Dual 4-Stage Binary Ripple Counter with ÷ 2 and ÷ 5 Sections # **High-Performance Silicon-Gate CMOS** The MC54/74HC390 is identical in pinout to the LS390. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. This device consists of two independent 4-bit counters, each composed of a divide-by-two and a divide-by-five section. The divide-by-two and divide-by-five counters have separate clock inputs, and can be cascaded to implement various combinations of $\div 2$ and/or $\div 5$ up to a $\div 100$ counter. Flip-flops internal to the counters are triggered by high-to-low transitions of the clock input. A separate, asynchronous reset is provided for each 4-bit counter. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used as clocks or strobes except when gated with the Clock of the HC390. - Output Drive Capability: 10 LSTTL Loads - Outputs Directly Interface to CMOS, NMOS, and TTL - Operating Voltage Range: 2 to 6 V - Low Input Current: 1 μA - High Noise Immunity Characteristic of CMOS Devices - In Compliance with the Requirements Defined by JEDEC Standard No 7A - Chip Complexity: 244 FETs or 61 Equivalent Gates # LOGIC DIAGRAM # ON Semiconductor® http://onsemi.com J SUFFIX CERAMIC PACKAGE CASE 620-10 N SUFFIX PLASTIC PACKAGE CASE 648-08 **D SUFFIX** SOIC PACKAGE CASE 751B-05 #### ORDERING INFORMATION MC54HCXXXJ Ceramic MC74HCXXXN Plastic MC74HCXXXD SOIC ## **PIN ASSIGNMENT** # **FUNCTION TABLE** | Clo | ock | | | |-----|-----|-------|----------------------| | Α | В | Reset | Action | | Х | Х | Н | Reset
÷ 2 and ÷ 5 | | ~ | Χ | L | Increment
÷ 2 | | Х | ~ | L | Increment
÷ 5 | #### **MAXIMUM RATINGS*** | Symbol | Parameter | Value | Unit | |------------------|---|--------------------------------|------| | V _{CC} | DC Supply Voltage (Referenced to GND) | - 0.5 to + 7.0 | V | | V _{in} | DC Input Voltage (Referenced to GND) | - 1.5 to V _{CC} + 1.5 | V | | V _{out} | DC Output Voltage (Referenced to GND) | -0.5 to V_{CC} + 0.5 | V | | I _{in} | DC Input Current, per Pin | ±[2 0 | mA | | I _{out} | DC Output Current, per Pin | ±[2 5 | mA | | I _{CC} | DC Supply Current, V _{CC} and GND Pins | ±[5 0 | mA | | P _D | Power Dissipation in Still Air,Plastic or Ceramic DIP†
SOIC Package† | 750
500 | mW | | T _{stg} | Storage Temperature | - 65 to + 150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds | | °C | | | (Plastic or SOIC DIP)
(Ceramic DIP) | 260
300 | | This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC}. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. it For high frequency or heavy load considerations, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D). # **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | | | Max | Unit | |------------------------------------|--|-------------------------------|-------------|--------------------|------| | V _{CC} | DC Supply Voltage (Referenced to GND) | 2.0 | 6.0 | V | | | V _{in} , V _{out} | DC Input Voltage, Output Voltage (Referenced to GND) | | | V _{CC} | V | | T _A | Operating Temperature, All Package Types | | - 55 | + 125 | °C | | t _r , t _f | (Figure 1) V _{CC} = | = 2.0 V
= 4.5 V
= 6.0 V | 0
0
0 | 1000
500
400 | ns | # DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) | | | | | Gu | aranteed Li | mit | | |-----------------|---|--|----------------------|--------------------|--------------------|--------------------|------| | Symbol | Parameter | Test Conditions | V _{CC}
V | – 55 to
25°C | ≤ 85 °C | ≤ 125°C | Unit | | V _{IH} | Minimum High-Level Input
Voltage | V_{out} = 0.1 V or V_{CC} – 0.1 V $ I_{out} \le 20 \mu A$ | 2.0
4.5
6.0 | 1.5
3.15
4.2 | 1.5
3.15
4.2 | 1.5
3.15
4.2 | V | | V _{IL} | Maximum Low-Level Input
Voltage | V_{out} = 0.1 V or V_{CC} – 0.1 V $ I_{out} \le 20 \mu A$ | 2.0
4.5
6.0 | 0.3
0.9
1.2 | 0.3
0.9
1.2 | 0.3
0.9
1.2 | V | | V _{OH} | Minimum High-Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | V | | | | $V_{in} = V_{IH} \text{ or } V_{IL} \qquad \begin{vmatrix} I_{out} \end{vmatrix} \le 4.0 \text{ mA} \\ \begin{vmatrix} I_{out} \end{vmatrix} \le 5.2 \text{ mA} \end{vmatrix}$ | 4.5
6.0 | 3.98
5.48 | 3.84
5.34 | 3.70
5.20 | | | V _{OL} | Maximum Low-Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | V | | | | $V_{in} = V_{IH} \text{ or } V_{IL} $ $ I_{out} \le 4.0 \text{ mA}$ $ I_{out} \le 5.2 \text{ mA}$ | 4.5
6.0 | 0.26
0.26 | 0.33
0.33 | 0.40
0.40 | | | I _{in} | Maximum Input Leakage Current | V _{in} = V _{CC} or GND | 6.0 | ±[0.1 | ±]1.0 | ±[1.0 | μΑ | | I _{CC} | Maximum Quiescent Supply
Current (per Package) | $V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$ | 6.0 | 8 | 80 | 160 | μΑ | NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D). ^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions. [†]Derating — Plastic DIP: - 10 mW/°C from 65° to 125°C Ceramic DIP: – 10 mW/°C from 100° to 125°C SOIC Package: - 7 mW/°C from 65° to 125°C # AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$) | | | | Gu | aranteed Li | imit | | |--|--|-------------------|-----------------|-----------------|-----------------|------| | Symbol | Parameter | V _{CC} | – 55 to
25°C | ≤ 85 °C | ≤ 125°C | Unit | | f _{max} | Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 3) | 2.0
4.5
6.0 | 5.4
27
32 | 4.4
22
26 | 3.6
18
21 | MHz | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Clock A to QA (Figures 1 and 3) | 2.0
4.5
6.0 | 120
24
20 | 150
30
26 | 180
36
31 | ns | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Clock A to QC (QA connected to Clock B) (Figures 1 and 3) | 2.0
4.5
6.0 | 290
58
49 | 365
73
62 | 435
87
74 | ns | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Clock B to QB (Figures 1 and 3) | 2.0
4.5
6.0 | 130
26
22 | 165
33
28 | 195
39
33 | ns | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Clock B to QC (Figures 1 and 3) | 2.0
4.5
6.0 | 185
37
31 | 230
46
39 | 280
56
48 | ns | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Clock B to QD (Figures 1 and 3) | 2.0
4.5
6.0 | 130
26
22 | 165
33
28 | 195
39
33 | ns | | t _{PHL} | Maximum Propagation Delay, Reset to any Q (Figures 2 and 3) | 2.0
4.5
6.0 | 165
33
28 | 205
41
35 | 250
50
43 | ns | | t _{TLH} ,
t _{THL} | Maximum Output Transition Time, Any Output (Figures 1 and 3) | 2.0
4.5
6.0 | 75
15
13 | 95
19
16 | 110
22
19 | ns | | C _{in} | Maximum Input Capacitance | _ | 10 | 10 | 10 | pF | # NOTES: ^{2.} Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D). | | | Typical @ 25°C, V _{CC} = 5.0 V | | Ī | |----------|--|---|----|---| | C_{PD} | Power Dissipation Capacitance (Per Counter)* | 35 | pF | | ^{*} Used to determine the no-load dynamic power consumption: $P_D = C_{PD} \, V_{CC}^2 f + I_{CC} \, V_{CC}$. For load considerations, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D). # **TIMING REQUIREMENTS** (Input $t_r = t_f = 6 \text{ ns}$) | | | | Gu | aranteed Li | mit | | |---------------------------------|--|-------------------|--------------------|--------------------|--------------------|------| | Symbol | Parameter | V _{CC} | – 55 to
25°C | ≤ 85 °C | ≤ 125°C | Unit | | t _{rec} | Minimum Recovery Time, Reset Inactive to Clock A or Clock B (Figure 2) | 2.0
4.5
6.0 | 50
10
9 | 65
13
11 | 75
15
13 | ns | | t _w | Minimum Pulse Width, Clock A, Clock B (Figure 1) | 2.0
4.5
6.0 | 80
16
14 | 100
20
17 | 120
24
20 | ns | | t _w | Minimum Pulse Width, Reset (Figure 2) | 2.0
4.5
6.0 | 125
25
21 | 155
31
26 | 190
38
32 | ns | | t _f , t _f | Maximum Input Rise and Fall Times
(Figure 1) | 2.0
4.5
6.0 | 1000
500
400 | 1000
500
400 | 1000
500
400 | ns | NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D). ^{1.} For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D). # **PIN DESCRIPTIONS** # **INPUTS** # Clock A (Pins 1, 15) and Clock B (Pins 4, 15) Clock A is the clock input to the \div 2 counter; Clock B is the clock input to the \div 5 counter. The internal flip–flops are toggled by high–to–low transitions of the clock input. # CONTROL INPUTS Reset (Pins 2, 14) Asynchronous reset. A high at the Reset input prevents counting, resets the internal flip-flops, and forces ${\bf Q}_{A}$ through ${\bf Q}_{D}$ low. # OUTPUTS **Q**_A (Pins 3, 13) Output of the ÷ 2 counter. # Q_B, Q_C, Q_D (Pins 5, 6, 7, 9, 10, 11) Outputs of the \div 5 counter. Q_D is the most significant bit. Q_A is the least significant bit when the counter is connected for BCD output as in Figure 4. Q_B is the least significant bit when the counter is operating in the bi–quinary mode as in Figure 5. # **SWITCHING WAVEFORMS** Figure 1. Figure 2. # **TEST CIRCUIT** *Includes all probe and jig capacitance Figure 3. # **EXPANDED LOGIC DIAGRAM** # TIMING DIAGRAM (Q_A Connected to Clock B) # **APPLICATIONS INFORMATION** Each half of the MC54/74HC390 has independent \div 2 and \div 5 sections (except for the Reset function). The \div 2 and \div 5 counters can be connected to give BCD or bi-quinary (2–5) count sequences. If Output Q_A is connected to the Clock B input (Figure 4), a decade divider with BCD output is obtained. The function table for the BCD count sequence is given in Table 1. To obtain a bi–quinary count sequence, the input signals connected to the Clock B input, and output Q_D is connected to the Clock A input (Figure 5). Q_A provides a 50% duty cycle output. The bi–quinary count sequence function table is given in Table 2. ## 1. BCD Count Sequence* | | Output | | | | | |-------|----------------|----------------|----------------|-------|--| | Count | Q _D | Q _C | Q _B | Q_A | | | 0 | L | L | L | L | | | 1 | L | L | L | Н | | | 2 | L | L | Н | L | | | 3 | L | L | H | H | | | 4 | L | Н | , L) ` | L | | | 5 | L | Н | L | Н | | | 6 | L | Н | <i>)</i> H | L | | | 7 | Ļ | H | H | Н | | | 8 | Н | L | T | L | | | 9 | Н | Ĺ | ΟĹ | Н | | # 2. Bi-Quinary Count Sequence** | | Output | | | | | | |-------|----------------|-------|----------------|----------------|--|--| | Count | Q _A | Q_D | Q _C | Q _B | | | | 0 | L | L | L | L | | | | 1 | L | L | L | Н | | | | 2 | L | L | Н | L | | | | 3 | L | L | Н | Н | | | | 4 | L | Н | L | L | | | | 8 | Н | L | L | L | | | | 9 | Н | L | L | Н | | | | 10 | Н | L | Н | L | | | | 11 | Н | L | Н | Н | | | | 12 | Н | Н | L | L. | | | ^{**}QD connected to Clock A input. # **CONNECTION DIAGRAMS** Figure 4. BCD Count Figure 5. Bi-Quinary Count ## **OUTLINE DIMENSIONS** #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY. | | | | MILL BACTED | | |-----|-----------|-------|-------------|-------| | | INCHES | | MILLIMETER | | | DIM | MIN | MAX | MIN | MAX | | Α | 0.750 | 0.785 | 19.05 | 19.93 | | В | 0.240 | 0.295 | 6.10 | 7.49 | | С | _ | 0.200 | | 5.08 | | D | 0.015 | 0.020 | 0.39 | 0.50 | | E | 0.050 | BSC | 1.27 BSC | | | F | 0.055 | 0.065 | 1.40 | 1.65 | | G | 0.100 BSC | | 2.54 | BSC | | J | 0.008 | 0.015 | 0.21 | 0.38 | | K | 0.125 | 0.170 | 3.18 | 4.31 | | L | 0.300 BSC | | 7.62 BSC | | | M | 0° | 15° | 0° | 15° | | N | 0.020 | 0.040 | 0.51 | 1.01 | - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. | _ | | | | | | |-----|-------|---------|-------------|---------|--| | | INC | HES | MILLIMETERS | | | | DIM | MIN | MAX | MIN | MAX | | | Α | 0.740 | 0.770 | 18.80 | 19.55 | | | В | 0.250 | 0.270 | 6.35 | 6.85 | | | С | 0.145 | 0.175 | 3.69 | 4.44 | | | D | 0.015 | 0.021 | 0.39 | 0.53 | | | F | 0.040 | 0.070 | 1.02 | 1.77 | | | G | 0. | 100 BSC | 2 | .54 BSC | | | Н | 0. | 050 BSC | 1 | .27 BSC | | | J | 0.008 | 0.015 | 0.21 | 0.38 | | | K | 0.110 | 0.130 | 2.80 | 3.30 | | | L | 0.295 | 0.305 | 7.50 | 7.74 | | | M | 0° | 10° | 0° | 10° | | | S | 0.020 | 0.040 | 0.51 | 1.01 | | - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI - Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIM | ETERS | INC | HES | | |-----|--------|-------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | С | 1.35 | 1.75 | 0.054 | 0.068 | | | D | 0.35 | 0.49 | 0.014 | 0.019 | | | F | 0.40 | 1.25 | 0.016 | 0.049 | | | G | 1.2 | 7 BSC | 0.050 BSC | | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | | K | 0.10 | 0.25 | 0.004 | 0.009 | | | M | 0° | 7° | 0° | 7° | | | Р | 5.80 | 6.20 | 0.229 | 0.244 | | | R | 0.25 | 0.50 | 0.010 | 0.019 | | ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. # **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative