

Mini-Circuits

50Ω 0.03 to 1.7 GHz

THE BIG DEAL

- Very wideband, 30 MHz to 1.7 GHz
- Low NF over entire frequency band, 1.4 dB
- Low current and low voltage (2.7V and 7.7 mA)
- Internal bypass switching
- Suitable for low phase noise applications
- P1dB: +17.5 dBm typ.

Generic photo used for illustration purposes only

CASE STYLE: MC1630-1

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our website for methodologies and qualification

APPLICATIONS

- Wireless Base Station Systems
- Test and Measurement Systems
- Multi-Band Receivers

PRODUCT OVERVIEW

TSY-172LNB+(RoHS compliant) is an advanced Low Voltage, Low Current, Low Noise wideband Bypass amplifier fabricated using GaAs E-PHEMT technology offering extremely high dynamic range over a broad frequency range. It has integrated switches enabling users to bypass the amplifier. TSY-172LNB+ is enclosed in a 8-lead 2 x 2 mm MCLP package for good thermal performance.

KEY FEATURES

Feature	Advantages
Ultra-wideband: 30 MHz to 1.7 GHz	Ideal for a wide range of receiver applications including military, commercial wireless, and instrumentation.
Low Voltage & Low Current +2.7V & 7.7 mA	Ideal for Battery operates systems
High IP3 +24.7 dBm typ at 1 GHz	Provides enhanced linearity over broad frequency range under high signal conditions.
Bypass feature Low insertion loss	Unlike other amplifiers, insertion loss is low in Bypass mode. (For Bypass, both V_{DD} and Ve are set to 0V.)
Compact size: 2 x 2 x 1 mm	Saves space in dense system layouts. Low inductance, repeatable transitions, and excellent thermal contact.
Low additive phase noise, typically -155 dBc/Hz @10 KHz offset	Ideal for low phase noise synthesizer applications

REV. C ECO-013495 TSY-172LNB+ MCL NY 220527

ELECTRICAL SPECIFICATIONS¹ AT 25°C, Zo=50Ω & V_{DD}=+2.7V UNLESS OTHERWISE NOTED

Parameter	Condition (GHz)	Amplifier - ON			Amplifier - Bypass	Units
		Min.	Тур.	Max.	Тур.	
Frequency Range		0.03		1.7	0.03 - 1.7	GHz
	0.03		1.3		0.5	
	0.5		1.2		0.8	
Noise Figure	1.0		1.4		1.8	dB
	1.5		1.8		3.2	
	1.7		1.9		3.7	
Additive Phase Noise 2.0 GHz, 10KHz offset			-155		_	dBc/Hz
	0.03	_	15.3	_	-0.5	
	0.5	_	14.7	_	-0.8	
Gain	1.0	11.8	13.1	14.4	-1.8	dB
	1.5	_	11.0	_	-3.2	
	1.7	_	10.1	_	-3.7	
	0.03		13		19	
	0.5		14		14	
Input Return Loss	1.0		10		8	dB
	1.5		6		6	
	1.7		6		5	
	0.03		16		18	
	0.5		18		13	
Output Return Loss	1.0		14		7	dB
	1.5		11		5	
	1.7		10		6	
	0.03		15.8		1.2	
	0.5		17.1		2.7	
Output Power at 1dB Compression, AMP-ON ²	1.0		17.5		3.1	dBm
	1.5		17.8		2.6	
	1.7		17.4		1.4	
	0.03		25.6		24.9	
	0.5		26.4		28.4	
Output IP3 ³	1.0		24.7		30.4	dBm
	1.5		24.0		23.5	
	1.7		22.4		19.5	
Device Operating Voltage (V _{DD}) ⁵		2.5	2.7	2.9	0	V
Device Operating Current $(I_{D+}I_e)$		_	7.7	10.6	0	mA
Enable Voltage (V _e) ⁵		+2.5	+2.7	+2.9	0	V
Device Current Variation vs. Temperature ⁴			1.5			µA/°C
Device Current Variation vs. Voltage			0.0067		_	mA/mV
Thermal Resistance, junction-to-ground lead			229		_	°C/W

1. Measured on Mini-Circuits Characterization Test Board TB-943+. See Characterization Test Circuit (Fig. 1)

2. Current increases to 28-54 mA typ. at P1dB

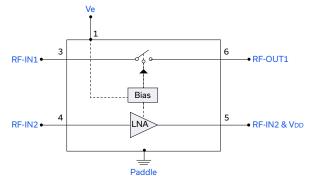
3. Tested at Pout=+6 dBm/tone

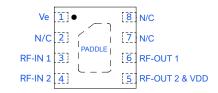
4. ((Current at 85°C - Current at -45°C)/130)

5. VDD is always connected to Ve

Mini-Circuits

MAXIMUM RATINGS⁶


Parameter		Ratings		
Operating Temperature (ground lead)		-40°C to 85°C		
Storage Temperature		-65°C to 150°C		
Total Power Dissipation		0.2W		
	Amplifier - ON	10 dBm (continuous), +23 dBm (5 min. max)		
Input Power	Amplifier Bypass	15 dBm (continuous), +22 dBm (5 min. max)		
DC Voltage V _{DD} (Pad 5)		6V		
DC Voltage Ve (Pad 1)		6V		


	Min.	Тур.	Max.	Units
Amplifier-ON ($V_{DD'} V_{e}$)	2.5	2.7	2.9	V
Amplifier-Bypass (V _{DD} , V _e)	_	_	0.3	

6. Permanent damage may occur if any of these limits are exceeded.

Electrical maximum ratings are not intended for continuous normal operation.

SIMPLIFIED SCHEMATIC & PAD DESCRIPTION

Function	Pad Number	Description (See Figure 1)
RF-IN 1 & RF-IN 2	3,4	RF-Input pads. Pad 4 is connected to Pad 3 via two $0.1 \mu F$ Capacitors
RF-OUT 1 & RF-OUT2 & VDD	5,6	RF-Output pads. Pad 6 is connected to Pad 5 via 0.1µF Capacitor.
Voltage Enable (Ve)	1	Enable Voltage pad. Ve is always connected to V_{DD} . For amplifier bypass, V_{DD} & Ve should be turned OFF simultaneously.
Ground	Paddle	Connect to ground. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance.
N/C	2,7,8	No connection

WIDEBAND Monolithic Amplifier TSY-172LNB+

SWITCHING SPECIFICATIONS

Parameter		Min.	Тур.	Max.	Units
Amplifier ON to Dunges	OFF TIME (50% Control to 10% RF)	—	6	—	c
Amplifier ON to Bypass	FALL TIME (90 TO 10% RF)	—	7	—	μS
	ON TIME (50% Control to 90% RF)	_	59	_	μS
Amplifier Bypass to ON	RISE TIME (10% to 90% RF)	_	20	_	
Control Voltage Leakage		_	443	_	mV

CHARACTERIZATION TEST CIRCUIT

P/N

1008CS-102XJLC

LQG15HS3N0S02D

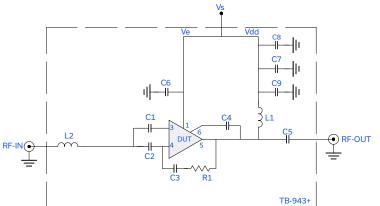


Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-943+)

Gain, Return loss, Output power at 1dB compression (P1dB), output IP3 (OIP3) and noise figure measured using Agilent's N5242A PNA-X microwave network analyzer.

Conditions:

Size

0402

0.115" x 0.11

Value

1uH

3nH

1. Gain and Return loss: Pin= -25dBm

- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, +6 dBm/tone at output.
- Switching Time RF Signal: Pin=-10 dBm at 500 MHz. VDD=Ve=0 to 2.5. / 2.7 / 2.9V, Pulse Signal=500 Hz, 50% duty cycle.

C1 to C8	GRM155R71C104KA88D	Murata	0.1uF	0402
C9	GRM1555C1H102JA01D	Murata	1000pF	0402
R1	RK73H1ETTP4320F	KOA	432 Ω	0402

Supplier

Coilcraft


Murata

PRODUCT MARKING

Component

L1

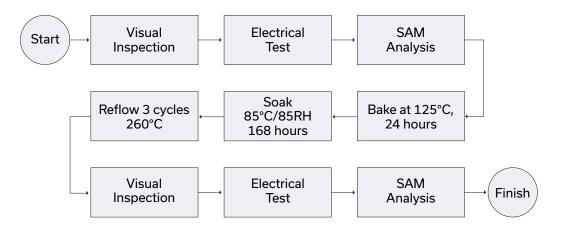
L2

Marking may contain other features or characters for internal lot control

Mini-Circuits

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD. TO ACCESS CLICK HERE

	Data Table
Performance Data	Swept Graphs
	S-Parameter (S2P Files) Data Set (.zip file)
Case Style	MC1630-1 Plastic package, exposed paddle, lead finish: Matt Tin
Tape & Reel Standard quantities available on reel	F66 7" reels with 20, 50, 100, 200, 500 or 2K devices
Suggested Layout for PCB Design	PL-536
Evaluation Board	TB-943+
Environmental Ratings	ENV08T1


ESD RATING

Human Body Model (HBM): Class 1A (Pass 250) in accordance with ANSI/ESD STM 5.1 - 2001 Machine.

MSL RATING

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL TEST FLOW CHART

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.html

Mini-Circuits