
FTDI SmartBasic Hookup Guide 

 


Introduction

The FTDI SmartBasic is a variation on our classic FTDI Basic which allows 

you to connect a second device to the hardware serial port on an Arduino 

Pro, Pro Mini, or other USB-less board without compromising the ability to 

bootload code from the Arduino IDE.

Normally, to use a device which requires a serial port resource on an 

Arduino board, one must either use a software serial port or plug and 

unplug the device during programming. The SmartBasic board adds a 

multiplexer to the serial port pins coming from the Arduino, which allows the 

application code to switch the serial signals from the USB port to another 

device. No special code is required to enable programming, either!

Suggested Reading

Before we get started, you might want to review these other tutorials:

� Logic levels- Setting the jumper on the FTDI SmartBasic to the wrong 

voltage level may cause damage to one or more of the boards 

hooked up to it.

� Serial communications - The FTDI SmartBasic is a device for 

multiplexing serial signals; learn a bit more about serial data and how 

it works with this tutorial.

� Installing FTDI Drivers

Hardware Tour

Page 1 of 5



The FTDI SmartBasic hardware is pretty simple. It routes the serial signals 

from an Arduino Pro, Pro Mini, Fio, or LilyPad board (along with any other 

board which uses the standard FTDI header footprint) either to the 

programming PC via a USB-to-serial bridge or to any other device with the 

FTDI Basic-type header. It uses the venerable FT232RL chip used on the 

original FTDI Basic boards and the TS3USB221A signal multiplexer from TI

to make connecting to multiple serial devices easy.

The Board

The actual board design is fairly compact. We�ve left the headers off, so 

you can choose the header most appropriate for your application.

The header labeled �CLIENT� is basically the same as the output header on 

a standard FTDI Basic board. If you connect that header to the Arduino as 

you would with a normal Basic, you can program the Arduino exactly as you 

would normally, and never notice a difference.

The benefit comes in with the �HOST� header. That header can be 

connected to any host-type device (such as another FTDI board, or any of 

our Bluetooth Mate type boards). You can then wire the !OE and SEL lines 

to pins on the Arduino to enable the application code to route serial data 

from the hardware port to either the USB serial bridge or the device 

connected to the HOST header.

Because of the pull-down resistor on the SEL line, if that pin is left floating, 

the default destination for the traffic is the USB serial bridge. When in 

bootloader mode, all non-serial pins will be high impedance inputs, so after 

the Arduino IDE resets the Arduino board the bootloader and the PC will be 

able to communicate until the application loaded changes the level of that 

pin.

The AUX/!USB LED will be lit when the HOST port is selected and off when 

the data is being routed to the USB serial bridge. There is a solder jumper 

which can be adjusted to change the voltage on the VCC pins on the two 

headers (and the IO voltage on the FT232RL chip) from 3.3V to 5V; if that 

jumper is cleared completely, a supply on one of the two serial headers can 

be used to power both devices and the VDDIO, should you need a voltage 

other than 5V or 3.3V.

Connecting the SmartBasic

One of the common problems encountered when developing with a serial-

connected Bluetooth dongle is the inadequacy of the Arduino 

SoftwareSerial library. Transmissions with software serial are resource 

intensive, blocking the processor for the duration of the transmission. Long 

receives easily overrun the buffer, and can throw off the internal clocks 

used for millis() and micros().

Obviously, it�s desirable to use the hardware serial port, if possible, as it 

bypasses most of these issues. However, connecting anything other than 

an FTDI-type serial port to the hardware serial port header prevents it being 

Page 2 of 5



used for loading code unless the other device is removed. Here�s a diagram 

showing how to connect the FTDI SmartBasic in a way that removes that 

problem.

You can see that the connections from the Bluetooth Mate and the Arduino 

Pro Mini are straight-through; no need to cross wires, so you can plug them 

right in. Also note the connection of digital I/O pin 2 to the SEL line on the 

FTDI basic. This is what allows the multiplexing of the serial data: when the 

board is in bootloader mode, that pin will be a digital input and the SEL line 

will be pulled low by a pull down resistor on the SmartBasic. That will route 

the data to the FTDI chip to be sent to the PC, and data from the FTDI chip 

will be routed to the Pro Mini board, and bootloading of a sketch can occur 

normally.

Note, as well, that the CTS and DTR pins between the SmartBasic and the 

Bluetooth Mate are not connected. Since the multiplexer on the SmartBasic 

only has two channels, only the data channels can be swapped. That�s 

important, though, because DTR is needed to reset the Arduino at bootload 

time. If it were being re-routed, that would defeat the purpose of this board.

After the application sketch has loaded, the user can switch between the 

two data endpoints (the PC and the Bluetooth Mate) by asserting pin 2 high 

(for the Bluetooth Mate) or low (for the PC). Here�s a simple Arduino sketch 

showing that in action.

Page 3 of 5



#define SEL 2  // When the SEL pin is held low, the data will 
be 
               //  routed to the PC via the USBserial bridge. 
               //  That port is also the port used for program
ming 
               //  by the Arduino IDE. When in bootloading mod
e, a 
               //  pulldown resistor on the SmartBasic cause
s it 
               //  to remain in programming mode. 

#define ARDUINO_IDE   LOW  // Constants to make our routing ch
ange 
#define AUX_TERMINAL  HIGH //  more obvious. When the SEL pin 
is  
                           //  LOW, data is routed to the 
                           //  programming port. 

void setup() 
{ 
  Serial.begin(115200);    // Set up the hardware serial port. 

  pinMode(SEL, OUTPUT);    // Make the select line an outpu
t... 
  digitalWrite(SEL, ARDUINO_IDE); // ...and connect the board 
to 
                           //  the Arduino IDE's terminal.   
} 

void loop() 
{ 
  // The loop just says "Hello" to the two terminals, over and 
  //  over, forever. Note the use of the "flush()" function. I
f 
  //  omitted, the Arduino will reroute the serial data befor
e 
  //  the transmission has been completed; flush() causes the 
  //  Arduino to block until the serial data output buffer is 
  //  empty. Failure to use flush() will result in data being 
  //  sent to the wrong device, or to multiplexer changes duri
ng 
  //  transmission which may cause framing errors or data 
  //  corruption. *Always put in a flush() before you change 
  //  destination devices or disable the output.* 
  Serial.flush(); 
  digitalWrite(SEL, ARDUINO_IDE); 
  Serial.println("Hello, Arduino IDE!"); 

  // Swap to the nonArduino terminal and say hello. 
  Serial.flush(); 
  digitalWrite(SEL, AUX_TERMINAL); 
  Serial.println("Hello, auxilliary terminal!"); 

  Serial.flush(); 

  delay(500); // This is a ratelimiter only. The temptation t
o use 
              //  delay() instead of flush() is strong, but fi
ght it. 
              //  If you use delay, you will *certainly* make 
a change 
              //  to the code which makes the original delay t
ime too 
              //  short for the new serial data stream, result

Page 4 of 5



ing in 
              //  data corruption. flush() will *always* be th
e right 
              //  length. 
} 

Finally, I�ve omitted discussion of the OE pin. It can be left unconnected 

during normal use; however, if for some reason it becomes useful to 

disconnect the TX and RX pins on the SmartBasic from the client board, 

that pin can be asserted HIGH, which will put the client-side pins on the 

multiplexer into a high-impedance mode.

Further Reading

� Installing the bootloader - This tutorial will help you install, or re-

install, the bootloader on an Arduino board (or a bare Atmega328P).

� Bootloader development - More information on how the bootloader 

works and how to add or remove features from it.

� How the bootloader works - Arduino forum post regarding how the 

bootloader does its thing.

Page 5 of 5

11/10/2015https://learn.sparkfun.com/tutorials/ftdi-smartbasic-hookup-guide/all


