### **ON Semiconductor**

### Is Now



To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

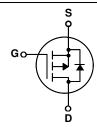


ON Semiconductor®

### **FQD3P50TM-F085**

### **500V P-Channel MOSFET**

### **General Description**


These P-Channel enhancement mode power field effect transistors are produced using ON Semiconductor's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for electronic lamp ballast based on complimentary half bridge.

### **Features**

- -2.1A, -500V,  $R_{DS(on)}$  = 4.9 $\Omega$  @V<sub>GS</sub> = -10 V
- Low gate charge (typical 18 nC)
- Low Crss (typical 9.5 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- Qualified to AEC Q101
- **RoHS Compliant**





### Absolute Maximum Ratings T<sub>C</sub> = 25°C unless otherwise noted

| Symbol                            | Parameter                                                           | FQD3P50TM-F085 | Units |      |
|-----------------------------------|---------------------------------------------------------------------|----------------|-------|------|
| V <sub>DSS</sub>                  | Drain-Source Voltage                                                | -500           | V     |      |
| I <sub>D</sub>                    | Drain Current - Continuous (T <sub>C</sub> = 25°C                   | -2.1           | Α     |      |
|                                   | - Continuous (T <sub>C</sub> = 100                                  | -1.33          | Α     |      |
| I <sub>DM</sub>                   | Drain Current - Pulsed                                              | (Note 1)       | -8.4  | Α    |
| V <sub>GSS</sub>                  | Gate-Source Voltage                                                 | ± 30           | V     |      |
| E <sub>AS</sub>                   | Single Pulsed Avalanche Energy                                      | (Note 2)       | 250   | mJ   |
| I <sub>AR</sub>                   | Avalanche Current (Note 1)                                          |                | -2.1  | Α    |
| E <sub>AR</sub>                   | Repetitive Avalanche Energy (Note 1)                                |                | 5.0   | mJ   |
| dv/dt                             | Peak Diode Recovery dv/dt (Note 3)                                  |                | -4.5  | V/ns |
| P <sub>D</sub>                    | Power Dissipation (T <sub>A</sub> = 25°C) *                         | 2.5            | W     |      |
|                                   | Power Dissipation (T <sub>C</sub> = 25°C)                           | 50             | W     |      |
|                                   | - Derate above 25°C                                                 | 0.4            | W/°C  |      |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Ran                               | -55 to +150    | °C    |      |
| T <sub>L</sub>                    | Maximum lead temperature for soldering 1/8" from case for 5 seconds | 300            | °C    |      |

### **Thermal Characteristics**

| Symbol          | Parameter                                 | Тур | Max | Units |
|-----------------|-------------------------------------------|-----|-----|-------|
| $R_{\theta JC}$ | Thermal Resistance, Junction-to-Case      |     | 2.5 | °C/W  |
| $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient * |     | 50  | °C/W  |
| $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient   |     | 110 | °C/W  |

| Symbol                                  | Parameter                                         | Min                                                                    | Тур  | Max  | Units |      |
|-----------------------------------------|---------------------------------------------------|------------------------------------------------------------------------|------|------|-------|------|
| Off Cha                                 | racteristics                                      |                                                                        |      |      |       |      |
| BV <sub>DSS</sub>                       | Drain-Source Breakdown Voltage                    | V <sub>GS</sub> = 0 V, I <sub>D</sub> = -250 μA                        | -500 |      |       | V    |
| ΔBV <sub>DSS</sub><br>/ ΔΤ <sub>J</sub> | Breakdown Voltage Temperature<br>Coefficient      | I <sub>D</sub> = -250 μA, Referenced to 25°C                           |      | 0.42 |       | V/°C |
| I <sub>DSS</sub>                        | Zana Oaka Walkana Basin Oamank                    | V <sub>DS</sub> = -500 V, V <sub>GS</sub> = 0 V                        |      |      | -1    | μА   |
|                                         | Zero Gate Voltage Drain Current                   | V <sub>DS</sub> = -400 V, T <sub>C</sub> = 125°C                       |      | -    | -10   | μА   |
| I <sub>GSSF</sub>                       | Gate-Body Leakage Current, Forward                | V <sub>GS</sub> = -30 V, V <sub>DS</sub> = 0 V                         |      |      | -100  | nA   |
| I <sub>GSSR</sub>                       | Gate-Body Leakage Current, Reverse                | V <sub>GS</sub> = 30 V, V <sub>DS</sub> = 0 V                          |      | -    | 100   | nA   |
| On Cha                                  | racteristics                                      |                                                                        |      |      |       |      |
| V <sub>GS(th)</sub>                     | Gate Threshold Voltage                            | V <sub>DS</sub> = V <sub>GS</sub> , I <sub>D</sub> = -250 μA           | -3.0 |      | -5.0  | V    |
| R <sub>DS(on)</sub>                     | Static Drain-Source On-Resistance                 | V <sub>GS</sub> = -10 V, I <sub>D</sub> = -1.05 A                      |      | 3.9  | 4.9   | Ω    |
| 9 <sub>FS</sub>                         | Forward Transconductance                          | V <sub>DS</sub> = -50 V, I <sub>D</sub> = -1.05 A (Note 4)             |      | 2.1  |       | S    |
| <b>Dynam</b> i                          | ic Characteristics Input Capacitance              | V <sub>DS</sub> = -25 V, V <sub>GS</sub> = 0 V,                        |      | 510  | 660   | pF   |
| C <sub>oss</sub>                        | Output Capacitance                                | f = 1.0 MHz                                                            |      | 70   | 90    | pF   |
| C <sub>rss</sub>                        | Reverse Transfer Capacitance                      |                                                                        |      | 9.5  | 12    | pF   |
| Switchi                                 | ng Characteristics                                |                                                                        |      |      | ·     |      |
| t <sub>d(on)</sub>                      | Turn-On Delay Time                                | V - 250 V I - 2.7 A                                                    |      | 12   | 35    | ns   |
| t <sub>r</sub>                          | Turn-On Rise Time                                 | $V_{DD} = -250 \text{ V}, I_{D} = -2.7 \text{ A},$ $R_{G} = 25 \Omega$ |      | 56   | 120   | ns   |
| t <sub>d(off)</sub>                     | Turn-Off Delay Time                               | NG - 23 22                                                             |      | 35   | 80    | ns   |
| t <sub>f</sub>                          | Turn-Off Fall Time                                | (Note 4, 5)                                                            |      | 45   | 100   | ns   |
| Qg                                      | Total Gate Charge                                 | V <sub>DS</sub> = -400 V, I <sub>D</sub> = -2.7 A,                     |      | 18   | 23    | nC   |
| Q <sub>gs</sub>                         | Gate-Source Charge                                | V <sub>GS</sub> = -10 V                                                |      | 3.6  |       | nC   |
| Q <sub>gd</sub>                         | Gate-Drain Charge                                 | (Note 4, 5)                                                            |      | 9.2  |       | nC   |
| Drain-S                                 | Source Diode Characteristics a                    | nd Maximum Ratings                                                     |      |      |       |      |
| I <sub>S</sub>                          | Maximum Continuous Drain-Source Did               |                                                                        |      | -2.1 | Α     |      |
| I <sub>SM</sub>                         | Maximum Pulsed Drain-Source Diode Forward Current |                                                                        |      | ı    | -8.4  | Α    |
| V <sub>SD</sub>                         | Drain-Source Diode Forward Voltage                | V <sub>GS</sub> = 0 V, I <sub>S</sub> = -2.1 A                         |      | -    | -5.0  | V    |
| t <sub>rr</sub>                         | Reverse Recovery Time                             | $V_{GS} = 0 \text{ V}, I_{S} = -2.7 \text{ A},$                        |      | 270  |       | ns   |
| Q <sub>rr</sub>                         | Reverse Recovery Charge                           | $dI_F / dt = 100 A/\mu s$ (Note 4)                                     |      | 1.5  |       | μС   |

- **Notes:**1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 102mH, I<sub>AS</sub> = -2.1A, V<sub>DD</sub> = -50V, R<sub>G</sub> = 25  $\Omega$ , Starting T<sub>J</sub> = 25°C 3. I<sub>SD</sub>  $\leq$  -2.7A, dil/dt  $\leq$  200A/μs, V<sub>DD</sub>  $\leq$  BV<sub>DSS</sub>, Starting T<sub>J</sub> = 25°C 4. Pulse Test : Pulse width  $\leq$  300μs, Duty cycle  $\leq$  2% 5. Essentially independent of operating temperature

## **Typical Characteristics**

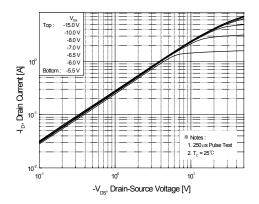



Figure 1. On-Region Characteristics

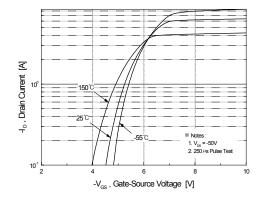



Figure 2. Transfer Characteristics

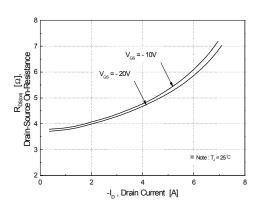



Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

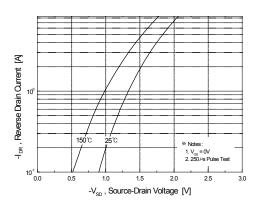



Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

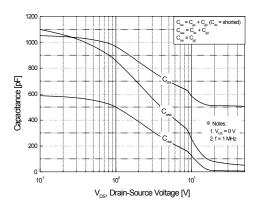



Figure 5. Capacitance Characteristics

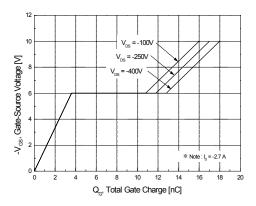
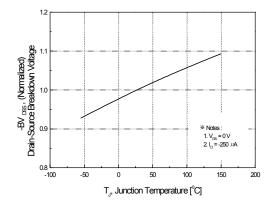




Figure 6. Gate Charge Characteristics





Words:

1.5

0.0

1.0

0.0

1.0

0.0

1.0

0.0

1.0

0.0

1.0

0.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

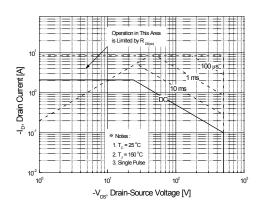
1.0

1.0

1.0

1.0

1.0


1.0

1.0

1.0

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On-Resistance Variation vs. Temperature



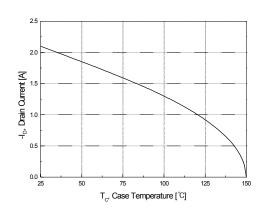



Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs. Case Temperature

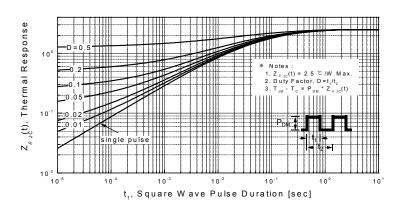
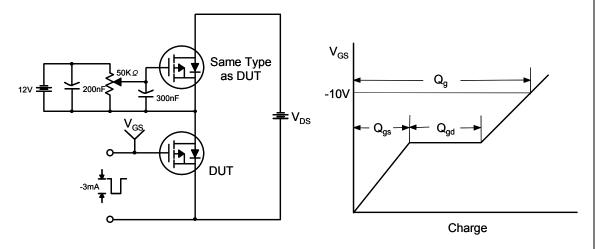
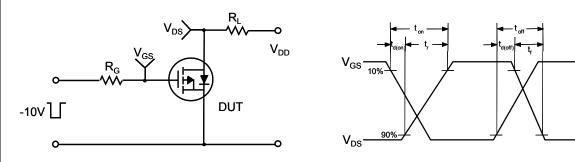
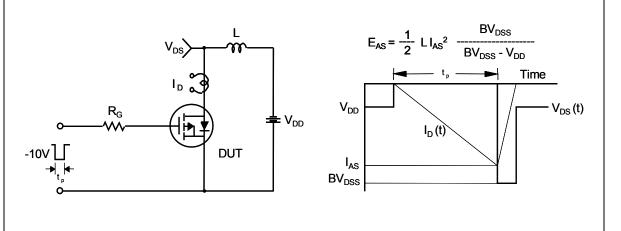
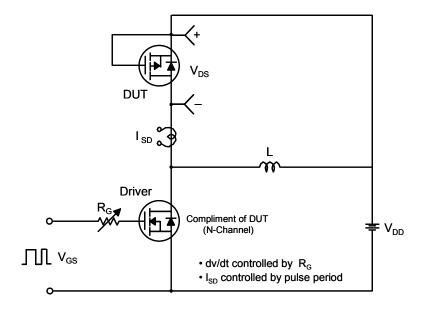
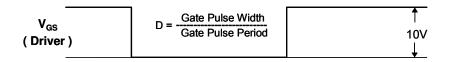




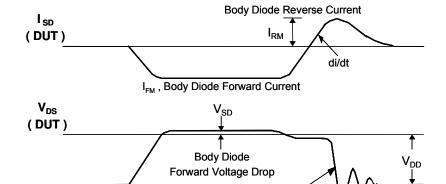

Figure 11. Transient Thermal Response Curve


### **Gate Charge Test Circuit & Waveform**




### **Resistive Switching Test Circuit & Waveforms**

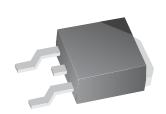


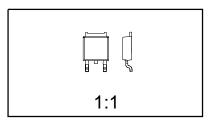


### **Unclamped Inductive Switching Test Circuit & Waveforms**



### Peak Diode Recovery dv/dt Test Circuit & Waveforms

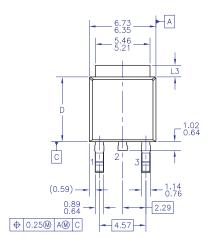




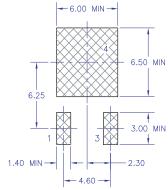

Body Diode Recovery dv/dt

### **Mechanical Dimensions**


# TO-252 (DPAK) (FS PKG Code 36)

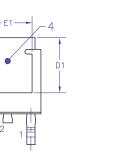





Scale 1:1 on letter size paper Dimensions shown below are in: millimeters

Part Weight per unit (gram): 0.33




SEE NOTE D

GAGE PLANE



- 0.58 0.46 SEE 10.41 9.40 DETAIL A △ 0.10 B

LAND PATTERN RECOMMENDATION





- UNLESS OTHERWISE SPECIFIED
  ALL DIMENSIONS ARE IN MILLIMETERS.
  THIS PACKAGE CONFORMS TO JEDEC, TO-252,
  ISSUE C, VARIATION AA & AB, DATED NOV. 1999.
  DIMENSIONING AND TOLERANCING PER
  ASME Y14.5M-1994.
  HEAT SINK TOP EDGE COULD BE IN CHAMFERED
  CORNERS OR EDGE PROTRUSION.
  DIMENSIONS L3,D,E1&D1 TABLE:

  OPTION AM OPTION AB
  L13 0.89-137 1 E5-2-203

| Э. | 7 - |   |              | ( - <del>`</del>         |                                    | <u> </u> | 1   |
|----|-----|---|--------------|--------------------------|------------------------------------|----------|-----|
|    | +   | - | 1.78<br>1.40 | .90)                     | 0.127 M<br>— SEATI                 |          | ANE |
|    |     |   |              | DETA<br>(ROTATE<br>SCALE | <u>( L A</u><br> D -90°)<br> : 12X |          |     |

|    | OF HON AM | OF HON AD |
|----|-----------|-----------|
| L3 | 0.89-1.27 | 1.52-2.03 |
| D  | 5.97-6.22 | 5.33-5.59 |
| E1 | 4.32 MIN  | 3.81 MIN  |
| D1 | 5.21 MIN  | 4.57 MIN  |
|    |           |           |

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative