

54F/74F253 **Dual 4-Input Multiplexer with TRI-STATE® Outputs**

General Description

The 'F253 is a dual 4-input multiplexer with TRI-STATE® outputs. It can select two bits of data from four sources using common select inputs. The output may be individually switched to a high impedance state with a HIGH on the respective Output Enable (OE) inputs, allowing the outputs to interface directly with bus oriented systems.

Features

- Multifunction capability
- Non-inverting TRI-STATE outputs
- Guaranteed 4000V minimum ESD protection

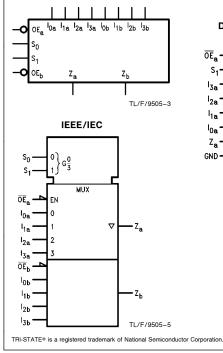
Commercial	Military	Package Number	Package Description
74F253PC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line
	54F253DM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line
74F253SC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC
74F253SJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F253FM (Note 2)	W16A	16-Lead Cerpack
	54F253LL (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

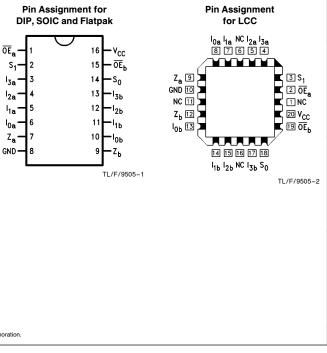
Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

ŌF

١3,


1₂₈

l_{1a}


 I_{0a}

Z.

Logic Symbols

Connection Diagrams

© 1995 National Semiconductor Corporation TL/F/9505 RRD-B30M75/Printed in U. S. A.

54F/74F253 Dual 4-Input Multiplexer with TRI-STATE Outputs

Unit Loading/Fan Out

		54F/74F			
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
I _{0a} –I _{3a}	Side A Data Inputs	1.0/1.0	20 µA/−0.6 mA		
I _{0b} -I _{3b}	Side B Data Inputs	1.0/1.0	$20 \mu \text{A} / -0.6 \text{mA}$		
$S_0 - S_1$	Common Select Inputs	1.0/1.0	20 µA/ - 0.6 mA		
<u>OE</u> a '	Side A Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \text{A} / -0.6 \text{mA}$		
$\frac{S_0 - S_1}{OE_a}$	Side B Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \text{A} / -0.6 \text{mA}$		
Z _a , Ž _b	TRI-STATE Outputs	150/40(33.3)	-3 mÁ/24 mA (20 mA)		

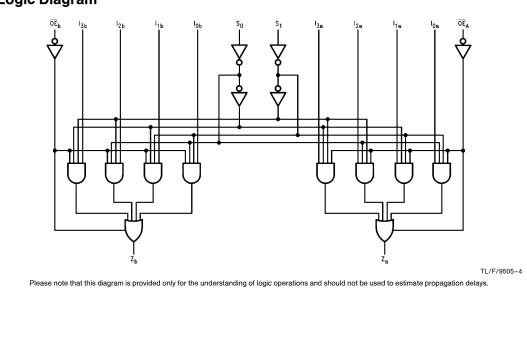
Functional Description

This device contains two identical 4-input multiplexers with TRI-STATE outputs. They select two bits from four sources selected by common Select inputs (S₀, S₁). The 4-input multiplexers have individual Output Enable (\overline{OE}_a , \overline{OE}_b) inputs which, when HIGH, force the outputs to a high impedance (High Z) state. This device is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two select inputs. The logic equations for the outputs are shown below:

$$\begin{split} Z_a &= \overline{OE}_a \bullet (I_{0a} \bullet \overline{S}_1 \bullet \overline{S}_0 + I_{1a} \bullet \overline{S}_1 \bullet S_0 + \\ I_{2a} \bullet S_1 \bullet \overline{S}_0 + I_{3a} \bullet S_1 \bullet S_0) \end{split}$$
 $Z_b = \overline{OE}_b \bullet (I_{0b} \bullet \overline{S}_1 \bullet \overline{S}_0 + I_{1b} \bullet \overline{S}_1 \bullet S_0 + I_{2b} \bullet S_1 \bullet S_0 + I_{3b} \bullet S_1 \bullet S_0)$

If the outputs of TRI-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to TRI-STATE devices whose outputs are tied together are designed so that there is no overlap.

Logic Diagram



	Select Inputs		Data I	nputs	5	Output Enable	Output	
S ₀	S ₁	l ₀ l ₁ l ₂ l ₃		ŌĒ	Z			
х	Х	Х	Х	Х	Х	Н	Z	
L	L	L	Х	Х	Х	L	L	
L	L	н	Х	Х	Х	L	н	
н	L	X	L	Х	Х	L	L	
н	L	x	н	х	х	L	н	
L	н	X	х	L	Х	L	L	
L	н	X	Х	н	Х	L	н	
н	н	X	Х	Х	L	L	L	
Н	Н	Х	Х	Х	Н	L	Н	

Address inputs S_0 and S_1 are common to both sections.

H = HIGH Voltage Level L = LOW Voltage Level

X = ImmaterialZ = High Impedance

Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias Plastic	−55°C to +175°C −55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to $+7.0V$
Input Current (Note 2)	-30 mA to $+5.0$ mA
Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)	
Standard Output	- 0.5V to V _{CC}
TRI-STATE Output	-0.5V to +5.5V

Current Applied to Output in LOW State (Max) ESD Last Passing Voltage (Min)

twice the rated $I_{\mbox{\scriptsize OL}}$ (mA)

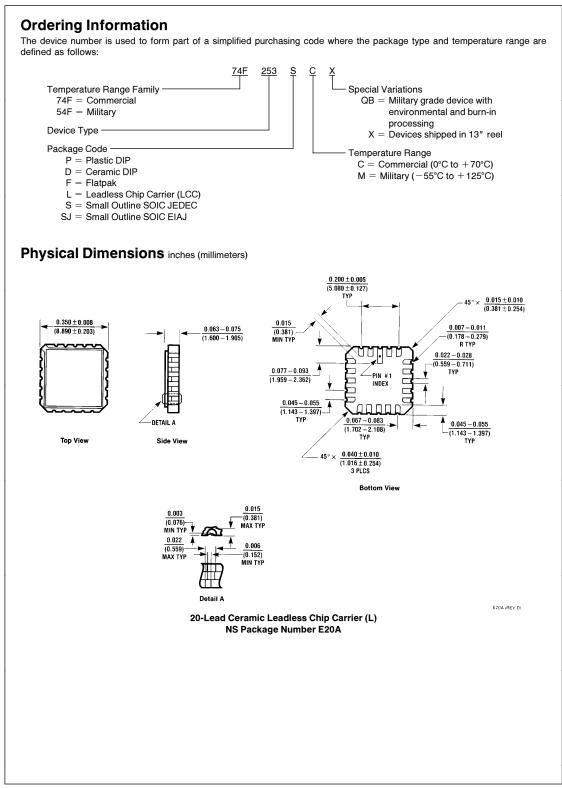
4000V Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under

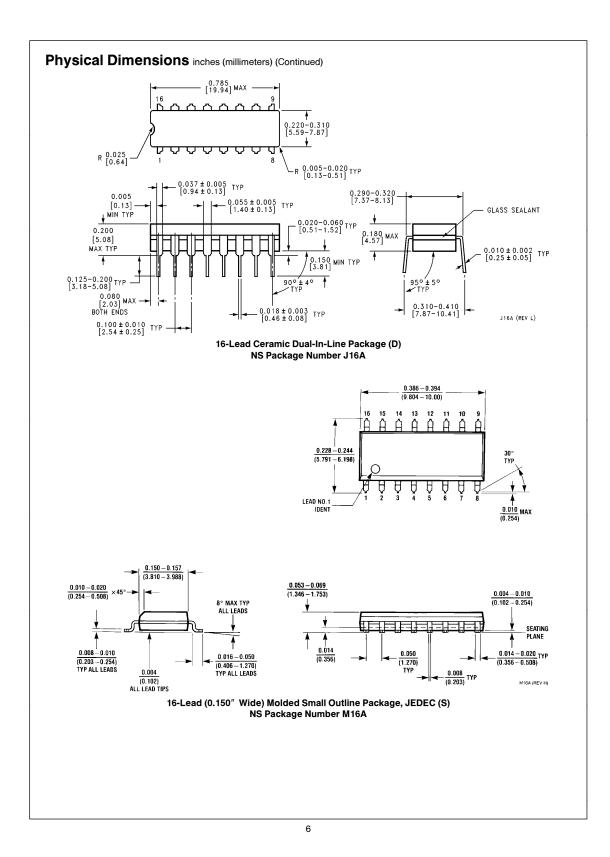
these conditions is not implied. Note 2: Either voltage limit or current limit is sufficient to protect inputs.

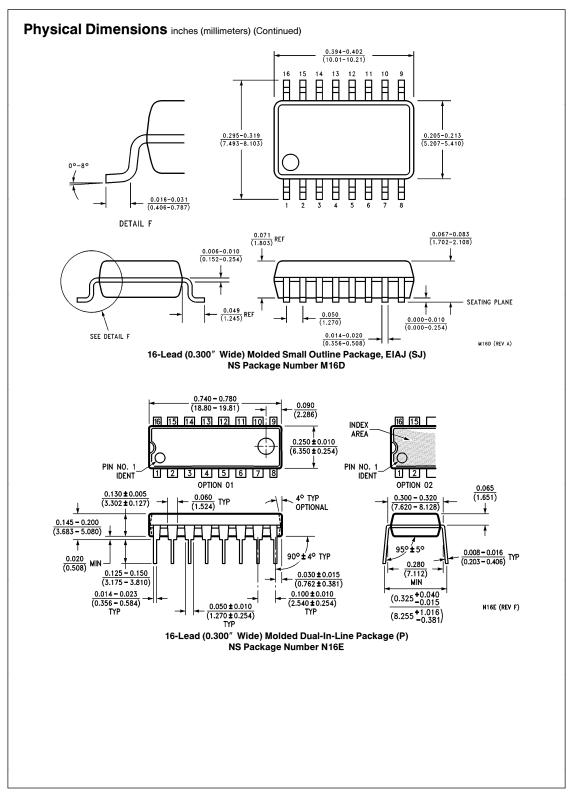
Recommended Operating Conditions

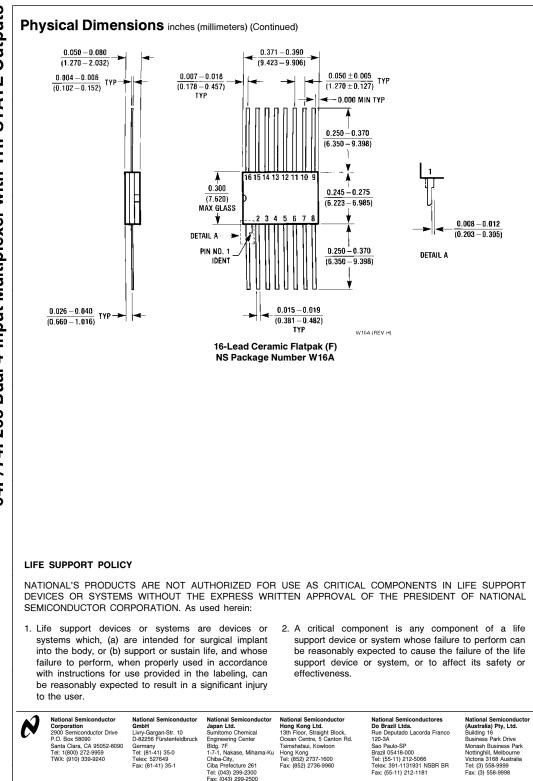
Free Air Ambient Temperature Military Commercial Supply Voltage Military

Commercial


-55°C to +125°C 0°C to +70°C


 $\pm\,4.5V$ to $\,\pm\,5.5V$ $+\,4.5V$ to $\,+\,5.5V$


DC Electrical Characteristics


Symbol	Parameter		54F/74F			Units	v _{cc}	Conditions	
eyniber	i uluno		Min	Тур	Max	onito	•	oonaniono	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signa	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC} 74F 5% V _{CC}	2.5 2.4 2.5 2.4 2.7 2.7			V	Min	$ \begin{split} I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \end{split} $	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	V	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 24 \text{ mA}$	
IIH	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	$V_{IN} = 7.0V$	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V_{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{ID} = 1.9 \ \mu A$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	$V_{IOD} = 150 \text{ mV}$ All Other Pins Grounded	
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
I _{OZH}	Output Leakage Curr	ent			50	μΑ	Max	$V_{OUT} = 2.7V$	
I _{OZL}	Output Leakage Curr	ent			-50	μΑ	Max	$V_{OUT} = 0.5V$	
I _{OS}	Output Short-Circuit Current		-60 -100		150 225	mA	Max	$V_{OUT} = 0V$ $V_{OUT} = 0V$	
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	$V_{OUT} = V_{CC}$	
ICCH	Power Supply Curren	t		11.5	16	mA	Max	V _O = HIGH	
ICCL	Power Supply Curren	t		16	23	mA	Max	V _O = LOW	
Iccz	Power Supply Curren	t		16	23	mA	Max	V _O = HIGH Z	

Symbol		$74F \\ T_{A} = +25^{\circ}C \\ V_{CC} = +5.0V \\ C_{L} = 50 \text{ pF}$			54F T _A , V _{CC} = Mil C _L = 50 pF		$74F$ $T_{A}, V_{CC} = Com$ $C_{L} = 50 \text{ pF}$		Units
	Parameter								
		Min	Тур	Мах	Min	Max	Min	Мах]
t _{PLH} Propagation Delay t _{PHL} S _n to Z _n		4.5 3.0	8.5 6.5	11.5 9.0	3.5 2.5	15.0 11.0	4.5 3.0	13.0 10.0	ns
t _{PLH} t _{PHL}	Propagation Delay I _n to Z _n	3.0 2.5	5.5 4.5	7.0 6.0	2.5 2.5	9.0 8.0	3.0 2.5	8.0 7.0	ns
t _{PZH} t _{PZL}	Output Enable Time	3.0 3.0	6.0 6.0	8.0 8.0	2.5 2.5	10.0 10.0	3.0 3.0	9.0 9.0	– ns
t _{PHZ} t _{PLZ}	Output Disable Time	2.0 2.0	3.7 4.4	5.0 6.0	2.0 2.0	6.5 8.0	2.0 2.0	6.0 7.0	

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.