National Semiconductor is now part of Texas Instruments.

Search http://www.ti.com/ for the latest technical information and details on our current products and services.

LMH6714/ LMH6720/ LMH6722/ LMH6722Q

Wideband Video Op Amp; Single, Single with Shutdown and Quad

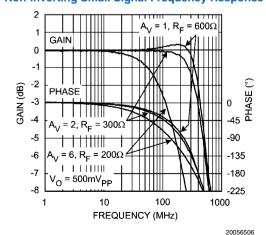
General Description

The LMH6714/LMH6720/LMH6722 series combine National's VIP10™ high speed complementary bipolar process with National's current feedback topology to produce a very high speed op amp. These amplifiers provide a 400MHz small signal bandwidth at a gain of +2V/V and a 1800V/µs slew rate while consuming only 5.6mA from ±5V supplies.

The LMH6714/LMH6720/LMH6722 series offer exceptional video performance with its 0.01% and 0.01° differential gain and phase errors for NTSC and PAL video signals while driving a back terminated 75 Ω load. They also offer a flat gain response of 0.1dB to 120MHz. Additionally, they can deliver 70mA continuous output current. This level of performance makes them an ideal op amp for broadcast quality video systems

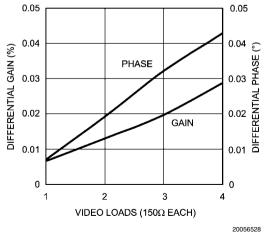
The LMH6714/LMH6720/LMH6722's small packages (SOIC, SOT23 and LLP), low power requirement, low noise and distortion allow the LMH6714/LMH6720/LMH6722 to serve portable RF applications. The high impedance state during shutdown makes the LMH6720 suitable for use in multiplexing multiple high speed signals onto a shared transmission line. The LMH6720 is also ideal for portable applications where current draw can be reduced with the shutdown function.

Features


- 400MHz $(A_V = +2V/V, V_{OUT} = 500mV_{PP}) -3dB BW$
- 250MHz $(A_V = +2V/V, V_{OUT} = 2V_{PP})$ -3dB BW
- 0.1dB gain flatness to 120MHz
- Low power: 5.6mA
- TTL compatible shutdown pin (LMH6720)
- Very low diff. gain, phase: 0.01%, 0.01° (LMH6714)
- -58 HD2/ -70 HD3 at 20MHz
- Fast slew rate: 1800V/µs
- Low shutdown current: 500uA (LMH6720)
- 11ns turn on time (LMH6720)
- 7ns shutdown time (LMH6720)
- Unity gain stable
- Improved replacement for CLC400,401,402,404,406 and 446 (LMH6714)
- Improved replacement for CLC405 (LMH6720)
- Improved replacement for CLC415 (LMH6722)
- LMH6722QSD is AEC-Q100 grade 1 qualified and is manufactured on an automotive grade flow

Applications

- HDTV, NTSC & PAL video systems
- Video switching and distribution
- Wideband active filters
- Cable drivers
- High speed multiplexer (LMH6720)
- Programmable gain amplifier (LMH6720)
- Automotive (LMH6722)


Typical Performance

Non-Inverting Small Signal Frequency Response

VIP10™ is a trademark of National Semiconductor Corporation.

Differential Gain and Phase vs. Number of Video Loads (LMH6714)

20056528

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

ESD Tolerance (Note 4) **Human Body Model** 2000V Machine Model 200V V_{CC} ±6.75V I_{OUT} (Note 3) Common Mode Input Voltage $\pm V_{CC}$ Differential Input Voltage 2.2V Maximum Junction Temperature +150°C Storage Temperature Range -65°C to +150°C Lead Temperature (soldering 10 sec) +300°C

Storage Temperature Range -65° C to $+150^{\circ}$ C Shutdown Pin Voltage (Note 5) $+V_{CC}$ to $V_{CC}/2-1$ V

Operating Ratings (Note 1)

Thermal Resistance Package (θ_{JA}) 5-Pin SOT23 232°C/W 6-Pin SOT23 198°C/W 8-Pin SOIC 145°C/W 14-Pin SOIC 130°C/W 14-Pin TSSOP 160°C/W 14-Pin LLP 46°C/W Operating Temperature -40°C to 85°C Operating Temperature LLP -40°C to 125°C Supply Voltage Range 8V (±4V) to 12.5V (±6.25V)

Electrical Characteristics

Unless specified, $A_V = +2$, $R_F = 300\Omega$: $V_{CC} = \pm 5V$, $R_L = 100\Omega$, LMH6714/LMH6720/LMH6722. **Boldface** limits apply at temperature extremes

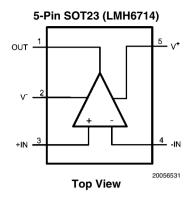
Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 7)	(Note 6)	(Note 7)	
Frequer	ncy Domain Response					
SSBW	-3dB Bandwidth	$V_{OUT} = 0.5V_{PP}$	345	400		MHz
LSBW	-3dB Bandwidth	$V_{OUT} = 2.0V_{PP}$	200	250		MHz
LSBW	-3dB Bandwidth, LMH6722 TSSOP package only	$V_{OUT} = 2.0V_{PP}$	170	250		MHz
	Gain Flatness	$V_{OUT} = 2V_{PP}$				
GFP	Peaking	DC to 120MHz		0.1		dB
GFR	Rolloff	DC to 120MHz		0.1		dB
LPD	Linear Phase Deviation	DC to 120MHz		0.5		deg
DG	Differential Gain	$R_L = 150\Omega$, 4.43MHz (LMH6714)		0.01		%
DG	Differential Gain	$R_L = 150\Omega$, 4.43MHz (LMH6720)		0.02		%
DP	Differential Phase	$R_L = 150\Omega$, 4.43MHz		0.01		deg
Time Do	omain Response	, -	•			
TRS	Rise and Fall Time	.5V Step		1.5		ns
TRL		2V Step		2.6		ns
t _s	Settling Time to 0.05%	2V Step		12		ns
SR	Slew Rate	6V Step	1200	1800		V/µs
Distorti	on and Noise Response					
HD2	2nd Harmonic Distortion	2V _{PP} , 20MHz		-58		dBc
HD3	3rd Harmonic Distortion	2V _{PP} , 20MHz		-70		dBc
IMD	3rd Order Intermodulation Products	10MHz, P _{OUT} = 0dBm		-78		dBc
	Equivalent Input Noise					
VN	Non-Inverting Voltage	>1MHz		3.4		nV/√Hz
NICN	Inverting Current	>1MHz		10		pA/√Hz
ICN	Non-Inverting Current	>1MHz		1.2		pA/√Hz
Static, E	C Performance	1			<u> </u>	•
V _{IO}	Input Offset Voltage			±0.2	±6 ±8	mV
DVIO	Average Drift			8		μV/°C

Symbol	Parameter	Conditions		Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units
I _{BN}	Input Bias Current	Non-Inverting			±1	±10 ± 15	μΑ
DIBN	Average Drift				4		nA/°C
I _{BI}	Input Bias Current	Inverting			-4	±12 ±20	μΑ
DIBI	Average Drift				41		nA/°C
PSRR	Power Supply Rejection Ratio	DC		48 47	58		dB
CMRR	Common Mode Rejection Ratio	DC		48 45	54		dB
I _{CC}	Supply Current	R _L = ∞	LMH6714 LMH6720	4.5 3	5.6	7.5 8	
			LMH6722	18 15	22.5	30 32	mA
I _{CCI}	Supply Current During Shutdown	LMH6720			500	670	μΑ
Miscella	neous Performance	•		'			
R _{IN}	Input Resistance	Non-Inverting			2		MΩ
C _{IN}	Input Capacitance	Non-Inverting			1.0		pF
R _{OUT}	Output Resistance	Closed Loop			0.06		Ω
V _{OUT}	Output Voltage Range	R _L = ∞		±3.5 ±3.4	±3.9		V
		$R_L = 100\Omega$		±3.6 ±3.4	±3.8		V
CMIR	Input Voltage Range	Common Mode			±2.2		V
I _{OUT}	Output Current (Note 3)	V _{IN} = 0V, Max Linear Current		50	70		mA
OFFMA X	Voltage for Shutdown	LMH6720				0.8	V
ONMIN	Voltage for Turn On	LMH6720		2.0			٧
IIH	Current Turn On	LMH6720, SD = 2.0V		-20 - 30	2	20 30	μΑ
IIL	Current Shutdown	LMH6720, SD = .8V		-600	-400	-100	μA
IOZ	R _{OUT} Shutdown	LMH6720, SD = .8V		0.2	1.8		ΜΩ
t _{on}	Turn on Time	LMH6720			11		ns
t _{off}	Turn off Time	LMH6720			7		ns

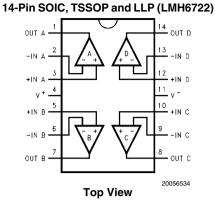
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications, see the Electrical Characteristics tables.

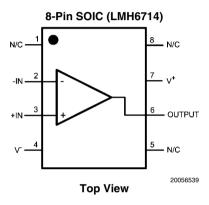
Note 2: Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self heating where $T_J > T_A$. See Applications Section for information on temperature derating of this device." Min/Max ratings are based on product characterization and simulation. Individual parameters are tested as noted.

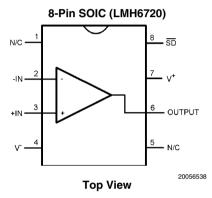
Note 3: The maximum output current (I_{OUT}) is determined by device power dissipation limitations. See the Power Dissipation section of the Application Division for more details.

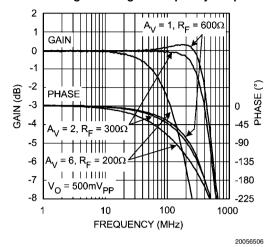

Note 4: Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

Note 5: The shutdown pin is designed to work between 0 and V_{CC} with split supplies ($V_{CC} = -V_{EE}$). With single supplies ($V_{EE} = \text{ground}$) the shutdown pin should not be taken below $V_{CC}/2$.

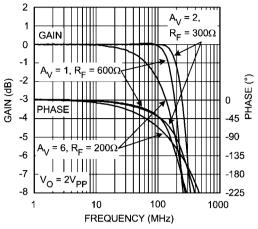

Note 6: Typical values represent the most likely parametric norm at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.


Note 7: All limits are guaranteed by testing, design, or statistical analysis.


Connection Diagrams

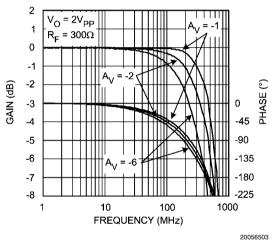

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing	Features
5-Pin SOT23	LMH6714MF	- A95A	1k Units Tape and Reel	MF05A	
5-PIII 50123	LMH6714MFX	A95A	3k Units Tape and Reel	IVIFUSA	
0 Din CO10	LMH6714MA	LMH6714MA	95 Units / Rail	M08A	
8-Pin SOIC	LMH6714MAX	LIVINO7 14IVIA	2.5k Units Tape and Reel	IVIUOA	
6-Pin SOT23	LMH6720MF	- A96A	1k Units Tape and Reel	MF06A	
6-FIII 30123	LMH6720MFX	A90A	3k Units Tape and Reel	WIFUOA	
8-Pin SOIC	LMH6720MA	LMH6720MA	95 Units / Rail	M08A	
6-FIII 30IC	LMH6720MAX	LIVINO720IVIA	2.5k Units Tape and Reel	IVIUOA	
14-Pin SOIC	LMH6722MA	LMH6722MA	55 Units / Rail	M14A	
14-FIII 3010	LMH6722MAX	LIVINO722IVIA	2.5k Units Tape and Reel	WH4A	
14–Pin	LMH6722MT	LMH6722MT	94 Units / Rail	MTC14	
TSSOP	LMH6722MTX	LIVINO722IVI I	2.5k Units Tape and Reel	WITC14	
	LMH6722SD	L6722	1k Units Tape and Reel	SDA14A	AEC-Q100 Grade 1
14-Pin LLP	LMH6722SDX	L0/22	4.5k Units Tape and Reel		qualified.
14-FIII LLP	LMH6722QSD	L6722Q	1k Units Tape and Reel		Automotive Grade
	LMH6722QSDX	L0/22Q	4.5k Units Tape and Reel		Production Flow**

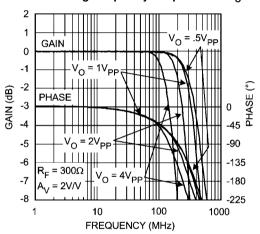

^{**}Automotive Grade (Q) product incorporates enhanced manufacturing and support processes for the automotive market, including defect detection methodologies. Reliability qualification is compliant with the requirements and temperature grades defined in the AEC-Q100 standard. Automotive grade products are identified with the letter Q. For more information go to http://www.national.com/automotive.

Typical Performance Characteristics $(V^+ = +5V, V^- = -5V, A_V = 2, R_F = 300\Omega, R_L = 100\Omega \text{ Unless Specified}).$

Non-Inverting Small Signal Frequency Response

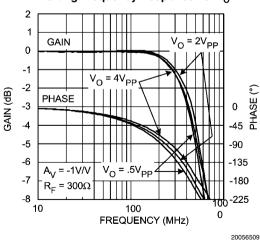


Non-Inverting Large Signal Frequency Response

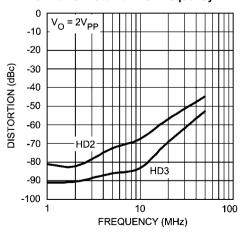


20056507

Inverting Frequency Response

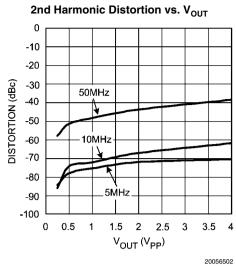


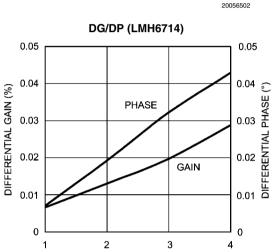
Non-Inverting Frequency Response vs. Vo



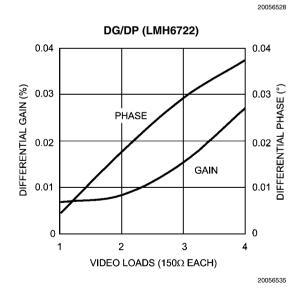
20056508

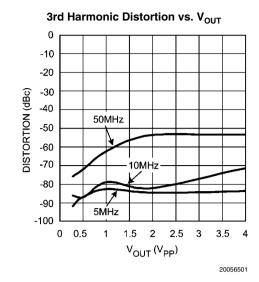
Inverting Frequency Response vs. Vo

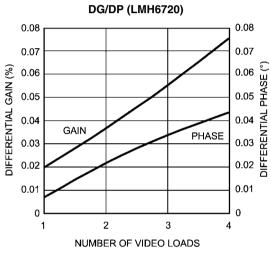

Harmonic Distortion vs. Frequency

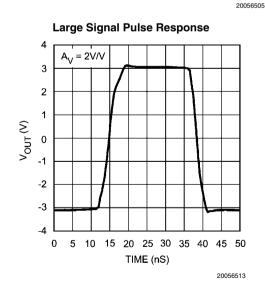


20056504

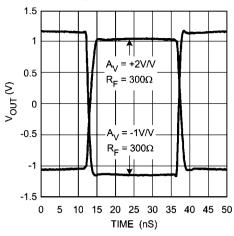

www.national.com


5

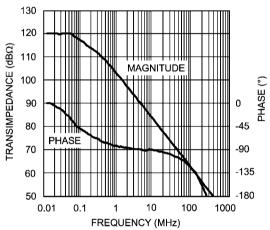




VIDEO LOADS (150 Ω EACH)



Small Signal Pulse Response

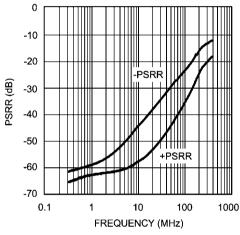

20056510

1000 100 (C) 10 0.1 0.01 0.01 0.01 0.1 1 10 100 1000

Closed Loop Output Resistance

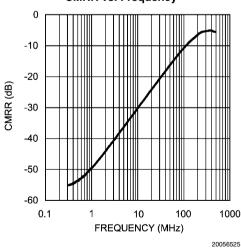
20056511

Open Loop Transimpedance Z(s)

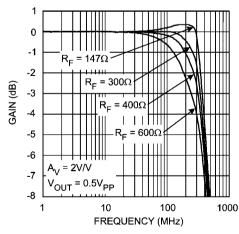


20056523

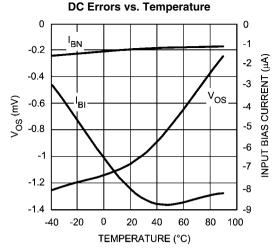
7


PSRR vs. Frequency

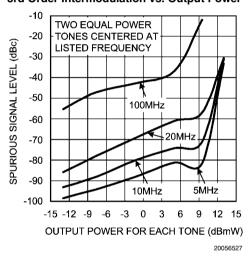
FREQUENCY (MHz)

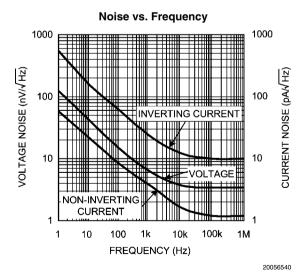


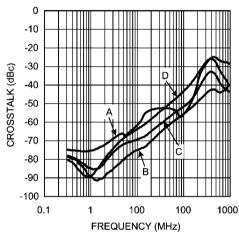
20056516


CMRR vs. Frequency

Frequency Response vs. $R_{\rm F}$




20056512


3rd Order Intermodulation vs. Output Power

Maximum V_{OUT} vs. Frequency MAXIMUM V_{OUT} (V_{PP}) 0.1 FREQUENCY (MHz)

Crosstalk vs. Frequency (LMH6722) for each channel with all others active

Application Section

FEEDBACK RESISTOR SELECTION

One of the key benefits of a current feedback operational amplifier is the ability to maintain optimum frequency response independent of gain by using appropriate values for the feedback resistor ($R_{\rm F}$). The Electrical Characteristics and Typical Performance plots specify an $R_{\rm F}$ of 300Ω , a gain of +2V/V and ± 5 V power supplies (unless otherwise specified). Generally, lowering $R_{\rm F}$ from it's recommended value will peak the frequency response and extend the bandwidth while increasing the value of $R_{\rm F}$ will cause the frequency response to roll off faster. Reducing the value of $R_{\rm F}$ too far below it's recommended value will cause overshoot, ringing and, eventually, oscillation.

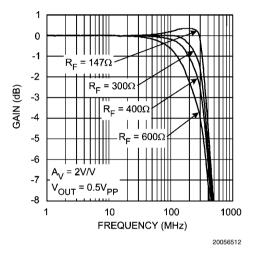


FIGURE 1. Frequency Response vs. R_F

The plot labeled "Frequency Response vs. R_{F} " shows the LMH6714/LMH6720/LMH6722's frequency response as R_{F} is varied (R_{L} = $100\Omega,~A_{\text{V}}$ = +2). This plot shows that an R_{F} of 147Ω results in peaking. An R_{F} of 300Ω gives near maximal bandwidth and gain flatness with good stability. An R_{F} of 400Ω gives excellent stability with only a small bandwidth penalty. Since all applications are slightly different it is worth some experimentation to find the optimal R_{F} for a given circuit. Note that it is not possible to use a current feedback amplifier with the output shorted directly to the inverting input. The buffer configuration of the LMH6714/LMH6720/LMH6722 requires a 600Ω feedback resistor for stable operation.

For more information see Application Note OA-13 which describes the relationship between $\rm R_F$ and closed-loop frequency response for current feedback operational amplifiers. The value for the inverting input impedance for the LMH6714/LMH6720/LMH6722 is approximately 180 Ω . The LMH6714/LMH6720/LMH6722 is designed for optimum performance at gains of +1 to +6 V/V and -1 to -5V/V. When using gains of \pm 7V/V or more the low values of $\rm R_G$ required will make inverting input impedances very low.

When configuring the LMH6714/LMH6720/LMH6722 for gains other than +2V/V, it is usually necessary to adjust the value of the feedback resistor. The two plots labeled "R_F vs. Non-inverting Gain" and "R_F vs. Inverting Gain" provide recommended feedback resistor values for a number of gain selections.

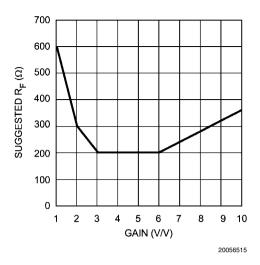


FIGURE 2. R_F vs. Non-Inverting Gain

In the " R_F vs. Non-Inverting Gain" and the " R_F vs. Inverting Gain" charts the recommended value of R_F is depicted by the solid line, which starts high, decreases to 200Ω and begins increasing again. The reason that a higher R_F is required at higher gains is the need to keep R_G from decreasing too far below the output impedance of the input buffer. For the LMH6714/LMH6720/LMH6722 the output resistance of the input buffer is approximately 180Ω and 50Ω is a practical lower limit for R_G . Due to the limitations on R_G the LMH6714/LMH6720/LMH6722 begins to operate in a gain bandwidth limited fashion for gains of $\pm 5 \text{V/V}$ or greater.

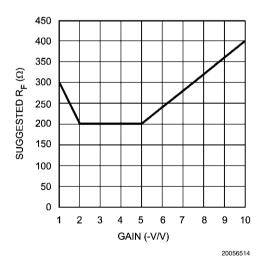


FIGURE 3. R_F vs. Inverting Gain

ACTIVE FILTERS

When using any current feedback Operational Amplifier as an active filter it is important to be very careful when using reactive components in the feedback loop. Anything that reduces the impedance of the negative feedback, especially at higher frequencies, will almost certainly cause stability problems. Likewise capacitance on the inverting input needs to be avoided. See Application Notes OA-7 and OA-26 for more information on Active Filter applications for Current Feedback Op Amps.

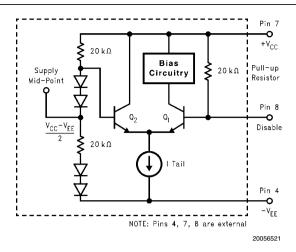


FIGURE 4. Enable/Disable Operation

ENABLE/DISABLE OPERATION USING ±5V SUPPLIES (LMH6720 ONLY)

The LMH6720 has a TTL logic compatible disable function. Apply a logic low (<.8V) to the DS pin and the LMH6720 is disabled. Apply a logic high (>2.0V), or let the pin float and the LMH6720 is enabled. Voltage, not current, at the Disable pin determines the enable/disable state. Care must be exercised to prevent the disable pin voltage from going more than . 8V below the midpoint of the supply voltages (0V with split supplies, $V_{\rm CC}/2$ with single supplies) doing so could cause transistor Q1 to Zener resulting in damage to the disable circuit. The core amplifier is unaffected by this, but disable operation could become slower as a result.

Disabled, the LMH6720 inputs and output become high impedances. While disabled the LMH6720 quiescent current is approximately 500 μ A. Because of the pull up resistor on the disable circuit the I_{CC} and I_{EE} currents are not balanced in the disabled state. The positive supply current (I_{CC}) is approximately 500 μ A while the negative supply current (I_{EE}) is only 200 μ A. The remaining I_{EE} current of 300 μ A flows through the disable pin.

The disable function can be used to create analog switches or multiplexers. Implement a single analog switch with one LMH6720 positioned between an input and output. Create an analog multiplexer with several LMH6720's. The LMH6720 is at it's best at a gain of 1 for multiplexer applications because there is no $\rm R_{\rm G}$ to shunt signals to ground.

DISABLE LIMITATIONS (LMH6720 ONLY)

The feedback Resistor (R $_{\rm F}$) limits off isolation in inverting gain configurations. During shutdown the impedance of the LMH6720 inputs and output become very high (>1M Ω), however R $_{\rm F}$ and R $_{\rm G}$ are the dominant factor for effective output impedance.

Do not apply voltages greater than $+V_{CC}$ or less than 0V ($V_{CC}/2$ single supply) to the disable pin. The input ESD diodes will also conduct if the signal leakage through the feedback resistors brings the inverting input near either supply rail.

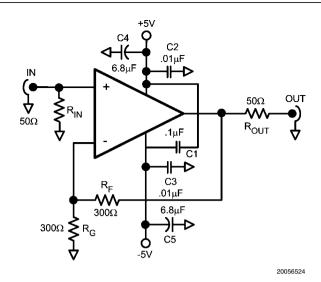
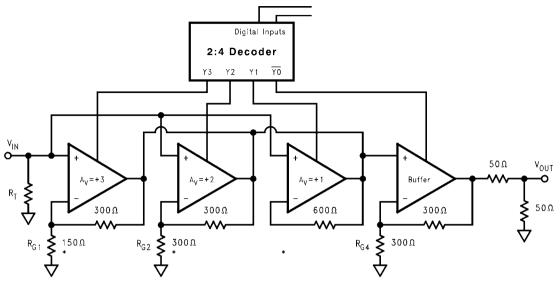


FIGURE 5. Typical Application with Suggested Supply
Bypassing

LAYOUT CONSIDERATIONS

Whenever questions about layout arise, use the evaluation board as a guide. The following Evaluation boards are available with sample parts:

LMH6714	SOT	CLC730216
	SOIC	CLC730227
LMH6720	SOT	CLC730216
	SOIC	CLC730227
LMH6722	SOIC	CLC730231


To reduce parasitic capacitances, the ground plane should be removed near the input and output pins. To reduce series inductance, trace lengths of components in the feedback loop should be minimized. For long signal paths controlled impedance lines should be used, along with impedance matching at both ends.

Bypass capacitors should be placed as close to the device as possible. Bypass capacitors from each rail to ground are applied in pairs. The larger electrolytic bypass capacitors can be located anywhere on the board, the smaller ceramic capacitors should be placed as close to the device as possible. In addition Figure 2 shows a capacitor (C1) across the supplies with no connection to ground. This capacitor is optional, however it is required for best 2nd Harmonic suppression. If this capacitor is omitted C2 and C3 should be increased to .1 μ F each

VIDEO PERFORMANCE

The LMH6714/LMH6720/LMH6722 has been designed to provide excellent performance with both PAL and NTSC composite video signals. Performance degrades as the loading is increased, therefore best performance will be obtained with back terminated loads. The back termination reduces reflections from the transmission line and effectively masks capacitance from the amplifier output stage. While all parts offer excellent video performance the LMH6714 and LMH6722 are slightly better than the LMH6720.

WIDE BAND DIGITAL PROGRAMMABLE GAIN AMPLIFIER (LMH6720 ONLY)

*NOTE: Selectable gains can be changed by using different ${\rm R}_{\rm q}$ resistors.

20056519

FIGURE 6. Wideband Digitally Controlled Programmable Gain Amplifier

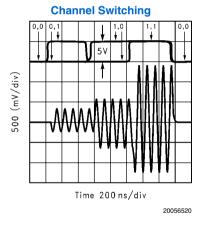


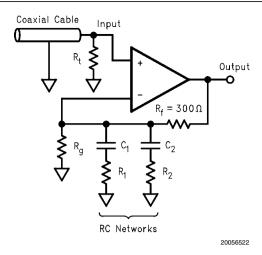
FIGURE 7. PGA Output

As shown in Figure 6 and Figure 7 the LMH6720 can be used to construct a digitally controlled programmable gain amplifier. Each amplifier is configured to provide a digitally selectable gain. To provide for accurate gain settings, 1% or AMPLITUDE EQUALIZATION

Sending signals over coaxial cable greater than 50 meters in length will attenuate high frequency signal components much more than lower frequency components. An equalizer can be made to pre emphasize the higher frequency components so that the final signal has less distortion. This process can be done at either end of the cable. The circuit in Figure 8 shows a receiver with some additional components in the feedback loop to equalize the incoming signal. The RC networks peak the signal at higher frequencies. This peaking is a piecewise linear approximation of the inverse of the frequency response of the coaxial cable. Figure 9 shows the effect of this equalization on a digital signal that has passed through 150 meters of coaxial cable. Figure 10 shows a Bode plot of the frequency

better tolerance is recommended on the feedback and gain resistors. The gain provided by each digital code is arbitrary through selection of the feedback and gain resistor values.

response of the circuit in Figure 8 along with equations needed to design the pole and zero frequencies. Figure 11 shows a network analyzer plot of an LMH6714/LMH6720/LMH6722 with the following component values:


 $R_G = 309\Omega$

 $R1 = 450\Omega$

C1 = 470pF

 $R2 = 91\Omega$

C2 = 68pF

FIGURE 8. Equalizer Circuit Schematic

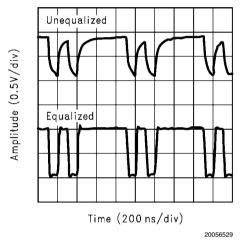


FIGURE 9. Digital Signal without and with Equalization

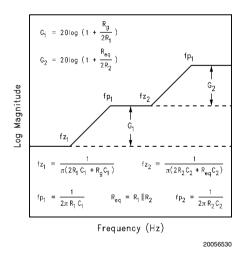


FIGURE 10. Design Equations

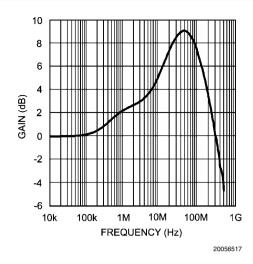
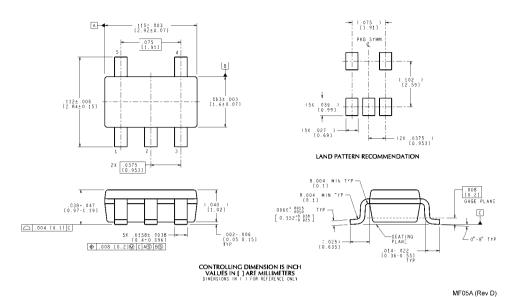
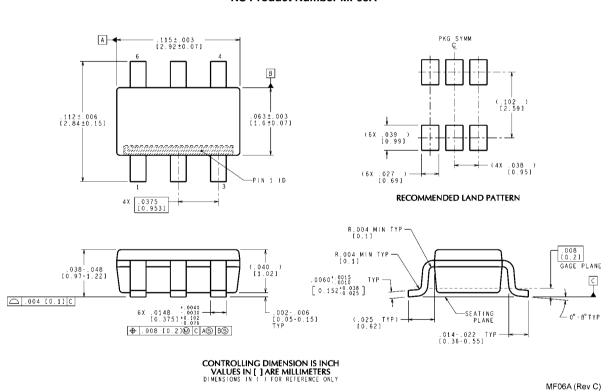


FIGURE 11. Equalizer Frequency Response

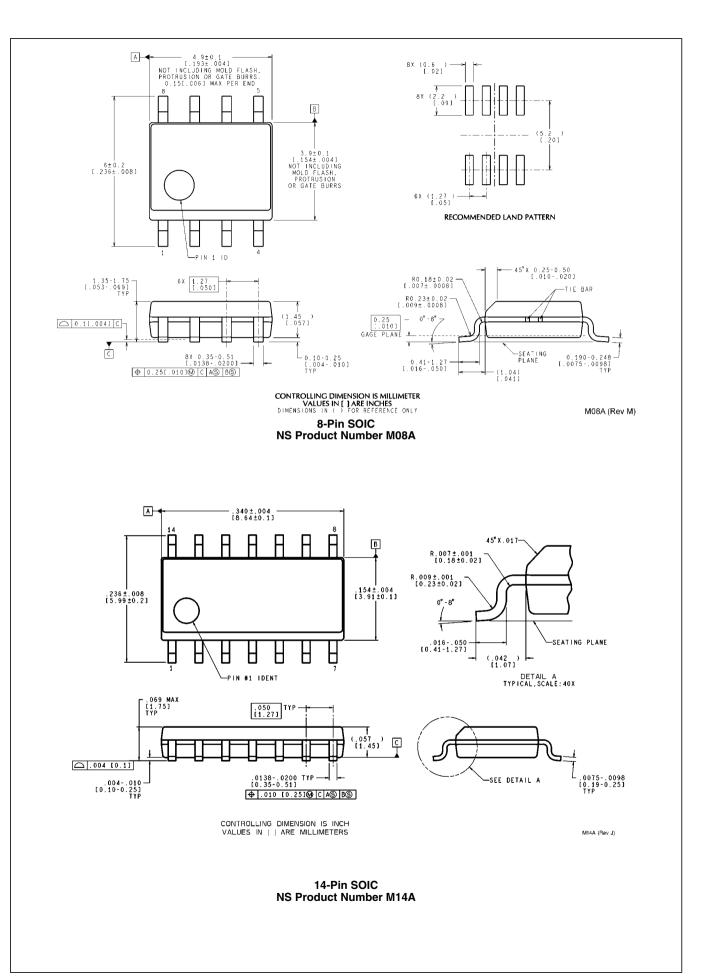
POWER DISSIPATION

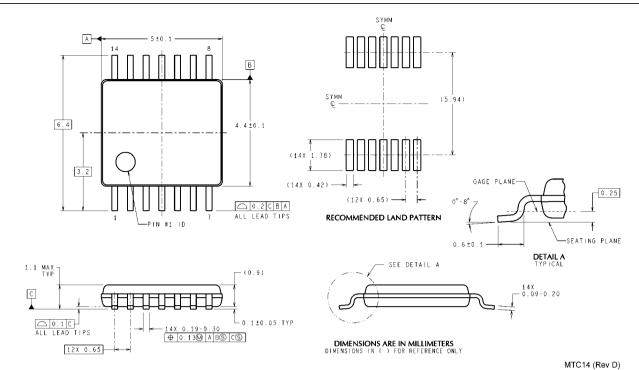

Follow these steps to determine the Maximum power dissipation for the LMH6714/LMH6720/LMH6722:

- 1. Calculate the quiescent (no load) power: $P_{AMP} = I_{CC} (V_{CC} V_{EE})$
- 2. Calculate the RMS power at the output stage: P_{OUT} (RMS) = ((V_{CC} V_{OUT} (RMS)) * I_{OUT} (RMS)), where V_{OUT} and I_{OUT} are the voltage and current across the external load.
- 3. Calculate the total RMS power: $P_T = P_{AMP} + P_{OUT}$

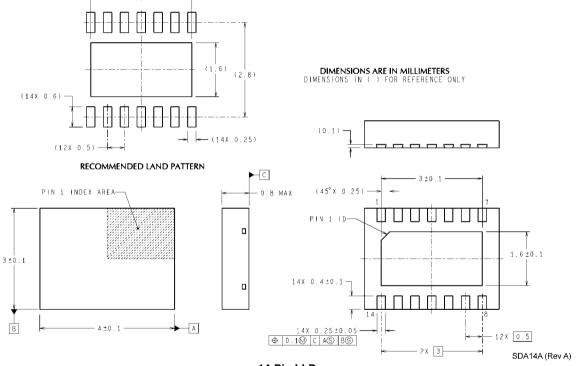

The maximum power that the LMH6714/LMH6720/LMH6722, package can dissipate at a given temperature can be derived with the following equation:

 $P_{MAX}=(150^{\circ}$ - $T_{A})/$ $\theta_{JA},$ where $T_{A}=$ Ambient temperature (° C) and $\theta_{JA}=$ Thermal resistance, from junction to ambient, for a given package (°C/W). For the SOIC package θ_{JA} is 148°C/W, for the SOT it is 250°C/W.


Physical Dimensions inches (millimeters) unless otherwise noted



5-Pin SOT23 NS Product Number MF05A



6-Pin SOT23 NS Product Number MF06A

14-Pin TSSOP NS Product Number MTC14

14-Pin LLP NS Product Number SDA14A

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
Wireless (PLL/VCO)	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com