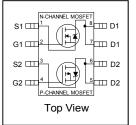


Features

- Advanced Planar Technology
- Low On-Resistance
- Logic Level Gate Drive
- Dual N and P Channel MOSFET
- Dynamic dv/dt Rating
- 150°C Operating Temperature

Specifically designed for Automotive applications, this cellular design of HEXFET® Power MOSFETs utilizes the latest

processing techniques to achieve low on-resistance per silicon


area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of

Fast Switching

Description

other applications.

- · Lead-Free, RoHS Compliant
- Automotive Qualified *

	N-CH	P-CH
V _{DSS}	30V	-30V
R _{DS(on)} max.	0.05Ω	0.10Ω
I _D	4.7A	-3.5A

G	D	S
Gate	Drain	Source

Door wort without	Dookowa Tuma	Standard Pack		Oudevable Bout Neuroben
Base part number	Package Type	Form Quantity		Orderable Part Number
ALIIDE73000	SO 8	Tano and Pool	4000	ALIIDE7300OTD

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

	_ ,	M	ax.	
Symbol	Parameter	N-Channel	P-Channel	Units
I _D @ T _A = 25°C	10 Sec. Pulsed Drain Current, V _{GS} @ 10V	4.7	-3.5	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	4.0	-3.0	
I _D @ T _A = 70°C Continuous Drain Current, V _{GS} @ 10V		3.2	-2.4	Α
I _{DM} Pulsed Drain Current ⊕		16	-12	
P _D @T _A = 25°C Maximum Power Dissipation ④			1.4	W
Linear Derating Factor@		0.011		W/°C
V_{GS}	Gate-to-Source Voltage	± 20		V
dv/dt Peak Diode Recovery dv/dt ②		6.9	-6.0	V/ns
T _J Operating Junction and T _{STG} Storage Temperature Range		-55	to + 150	°C

Thermal Resistance

Thermal Resistance				
Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount, steady state) ®		90	°C/W

HEXFET® is a registered trademark of Infineon.

2015-9-30

^{*}Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter		Min.	Тур.	Max.	Units	Conditions
,	Drain-to-Source Breakdown Voltage	N-Ch	30			V	$V_{GS} = 0V, I_D = 250\mu A$
/ _{(BR)DSS}	Drain-to-Source Breakdown Voltage	P-Ch	-30			V	$V_{GS} = 0V, I_D = -250\mu A$
\\/ /AT	Brookdown Voltago Tomp Coefficient	N-Ch		0.032		V/°C	Reference to 25°C, I _D = 1mA
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	P-Ch	_	-0.037		V/ C	Reference to 25°C, I _D = -1mA
		N-Ch			0.050		$V_{GS} = 10V, I_D = 2.4A$ ③
	Static Drain-to-Source On-Resistance	IN-CII			0.080		$V_{GS} = 4.5V, I_D = 2.0A$ ③
$R_{DS(on)}$	Static Drain-to-Source On-Resistance	P-Ch			0.10	Ω	$V_{GS} = -10V, I_D = -1.8A$ ③
		P-CII	_		0.16		$V_{GS} = -4.5V, I_D = -1.5A$ ③
,	Cata Threehold \/altage	N-Ch	1.0		3.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
/ _{GS(th)}	Gate Threshold Voltage	P-Ch	-1.0		-3.0	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
rfo	Farmer Trans. conductors	N-Ch	5.2			S	$V_{DS} = 15V, I_{D} = 2.4A$
gfs	Forward Trans conductance	P-Ch	2.5			0	$V_{DS} = -24V, I_{D} = -1.8A$
		N-Ch			1.0		$V_{DS} = 24V, V_{GS} = 0V$
	Drain to Course Leakage Current	P-Ch			-1.0		$V_{DS} = -24V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current	N-Ch			25	μA	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
		P-Ch			-25		$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
	Gate-to-Source Forward Leakage	N-P			± 100	^	V _{GS} = ± 20V
GSS	Gate-to-Source Reverse Leakage	N-P			± 100	1 NA	V _{GS} = ± 20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

<u>- j</u>	Electrical characteristics (a) 1, 20 0 (a)		торос				
Q_g	Total Gate Charge	N-Ch			25		N-Channel
y g	Total Gate Griange	P-Ch			25		$I_D = 2.6A, V_{DS} = 16V, V_{GS} = 4.5V$
Q_{gs}	Gate-to-Source Charge	N-Ch			2.9	nC	
∢ gs	Cate to Course Orlange	P-Ch			2.9		P-Channel
Q_{gd}	Gate-to-Drain Charge	N-Ch			7.9		$I_D = -2.2A, V_{DS} = -16V, V_{GS} = -4.5V$
≪ ga	Cate to Brain Onlinge	P-Ch			9.0		
t _{d(an)}	Turn-On Delay Time	N-Ch		6.8			N-Channel
t _{d(on)}	Tam On Bolay Time	P-Ch		11			$V_{DD} = 10V, I_D = 2.6A, R_G = 6.0\Omega,$
t_	Rise Time	N-Ch		21			$R_D = 3.8\Omega$
ч	rase rime	P-Ch		17		ns	
t	Turn-Off Delay Time	N-Ch		22		113	P-Channel
t _{d(off)}	Turri-Oil Delay Time	P-Ch		25			$V_{DD} = -10V, I_D = -2.2A, R_G = 6.0\Omega,$
t.	Fall Time	N-Ch		7.7			$R_D = 4.5\Omega$
Lf	I all Tille	P-Ch		18			
L_D	Internal Drain Inductance	N-P		4.0		nH	Between lead, 6mm(0.25n) from
Ls	Internal Source Inductance	N-P		6.0		ПП	package and center of die contact
<u> </u>	Innut Conscitones	N-Ch		520			N-Channel
C_{iss}	Input Capacitance	P-Ch		440			$V_{GS} = 0V, V_{DS} = 15V, f = 1.0MHz$
<u> </u>	Output Capacitance	N-Ch		180		nE	3
C _{oss}	Output Capacitance	P-Ch		200		pF	P-Channel
C	Reverse Transfer Capacitance	N-Ch		72			$V_{GS} = 0V, V_{DS} = -15V, f = 1.0MHz$
C_{rss}	Reverse Transier Capacitance	P-Ch		93			

Diode Characteristics

	Parameter		Min.	Тур.	Max.	Units	Conditions
	Cantinuous Source Current (Rady Diade)	N-Ch			1.8		
IS	Continuous Source Current (Body Diode)	P-Ch			-1.8	_	
	Pulsed Source Current	N-Ch			16	A	
I _{SM}	(Body Diode) ①	P-Ch			-12		
V	Diada Farward Voltago	N-Ch			1.0	V	$T_J = 25^{\circ}C, I_S = 1.8A, V_{GS} = 0V$ ③
V_{SD}	Diode Forward Voltage	P-Ch			-1.0	V	$T_J = 25^{\circ}C, I_S = 1.8A, V_{GS} = 0V$ ③ $T_J = 25^{\circ}C, I_S = -1.8A, V_{GS} = 0V$ ③
	Dayoroo Dagayary Tima	N-Ch		47	71		N-Channel
L _{rr}	Reverse Recovery Time	P-Ch		53	80	ns	$T_J = 25^{\circ}\text{C}$, $I_F = 2.6\text{A}$, di/dt = 100A/ μ s 3
	D	N-Ch		56	84		P-Channel
Q_{rr}	Reverse Recovery Charge	P-Ch		66	99	nC	$T_J = 25^{\circ}C, I_F = -2.2A, di/dt = 100A/\mu s$ ③
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)					


Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 23)
- N-Channel $I_{SD} \le 2.4 A$, $di/dt \le 73 A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 150 ^{\circ} C$. P-Channel $I_{SD} \le$ -1.8A, di/dt \le 90A/ μ s, $V_{DD} \le V_{(BR)DSS}$, $T_J \le$ 150°C
- Pulse width ≤ 300µs; duty cycle ≤ 2%.

 When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

2015-9-30

Fig. 1 Typical Output Characteristics $T_J = 25$ °C

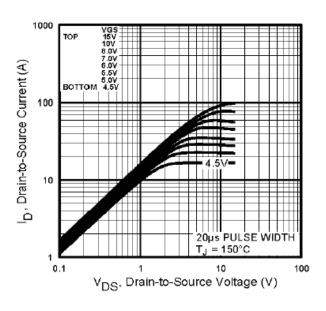


Fig. 2 Typical Output Characteristics $T_J = 150$ °C

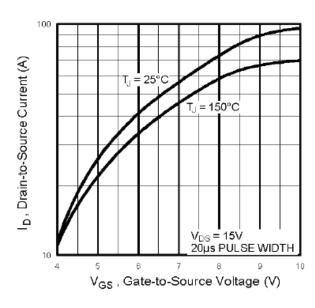
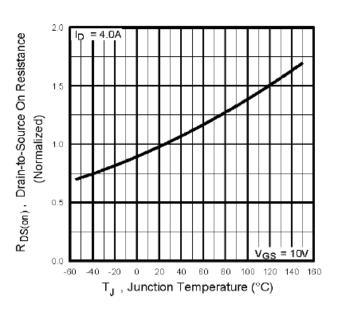
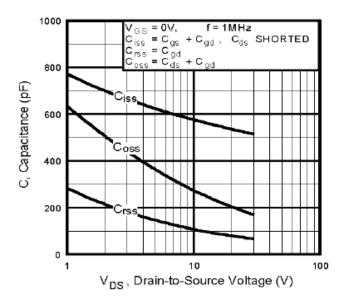




Fig. 3 Typical Transfer Characteristics

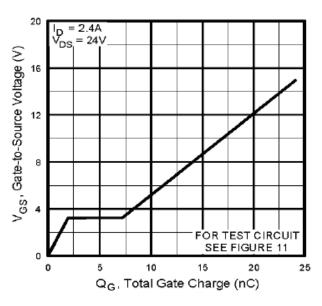


Fig. 4 Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

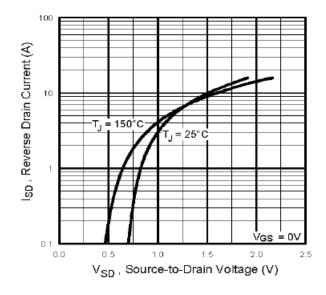


Fig. 7 Typical Source-to-Drain Diode Forward Voltage

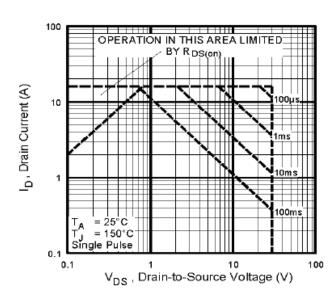


Fig 8. Maximum Safe Operating Area

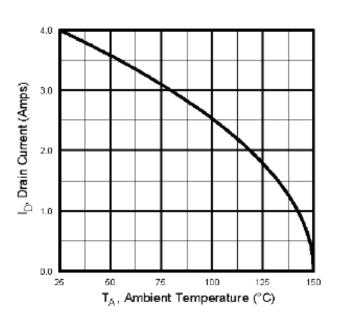


Fig 9. Maximum Drain Current vs. Case Temperature

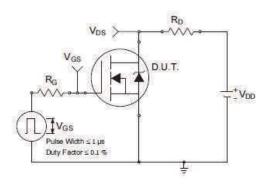


Fig 10a. Switching Time Test Circuit

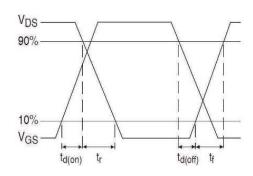


Fig 10b. Switching Time Waveforms

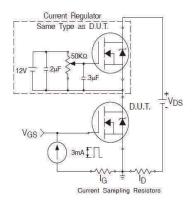


Fig 11a. Gate Charge Test Circuit

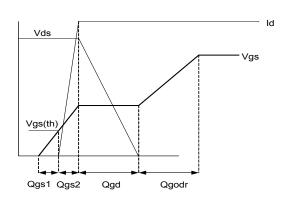


Fig 11b. Basic Gate Charge Waveform

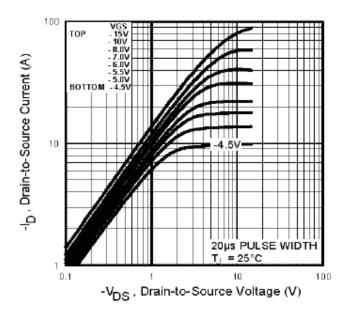
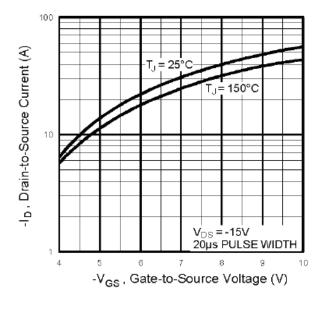
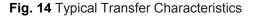
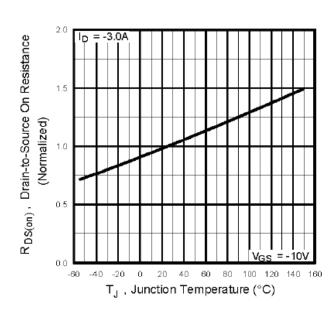
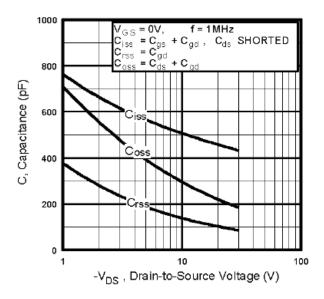
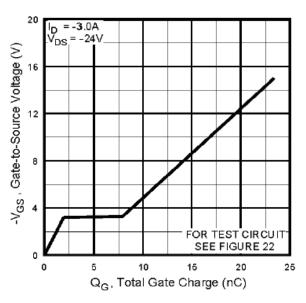





Fig. 12 Typical Output Characteristics $T_J = 25^{\circ}C$

Fig. 13 Typical Output Characteristics $T_J = 150$ °C




Fig. 15 Normalized On-Resistance vs. Temperature

2015-9-30

Fig 16. Typical Capacitance vs. Drain-to-Source Voltage

Fig 17. Typical Gate Charge vs. Gate-to-Source Voltage

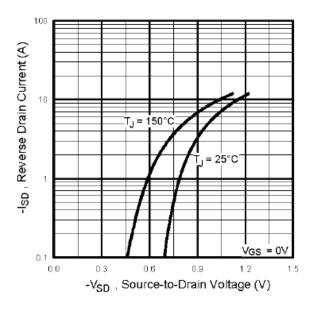


Fig. 18 Typical Source-to-Drain Diode Forward Voltage

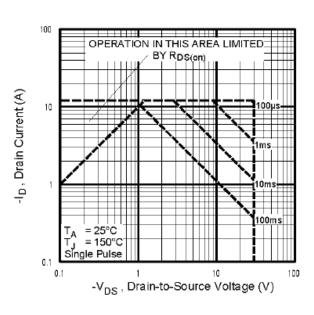


Fig 19. Maximum Safe Operating Area

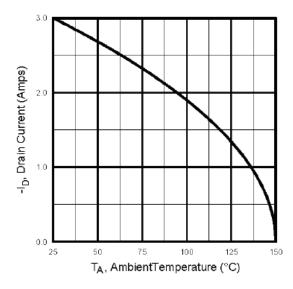
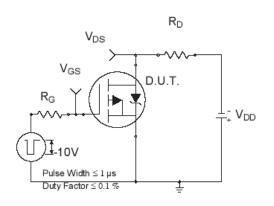



Fig 20. Maximum Drain Current vs. Case Temperature

V_{GS} t_{d(on)} t_r t_{d(off)} t_f 10%

Fig 21a. Switching Time Test Circuit

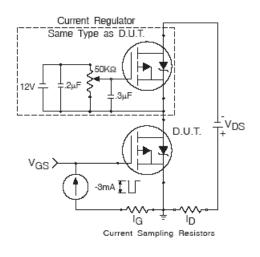


Fig 21b. Switching Time Waveforms

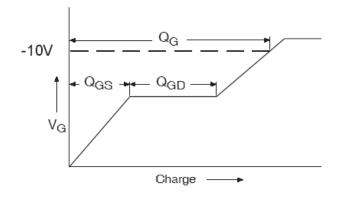


Fig 22a. Gate Charge Test Circuit

Fig 22b. Basic Gate Charge Waveform

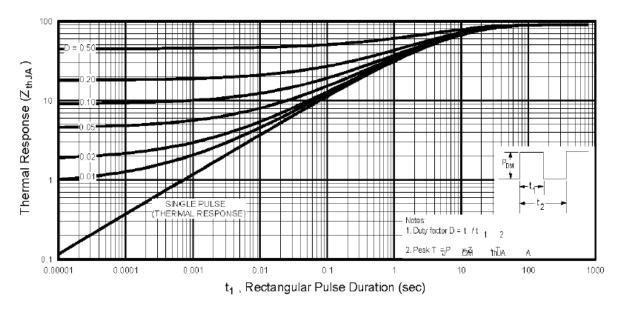
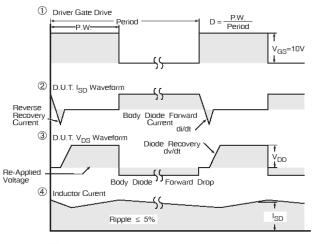
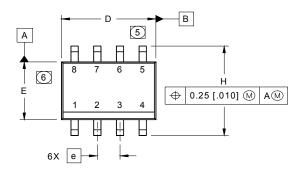



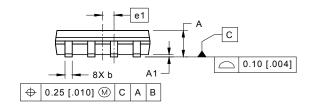
Fig 23. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

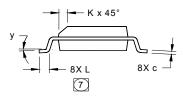
Peak Diode Recovery dv/dt Test Circuit Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer • dv/dt controlled by R_G • I_{SD} controlled by Duty Factor "D" • D.U.T. - Device Under Test

- * Reverse Polarity for P-Channel
- ** Use P-Channel Driver for P-Channel Measurements



*** $V_{GS} = 5.0V$ for Logic Level and 3V Drive Devices


Fig 24. Peak Diode Recovery dv/dt Test Circuit for N & P-Channel HEXFET® Power MOSFETs

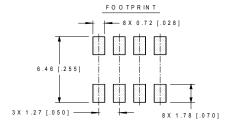


SO-8 Package Outline (Dimensions are shown in millimeters (inches)

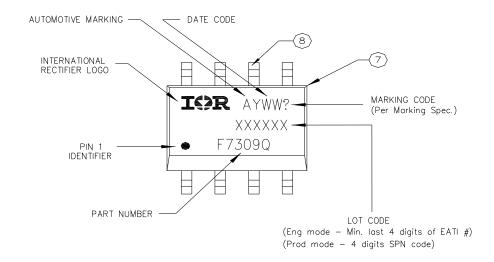
DIM	INCHES		MILLIM	ETERS	
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Е	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
e 1	.025 B	ASIC	0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
У	0°	8°	0°	8°	

NOTES:

1. DIMENSIONING & TO LERANCING PER ASMEY14.5M-1994.

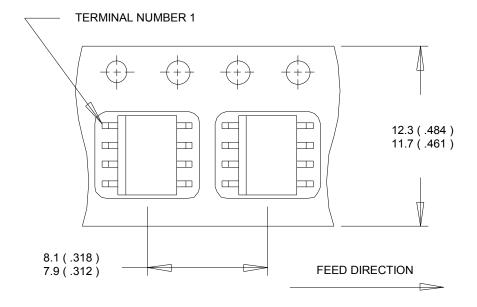

2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.

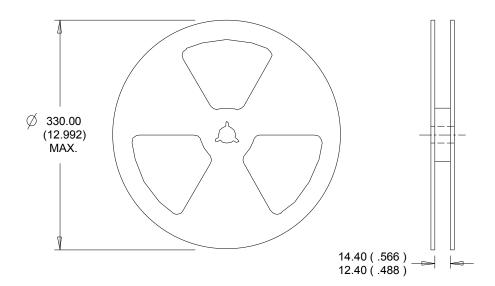

5. DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].

6. DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].

7. DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.



SO-8 Part Marking Information



SO-8 Tape and Reel (Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Qualification Information

	on iniormation						
		Automotive					
		(per AEC-Q101)					
Qualification Level Comments: This part number(s) passed Automotive qualification Industrial and Consumer qualification level is granted by extension o Automotive level.							
Moisture S	Sensitivity Level	SO-8	MSL1				
			N CH: Class M2 (+/- 150V) [†]				
	Machine Model	P CH: Class M2(+/- 150V) [†]					
		AEC-Q101-002					
		N CH: Class H1A (+/- 500V) [†]					
ESD	Human Body Model	P CH: Class H0 (+/- 250V) [†]					
	-	AEC-Q101-001					
		N CH: Class C5 (+/- 2000V) [†]					
	Charged Device Model	P CH: Class C5 (+/- 2000V) [†]					
		AEC-Q101-005					
RoHS Compliant Yes			Yes				

[†] Highest passing voltage.

Revision History

Date	Comments					
3/28/2014	Added "Logic Level Gate Drive" bullet in the features section on page 1					
3/20/2014	Updated data sheet with new IR corporate template					
9/30/2015	Updated datasheet with corporate template					
9/30/2015	Corrected ordering table on page 1.					

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.