTS-FMC card to implement the loopback function (See Figure 4-6).
- 2. Connect the XTS-FMC card to the FMC connector of the HAN Pilot Platform board. Make sure the FMC connector between the two boards is locked with copper posts and screws (See section **1.3**).

Figure 4-6 The Connections between the XTS-FMC and HAN Pilot Platform board

- 3. Connect your HAN board to your PC with a mini USB cable.
- 4. Connect Power to the HAN Pilot Platform board.
- 5. Copy the demo_batch folder (from System CD) to your local disk.
- 6. Power on the HAN Pilot Platform board.
- 7. Execute 'test.bat" in the demo_batch folder under your local disk.
- 8. The batch file will download .sof and .elf files, and start the test in the Nios-Terminal as shown in **Figure 4-7**. When the menu option appears, you can choose 0 for starting test. The program will automatically start the test and report the test results every five seconds until the user closes the window (see **Figure 4-8**).

21

Altera Nios II EDS 18.0 [acc4] × _ Info: Quartus Prime Programmer was successful. 0 errors, 0 warnings Info: Peak virtual memory: 5218 megabytes Info: Processing ended: Thu Apr 25 16:50:22 2019 Info: Elapsed time: 00:00:25 Info: Total CPU time (on all processors): 00:00:12 Using cable "DE10-Advanced [USB-1]", device 1, instance 0x00 Peactting and pausing target processor: 0K Resetting and pausing target processor: OK Initializing CPU cache (if present) OK Downloaded 126KB in 0.1s Verified OK Starting processor at address 0x00040244 nios2-terminal: "DE10-Advanced [USB-1]", device 1, instance 0 nios2-terminal: "Use the IDE stop button or Ctrl-C to terminate) ======= Transceiver Test Program ======= [0]Test with default settings. Press any key on the board to abort testing. 1]Test with default settings in given time duration 2]Test with current settings. Press any key on the board to abort testing. [3]Dump current settings [4]Apply default settings 99: Quit Please input your selection:

Altera Nios II EDS 18.0 [gcc4]	- 🗆	Х
XTS_FMC_x4-3: PASS, XferCnt:14016478976		^
===== Time Elapsed: 1 Minutes 15 Seconds =====		
XTS FMC x4-0: PASS, XferCnt:15026130560		
XTS_FMC_x4-1: PASS, XferCnt:15026306688		
XTS_FMC_x4-2: PASS, XferCnt:15026441984		
XTS_FMC_x4-3: PASS, XferCnt:14993065600		
===== Time Elapsed: 1 Minutes 20 Seconds =====		
XTS FMC x4-0: PASS, XferCnt:16002717184		
XTS_FMC_x4-1: PASS, XferCnt:16002894336		
XTS_FMC_x4-2: PASS, XferCnt:16003027328		
XTS_FMC_x4-3: PASS, XferCnt:15969652096		
===== Time Elapsed: 1 Minutes 25 Seconds =====		
XTS_FMC_x4-0: PASS, XferCnt:16979205888		
XTS_FMC_x4-1: PASS, XferCnt:16979384448		
XTS_FMC_x4-2: PASS, XferCnt:16979518592		
XTS_FMC_x4-3: PASS, XferCnt:16946142080		
===== Time Elapsed: 1 Minutes 30 Seconds =====		
XTS_FMC_x4-0: PASS, XferCnt:17955792384		
XTS_FMC_x4-1: PASS, XferCnt:17955970816		
XTS_FMC_x4-2: PASS, XferCnt:17956105088		
XTS_FMC_x4-3: PASS, XferCnt:17922728448		
===== Time Elapsed: 1 Minutes 35 Seconds =====		
XTS_FMC_x4-0: PASS, XferCnt:18932379008		
XTS_FMC_x4-1: PASS, XferCnt:18932557696		
XTS_FMC_x4-2: PASS, XferCnt:18932691712		
XTS_FMC_x4-3: PASS, XferCnt:18899315328		
		\sim

Figure 4-8 Test result

4.3 XTS-FMC SuperLite Loopback on the Han Pilot

Platform

This section also describes the use of the XTS-FMC card to test the FPGA's RX/TX transceiver loopback on the HAN pilot platform, this XTS-FMC SuperLite Loopback demonstration is created based on Intel High Speed Transceiver Demo Designs, we ported it to HAN Pilot Platform combined with XTS-FMC card, the data rate of the transceiver channel on the FMC connector runs at 12.5Gbps.

User can refer to A10GX_SIBoard_SuperliteII_V3_4_lanes_10Gbps_QSFP+.pdf document in the folder:

System CD\Demonstrations\HAN\A10GX_SIBoard_SuperliteII_V3_4_lanes_10Gbps_QSFP+.pdf f or detail description.

Demonstration Setups

The transceiver test code is available in the folder System CD\Demonstrations\HAN\ SuperLite Loopback\demo_batch. Here are the procedures to perform transceiver channel test:

- 1. Use the SMA cables to connect the TX ports and the RX ports on the XTS-FMC card to implement the loopback function (See Figure 4-9).
- Connect the XTS-FMC card to the FMC connector of the HAN Pilot Platform board. Make sure the FMC connector between the two boards is locked with copper posts and screws (See section 1.).

Figure 4-9 The Connections between the XTS-FMC and HAN Pilot Platform board

- 3. Connect your HAN board to your PC with a mini USB cable.
- 4. Connect Power to the HAN Pilot Platform board.
- 5. Copy the demo_batch folder (from System CD) to your local disk.
- 6. Power on the HAN Pilot Platform board.
- 7. Execute 'test.bat" in the demo_batch folder under your local disk.
- 8. The batch file will download .sof and .elf files, and start the test in the Nios-Terminal as shown in Figure 4-10. When the menu option appears, use can choose C to start the test, if the Nios-Terminal shows '0' all the time, it means that the loopback test is passed without error.

Altera Nios II ED	16.1 [gcc4]	
Select Action		
1. Set all char	nels back to default and toggle Reset	t
2. Force Re-Al:	gnment on Rx Path	
3. Select Chanr		
4. Show/Control	Transceiver PMA Settings on Links	
5. Insert Biter	rors on Link (4 at a time)	
6. Reset Error(ounter	
7. Show Status		
8. Control Ser:	al loopback	
C. Refresh BER	every 1 seconds	
D. Input new Bl	R Time Interval	
	iver PMA Settings on all channels	
G. Input new Ey	eqInterval time	
S. Store all cl	annel information in memory of Select	ted Channel
T. Store and co	mpare with values stored in process §	S
X. Toggle XOFF	to partner to stop/start sending traf	ffic at remote side
Z. Dump channe:	content of selected channel	
O. Perform ODI	on selected channel	
0. Stop Test		
Enter Choice	•c	
Show BER + Erro	rCount every 1 seconds	
Press any key 🖞	Enter to stop the loop	
	================================	
Link : BER	: 0	
Link : BER	: 0	
Link : BER	: 0	
Link : BER	: 0	
Link : BER	: 0	
Link : BER	: 0	
Link : BER	: 0	
Link : BER	: 0	

Figure 4-10 Start the test in the Nios-Terminal

9. The signal XCVR quality depends on the device (such as scope, SMA cables) which is connected to the XCVR REFCLK Input SMA connector, user needs to modify the PMA parameters. Choose the action 3 (Select Channel to Control) in the Nios-Terminal to change channel, then choose action 4 (Show/Control Transceiver PMA Settings on Links) to modify the PMA parameters. Based on our actual experiment, we provided a group of PMA parameters as shown in Table 4-1, user can modify the PMA parameters by referring the values in.

VOD	29
PostTap	-9
PreTap	-1
other	Default

Table 4-1 PMA parameters based on our actual experiment

www.terasic.com

Appendix

Revision History

Version	Change Log
V1.0	Initial Version (Preliminary)
V1.1	Add section 2.3
V1.2	Add section 4.3
V2.0	Modify by XTS-FMC Rev B board
V3.0	Add TMD header for rev.C board

Copyright © Terasic Inc. All rights reserved.

27