
 2012 Microchip Technology Inc. DS41628B

PICkit� 3 Starter Kit

User�s Guide

DS41628B-page 2 2012 Microchip Technology Inc.

Information contained in this publication regarding device

applications and the like is provided only for your convenience

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR

WARRANTIES OF ANY KIND WHETHER EXPRESS OR

IMPLIED, WRITTEN OR ORAL, STATUTORY OR

OTHERWISE, RELATED TO THE INFORMATION,

INCLUDING BUT NOT LIMITED TO ITS CONDITION,

QUALITY, PERFORMANCE, MERCHANTABILITY OR

FITNESS FOR PURPOSE. Microchip disclaims all liability

arising from this information and its use. Use of Microchip

devices in life support and/or safety applications is entirely at

the buyer�s risk, and the buyer agrees to defend, indemnify and

hold harmless Microchip from any and all damages, claims,

suits, or expenses resulting from such use. No licenses are

conveyed, implicitly or otherwise, under any Microchip

intellectual property rights.

Note the following details of the code protection feature on Microchip devices:

� Microchip products meet the specification contained in their particular Microchip Data Sheet.

� Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

� There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our

knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip�s Data

Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

� Microchip is willing to work with the customer who is concerned about the integrity of their code.

� Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as �unbreakable.�

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our

products. Attempts to break Microchip�s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts

allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company�s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip�s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

== ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,

FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,

PICSTART, PIC32 logo, rfPIC, SST, SST Logo, SuperFlash

and UNI/O are registered trademarks of Microchip Technology

Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,

MTP, SEEVAL and The Embedded Control Solutions

Company are registered trademarks of Microchip Technology

Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of

Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom,

chipKIT, chipKIT logo, CodeGuard, dsPICDEM,

dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,

ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial

Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB

Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code

Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,

PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,

Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA

and Z-Scale are trademarks of Microchip Technology

Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated

in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip

Technology Germany II GmbH & Co. & KG, a subsidiary of

Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their

respective companies.

© 2012, Microchip Technology Incorporated, Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 9781620766972

PICkit� 3 STARTER KIT USER�S GUIDE

 2012 Microchip Technology Inc. DS41628B-page 3

Table of Contents

Chapter 1. Overview

1.1 Introduction ... 13

1.2 Highlights .. 13

1.3 What�s New .. 13

1.4 Included Items .. 13

1.5 The Low Pin Count Board .. 14

1.6 Software Overview ... 15

1.7 Running the Demonstrations .. 15

Chapter 2. PIC® MCU Architecture

2.1 Introduction ... 17

2.2 Core Basics ... 17

2.3 Data/Program Bus .. 20

2.4 Accumulator .. 20

2.5 Instructions ... 20

2.6 Byte .. 21

2.7 Bit ... 21

2.8 Literal .. 21

2.9 Control .. 22

2.10 Stack Level ... 25

2.11 Memory Organization ... 25

2.12 Program Memory .. 25
2.12.1 Flash Program Memory ... 25

2.12.2 Configuration Words .. 25

2.12.3 Device ID ... 25

2.12.4 Revision ID .. 26

2.12.5 User ID .. 27

2.13 Data Memory .. 27
2.13.1 Core Registers ... 28

2.13.2 Special Function Registers .. 28

2.13.3 General Purpose RAM .. 28

2.13.4 Common RAM ... 28

2.14 Banks .. 28

2.15 Data EEPROM Memory ... 34

2.16 Programming Basics .. 34
2.16.1 MPASM� Assembler Operation ... 34

2.16.2 XC8 Operation ... 34

2.16.3 Numbers in the Assembler .. 36

2.16.4 Numbers in the XC8 Compiler ... 36

PICkit� 3 STARTER KIT USER�S GUIDE

DS41628B-page 4 2012 Microchip Technology Inc.

2.17 MPASM Assembler Directives .. 36
2.17.1 Banksel ...36

2.17.2 cblock ...36

2.17.3 Org (addr) ..37

2.17.4 End ...37

2.17.5 Errorlevel ...37

2.17.6 #include ..37

Chapter 3. Lessons

3.1 Lessons .. 40

3.2 Lesson 1: Hello World (Turn on an LED) .. 41
3.2.1 Introduction ..41

3.2.2 Hardware Effects ...41

3.2.3 Summary ..41

3.2.4 New Registers ..41

3.2.5 New Instructions ..42

3.2.6 Assembly ...43

3.2.7 C Language ...45

3.3 Lesson 2: Blink ... 46
3.3.1 Introduction ..46

3.3.2 Hardware Effects ...46

3.3.3 Summary ..46

3.3.4 New Registers ..46

3.3.5 New Instructions ..46

3.3.6 Assembly ...47

3.3.7 C Language ...49

3.4 Lesson 3: Rotate ... 50
3.4.1 Introduction ..50

3.4.2 Hardware Effects ...50

3.4.3 Summary ..50

3.4.4 New Registers ..50

3.4.5 New Instructions ..50

3.4.6 Assembly ...51

3.4.7 C Language ...53

3.5 Lesson 4: Analog-to-Digital Conversion ... 54
3.5.1 Introduction ..54

3.5.2 Hardware Effects ...54

3.5.3 Summary ..54

3.5.4 New Registers ..54

3.5.5 New Instructions ..56

3.5.6 Assembly ...57

3.5.7 C Language ...57

3.6 Lesson 5: Variable Speed Rotate ... 59
3.6.1 Introduction ..59

3.6.2 Hardware Effects ...59

3.6.3 Summary ..59

3.6.4 New Registers ..59

3.6.5 New Instructions ..59

3.6.6 Assembly ...61

3.6.7 C Language ...61

 2012 Microchip Technology Inc. DS41628B-page 5

3.7 Lesson 6: Debounce ... 62
3.7.1 Introduction .. 62

3.7.2 Hardware Effects ... 62

3.7.3 Summary ... 63

3.7.4 New Registers ... 63

3.7.5 New Instructions .. 63

3.7.6 Assembly ... 63

3.7.7 PIC18 ... 63

3.7.8 C Language ... 63

3.8 Lesson 7: Reversible Variable Speed Rotate ... 64
3.8.1 Introduction .. 64

3.8.2 Hardware Effects ... 64

3.8.3 Summary ... 64

3.8.4 New Registers ... 65

3.8.5 New Instructions .. 65

3.8.6 Assembly ... 65

3.8.7 C Language ... 66

3.9 Lesson 8: Pulse-Width Modulation (PWM) ... 67
3.9.1 Introduction .. 67

3.9.2 Hardware Effects ... 67

3.9.3 Summary ... 67

3.9.4 New Registers ... 67

3.9.5 Assembly ... 70

3.10 Lesson 9: Timer0 .. 71
3.10.1 Introduction .. 71

3.10.2 Hardware Effects ... 71

3.10.3 Summary ... 71

3.10.4 New Registers ... 71

3.10.5 Assembly ... 72

3.10.6 C Language ... 72

3.11 Lesson 10: Interrupts and Pull-ups ... 73
3.11.1 Introduction .. 73

3.11.2 Hardware Effects ... 73

3.11.3 Summary ... 73

3.11.4 New Registers ... 75

3.11.5 New Instructions .. 76

3.11.6 Assembly ... 76

3.11.7 C Language ... 77

3.12 Lesson 11: Indirect Addressing .. 78
3.12.1 Introduction .. 78

3.12.2 Hardware Effects ... 78

3.12.3 Summary ... 78

3.12.4 New Registers ... 80

3.12.5 New Instructions .. 80

3.12.6 Assembly Language .. 81

3.12.7 C language .. 82

3.13 Lesson 12: Look-up Table ... 83
3.13.1 Intro ... 83

3.13.2 Hardware Effects ... 83

3.13.3 Summary ... 83

PICkit� 3 STARTER KIT USER�S GUIDE

DS41628B-page 6 2012 Microchip Technology Inc.

3.13.4 New Registers ..83

3.13.5 New Registers ..85

3.13.6 New Instructions: ...86

3.13.7 Assembly Language ..87

3.13.8 C Language ...90

3.14 Lesson 13: EEPROM ... 92
3.14.1 Introduction ..92

3.14.2 Hardware Effects ...92

3.14.3 Summary ..92

3.14.4 New Registers ..93

3.14.5 New Instructions ..93

3.14.6 Assembly Language ..93

3.14.7 C Language ...94

Appendix A. Block Diagram and MPLAB® X Shortcuts

A.1 Useful MPLAB® X Shortcuts .. 96

A.2 Finding Register Names ... 96

A.3 PIC MCU Assembly Coding Practices: ... 96

 2012 Microchip Technology Inc. DS41628B-page 7

PICkit� 3 STARTER KIT USER�S GUIDE

Preface

INTRODUCTION

This chapter contains general information that will be useful to know before using the

PICkit� 3 Starter Kit User�s Guide. Items discussed in this chapter include:

� Document Layout

� Conventions Used in this Guide

� Warranty Registration

� Recommended Reading

� The Microchip Web Site

� Development Systems Customer Change Notification Service

� Customer Support

� Document Revision History

DOCUMENT LAYOUT

This document describes how to use the PICkit� 3 Starter Kit User�s Guide as a devel-

opment tool to emulate and debug firmware on a target board. The manual layout is as

follows:

� Section Chapter 1. �Overview�

� Section Chapter 2. �PIC® MCU Architecture�

� Section Chapter 3. �Lessons�

� Appendix A. �Block Diagram and MPLAB® X Shortcuts�

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and

documentation are constantly evolving to meet customer needs, so some actual dialogs

and/or tool descriptions may differ from those in this document. Please refer to our web site

(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a �DS� number. This number is located on the bottom of each

page, in front of the page number. The numbering convention for the DS number is

�DSXXXXXA�, where �XXXXX� is the document number and �A� is the revision level of the

document.

For the most up-to-date information on development tools, see the MPLAB® IDE online help.

Select the Help menu, and then Topics to open a list of available online help files.

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 8 2012 Microchip Technology Inc.

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description Represents Examples

Arial font:

Italic characters Referenced books MPLAB® IDE User�s Guide

Emphasized text ...is the only compiler...

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer

Quotes A field name in a window or

dialog

�Save project before build�

Underlined, italic text with

right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK

A tab Click the Power tab

N�Rnnnn A number in verilog format,

where N is the total number of

digits, R is the radix and n is a

digit.

4�b0010, 2�hF1

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>

Courier New font:

Plain Courier New Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, �A�

Italic Courier New A variable argument file.o, where file can be

any valid filename

Square brackets [] Optional arguments mcc18 [options] file

[options]

Curly brackets and pipe

character: { | }

Choice of mutually exclusive

arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by

user

void main (void)
{ ...
}

Preface

 2012 Microchip Technology Inc. DS41628B-page 9

WARRANTY REGISTRATION

Please complete the enclosed Warranty Registration Card and mail it promptly.

Sending in the Warranty Registration Card entitles users to receive new product

updates. Interim software releases are available at the Microchip web site.

RECOMMENDED READING

This user�s guide describes how to use the PICkit� 3 Starter Kit User�s Guide. Other

useful documents are listed below. The following Microchip documents are available

and recommended as supplemental reference resources.

Readme for PICkit� 3 Starter Kit User�s Guide

For the latest information on using PICkit� 3 Starter Kit User�s Guide, read the

�Readme for PICkit� 3 Starter Kit Board User�s Guide.txt� file (an

ASCII text file) in the Readmes subdirectory of the MPLAB IDE installation directory.

The Readme file contains update information and known issues that may not be

included in this user�s guide.

PIC16(L)F1825/29 Data Sheet (DS41440)

This data sheet summarizes the features of the PIC16F1829.

PIC18(L)F1XK22 Data Sheet (DS41365)

This data sheet summarizes the features of the PIC18F14K22.

Readme Files

For the latest information on using other tools, read the tool-specific Readme files in

the Readmes subdirectory of the MPLAB IDE installation directory. The Readme files

contain update information and known issues that may not be included in this user�s

guide.

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 10 2012 Microchip Technology Inc.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web

site is used as a means to make files and information easily available to customers.

Accessible by using your favorite Internet browser, the web site contains the following

information:

� Product Support � Data sheets and errata, application notes and sample

programs, design resources, user�s guides and hardware support documents,

latest software releases and archived software

� General Technical Support � Frequently Asked Questions (FAQs), technical

support requests, online discussion groups, Microchip consultant program

member listing

� Business of Microchip � Product selector and ordering guides, latest Microchip

press releases, listing of seminars and events, listings of Microchip sales offices,

distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip�s customer notification service helps keep customers current on Microchip

products. Subscribers will receive e-mail notification whenever there are changes,

updates, revisions or errata related to a specified product family or development tool of

interest.

To register, access the Microchip web site at www.microchip.com, click on Customer

Change Notification and follow the registration instructions.

The Development Systems product group categories are:

� Compilers � The latest information on Microchip C compilers and other language

tools. These include the HI-TECH C® C16, MPLAB C18 and MPLAB C30 C com-

pilers; MPASM� and MPLAB ASM30 assemblers; MPLINK� and MPLAB

LINK30 object linkers; and MPLIB� and MPLAB LIB30 object librarians.

� In-Circuit Debuggers � The latest information on the Microchip in-circuit

debugger, MPLAB ICD 2, MPLAB ICD 3, PICkit� 3.

� MPLAB® IDE � The latest information on Microchip MPLAB IDE, the Windows®

Integrated Development Environment for development systems tools. This list is

focused on the MPLAB IDE, MPLAB SIM simulator, MPLAB IDE Project Manager

and general editing and debugging features.

� Programmers � The latest information on Microchip programmers. These include

the MPLAB PM3 device programmers and PICkit� 3 development programmers.

Preface

 2012 Microchip Technology Inc. DS41628B-page 11

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

� Distributor or Representative

� Local Sales Office

� Field Application Engineer (FAE)

� Technical Support

Customers should contact their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. A listing of

sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY

Revision A (October 2012)

� Initial Release of this Document.

Revision B (November 2012)

� Revised Sections 3.5.3, 3.5.4.1.1, 3.11.3.2, Table 3-15.

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 12 2012 Microchip Technology Inc.

NOTES:

PICkit� 3 STARTER KIT USER�S GUIDE

 2012 Microchip Technology Inc. DS41628B-page 13

Chapter 1. Overview

1.1 INTRODUCTION

This chapter introduces the hardware that is included in the kit, as well as a quick start

to downloading and installing the accompanying software.

1.2 HIGHLIGHTS

This chapter discusses:

- What�s New

- Included Items

- The Low Pin Count (LPC) Board Hardware

- Software Overview

- Running the Demonstrations

1.3 WHAT�S NEW

This kit is an update to the PICkit� 2 Starter Kit. Modifications to the previous LPC

board (DM164120-1) were made so that the full functionality of the code can be

debugged without the need of a debug header. The software has also been rewritten

to accommodate new technologies. The following is a list of new features:

1. Software is in both the �C� and assembler language

2. Extension of the number of lessons and modules covered

3. MPLAB® X support as well as the older MPLAB® 8

4. New PIC16 enhanced mid-range and PIC18 routines

5. Uses the universal XC8 compiler

The following is a list of hardware changes to the LPC board:

1. Potentiometer connected to RA4 (formerly to RA0)

2. Switch connected to RA2 (formerly to RA3)

This new LPC board is still backwards compatible. Bridging the old pins to the new pins

will restore functionality.

1.4 INCLUDED ITEMS

1. 1x PICkit 3 Programmer

2. 1x Micro USB cable

3. 1x LPC Board (Part Number : DM164130-9)

4. 1x PIC16F1829-I/P

5. 1x PIC18F14K22 -I/P

The 13 lessons can be downloaded from the web.

The PIC16F1829 is a new enhanced mid-range device, which supports more features

than the older mid-range PIC16 parts.

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 14 2012 Microchip Technology Inc.

The software associated with the kit supports the PIC16F1829 and PIC18F14K22. The

software is intended to run on these two devices, although the software can be easily

ported to other devices.

1.5 THE LOW PIN COUNT BOARD

Support for 18-pin devices requires some board modifications. 14- and 20-pin PIC

devices will have full access to all of the human interface devices. If an 8-pin part is

used, then the LEDs will have to be bridged to the necessary pins on the PIC MCU.

The switch and potentiometer are already connected to pins that are supported by an

8-pin device. The board provides holes next to the LEDs that can be easily soldered to

in order to create any desired hardware changes.

The board is programmable by an In-Circuit Serial Programmer� (ICSP�), such as a

PICkit� programmer. The board should be supplied with 5V. Figure 1-1 shows the LPC

Demo Board.

FIGURE 1-1: DEMO BOARD HARDWARE LAYOUT

Table 1-1 lists the components that are connected to the two PIC devices that come

with the board.

TABLE 1-1: PIN ASSIGNMENTS

Device LEDs <DS4:DS1> Switch � SW1 Potentiometer � RP1

PIC16F1829 <RC4:RC0> RA2 RA4

PIC18F14K22 <RC4:RC0> RA2 RA4

20-pin DIP

Socket

External Power

Push Button

ICSP™ Programming Header

14-pin Expansion Header

Generous Prototyping

Area

Potentiometer

LEDs

Overview

 2012 Microchip Technology Inc. DS41628B-page 15

1.6 SOFTWARE OVERVIEW

This guide will assume that the reader has a basic knowledge of electronics. The

reader does not need to have any programming experience with a PIC MCU before

reading, although a basic knowledge of programming and what the difference between

a bit and byte will help.

The software is written in both assembly and �C� in the MPLAB X and MPLAB 8 inte-

grated design environment (IDE). The assembly version is more complex and requires

more lines of code, however it is closely tied to the PIC device�s hardware and the

reader will gain a much better understanding by doing these lessons in parallel with the

�C� routines. The �C� programming language is a higher level language assembly, hence

it provides the reader with an easier to read flow of the program. Each lesson has both

versions and are functionally equivalent.

It is recommended that the lessons be followed sequentially, as presented, since most

of the lessons build up on one another. Each new program will introduce a new periph-

eral or concept. This guide is not intended to be read without following along in the

code.

The PIC18 and enhanced PIC16 programs will be presented side-by-side and their

differences and similarities explained.

1.7 RUNNING THE DEMONSTRATIONS

The board comes preprogrammed with a lesson. To use this program, either apply 5V

to the power header (P2), or connect a programmer to the programmer header (P1)

and apply 5V through the programmer in the IDE. The demo program will blink the four

red LEDs in succession. Press the push button (SW1), and the sequence will reverse.

Rotate the potentiometer (RP1), and the light sequence will blink at a different rate. This

demo program is developed through the first seven lessons in this guide.

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 16 2012 Microchip Technology Inc.

NOTES:

PICkit� 3 STARTER KIT USER�S GUIDE

 2012 Microchip Technology Inc. DS41628B-page 17

Chapter 2. PIC® MCU Architecture

2.1 INTRODUCTION

This chapter describes the architecture of the enhanced mid-range PIC16F1829

(DS41440), as well as the PIC18 (DS41365).

2.2 CORE BASICS

Enhanced PIC16 and PIC18 devices use a modified Harvard architecture, meaning the

code memory and data memory are independent. This allows faster execution because

code instructions and data can be accessed simultaneously. The subsequent instruc-

tion is fetched while decoding and executing the current instruction. In Figure 2-1 and

Figure 2-3, the reader should notice the separate lines for data bus and program bus.

This guide will cover nearly all of the registers and modules as seen in the following

figures. The following block diagrams should be referenced while each lesson is being

performed in order to understand the interactions.

FIGURE 2-1: SIMPLIFIED ENHANCED MID-RANGE PIC® MCU BLOCK DIAGRAM

Data Bus 8

14
Program

Bus

Instruction reg

Program Counter

8 Level Stack

(13-bit)

Direct Addr7

12

Addr MUX

FSR reg

STATUS reg

MUX

ALU

Power-up
Timer

Oscillator
Start-up Timer

Power-on
Reset

Watchdog
Timer

Instruction
Decode &

Control

Timing
Generation

OSC1/CLKIN

OSC2/CLKOUT

VDD

8

8

Brown-out

Reset

12

3

VSS

Internal
Oscillator

Block

Configuration

Data Bus 8

14
Program

Bus

Instruction reg

Program Counter

8 Level Stack

(13-bit)

7

Addr MUX

FSR reg

STATUS reg

MUX

ALU

W Reg

Instruction
Decode &

Control

Timing
Generation

VDD

8

8

3

VSS

Internal
Oscillator

Block

Configuration

15 Data Bus 8

14
Program

Bus

Instruction Reg

Program Counter

16-Level Stack

(15-bit)

7

RAM Addr

Addr MUX

Indirect
Addr

FSR0 Reg

STATUS Reg

MUX

ALU

Instruction
Decode and

Control

Timing
Generation

VDD

8

8

3

VSS

Internal
Oscillator

Block

Configuration

Flash

Program

Memory
RAM

FSR regFSR regFSR1 Reg

15

15

M
U

X

15

Program Memory

Read (PMR)

12

FSR regFSR regBSR Reg

5

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 18 2012 Microchip Technology Inc.

FIGURE 2-2: SIMPLIFIED ENHANCED MID-RANGE PIC® MCU DATA BLOCK DIAGRAM

PORTA

EUSART

Comparators

MSSP

Timer2Timer1 Timer4Timer0

ECCP1

ADC

10-Bit

ECCP2 ECCP3 CCP4 CCP5

Timer6

PORTB

PORTC

PORTD

PORTE

LCD

SR

Latch

Note 1: See applicable chapters for more information on peripherals.

CPU

Program

Flash Memory

EEPROMRAM

Timing
Generation

INTRC
Oscillator

MCLR

OSC1/CLKIN

OSC2/CLKOUT

Figure 2-1

PIC® MCU Architecture

 2012 Microchip Technology Inc. DS41628B-page 19

FIGURE 2-3: SIMPLIFIED PIC18 BLOCK DIAGRAM

Instruction
Decode and

Control

PORTA

PORTB

PORTC

RA1

RA0

Data Latch

Data Memory

Address Latch

Data Address<12>

12

AccessBSR FSR0

FSR1

FSR2

inc/dec
logic

Address

4 12 4

PCH PCL

 PCLATH

8

31-Level Stack

Program Counter

PRODLPRODH

8 x 8 Multiply

8

BITOP
88

ALU<8>

20

8

8

Table Pointer<21>

inc/dec logic

21

8

Data Bus<8>

Table Latch
8

 IR

12

3

ROM Latch

PCLATU

PCU

Note 1: RA3 is only available when MCLR functionality is disabled.

2: OSC1/CLKIN and OSC2/CLKOUT are only available in select oscillator modes and when these pins are

not being used as digital I/O.

EUSARTComparator MSSP
10-bit
ADC

Timer2Timer1 Timer3Timer0

ECCP1

BOR
Data

EEPROM

W

Instruction Bus <16>

STKPTR Bank

8

State machine
control signals

Decode

8

8

Power-up
Timer

Oscillator
Start-up Timer

Power-on
Reset

Watchdog
Timer

OSC1(2)

OSC2(2)

VDD,

Internal
Oscillator

Fail-Safe

Clock Monitor

Precision

Reference
Band GapVSS

MCLR(1)

Block

LFINTOSC
Oscillator

16 MHz
Oscillator

Single-Supply

Programming FVR

FVRFVR

CVREF

Address Latch

Program Memory

Data Latch

CVREF

RA3

RA4

RA5

RB4

RB5

RB6

RB7

RC0

RC1

RC2
RC3

RC4
RC5
RC6

RC7

(512/768 bytes) RA1

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 20 2012 Microchip Technology Inc.

2.3 DATA/PROGRAM BUS

The data bus is connected to the outside world via port pins, as well as all of the periph-

eral registers (timers, ADC, PWM). The program bus connects to the Flash memory

where the program is stored. This is where assembled code is programmed to.

2.4 ACCUMULATOR

There is only one accumulator � the working register (WREG). The accumulator han-

dles all data bus related tasks, such as mathematical operations. The ALU only deals

with 8-bit sized data � hence the categorical names of 8/16/32-bit micros.

2.5 INSTRUCTIONS

Instructions tell what the PIC device should do, whether it is shifting a few bits or jump-

ing to a new line in code. They form the very essence of each program in program

memory. All enhanced mid-range PIC devices have only 49 instructions. The PIC18

has 75 available instructions. Since there are very few instructions needed to learn, the

PIC device can be referred to as a �reduced instruction set computing�, or RISC,

processor.

Each instruction will be explained in detail as they are introduced in each lesson. For

now, the basis of what makes up each instruction will be explained.

One instruction cycle consists of four clock cycles. This means that if the PIC MCU is

running at 4 MHz, each instruction will take one microsecond, as seen in Equation 2-1.

EQUATION 2-1: INSTRUCTION TIME

All instructions are executed in a single instruction cycle, unless a conditional test is

true, or the program counter (PC) is changed. In these cases, the execution takes two

instruction cycles, with the additional instruction cycle executed as a NOP (do nothing),

see Example 2-1.

EXAMPLE 2-1:

This takes two instruction cycles only if pin RA0 is set (active-high), since the skip oper-

ation affects the PC.

The PIC18 has a larger word size than the enhanced PIC16 architecture. The PIC18

has a 16-bit wide word containing the operation code (opcode) and all required oper-

ands. The enhanced PIC16 has a 14-bit wide word. An opcode is interpreted by the

processor and is unique to each instruction.

The opcodes are broken into four formats:

1. Byte oriented

2. Bit oriented

3. Literal

4. Control

T clock cycle 1

FOSC
-------------=

4 * T
4

FOSC

4

4 MHz
----------------- 1 µs= = =

BTFSS PORTA, RA0

PIC® MCU Architecture

 2012 Microchip Technology Inc. DS41628B-page 21

2.6 BYTE

All byte instructions on the enhanced PIC16 contain a 6-bit opcode, 7-bit file address,

and a destination bit. All PIC18 byte instructions contain a 6-bit opcode, 8-bit file

address, a destination bit, and a RAM access bit.The sum of all the bit field sizes con-

firms that the PIC16 enhanced core does indeed have a 14-bit wide word size for

instructions. Likewise, the same can be seen for the PIC18 for its 16-bit wide word

length.

The RAM access bit (a) on the PIC18 is set when the user wishes to use the Bank

Select Register (BSR) for manually selecting the bank. The PIC16 user will always

need to make sure that they are in the correct bank by using the �banksel� directive.

This is explained in the first few lessons.

The destination bit (d) specifies whether the result will be stored in WREG or back in

the original file register. When �d� is zero, the result is placed in the WREG resister.

Otherwise, the result is placed in the file register.

The file register (f) specifies which register to use. This can be a Special Function

Register (SFR) or General Purpose Register (GPR).

EXAMPLE 2-2:

This adds the contents of WREG and data, with the result being saved back to the file

register data.

The PIC18 can move data from one file register directly to another file register, circum-

venting the WREG. All file moves in the enhanced PIC16 architecture must go through

the WREG.

2.7 BIT

Bit instructions operate on a specific bit within a file register. These instructions may set

or clear a specific bit within a file register. They may also be used to test a specific bit

within a file register. All bit instructions on the enhanced PIC16 contain a 4-bit opcode,

7-bit file address, and a 3-bit bit address. All PIC18 byte instructions contain a 4-bit

opcode, 8-bit file address, 3-bit bit address and a RAM access bit.

EXAMPLE 2-3:

This sets pin RA0 in the PORTA register.

2.8 LITERAL

Literal operations contain the data operand within the instruction. Both architectures

use an 8-bit intermediate value. The rest of the bits are reserved for the opcode.

EXAMPLE 2-4:

This moves the ASCII value of �A� (0x41) into WREG.

ADDWF data,f

BSF PORTA,RA0

MOVLW �A�

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 22 2012 Microchip Technology Inc.

2.9 CONTROL

Instructions that dictate what address the PC will select in program memory are called

control instructions. This would include call, goto, and branch. Each has a unique

word length. Please refer to the �Instruction Set Summary� chapter in any PIC device

data sheet for more information.

PIC® MCU Architecture

 2012 Microchip Technology Inc. DS41628B-page 23

FIGURE 2-4: ENHANCED PIC16 GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations

13 8 7 6 0

d = 0 for destination W

OPCODE d f (FILE #)

d = 1 for destination f
f = 7-bit file register address

Bit-oriented file register operations

13 10 9 7 6 0

OPCODE b (BIT #) f (FILE #)

b = 3-bit bit address
f = 7-bit file register address

Literal and control operations

13 8 7 0

OPCODE k (literal)

k = 8-bit immediate value

13 11 10 0

OPCODE k (literal)

k = 11-bit immediate value

General

CALL and GOTO instructions only

MOVLP instruction only

13 5 4 0

OPCODE k (literal)

k = 5-bit immediate value

MOVLB instruction only

13 9 8 0

OPCODE k (literal)

k = 9-bit immediate value

BRA instruction only

FSR Offset instructions

13 7 6 5 0

OPCODE n k (literal)

n = appropriate FSR

FSR Increment instructions

13 7 6 0

OPCODE k (literal)

k = 7-bit immediate value

13 3 2 1 0

OPCODE n m (mode)

n = appropriate FSR

m = 2-bit mode value

k = 6-bit immediate value

13 0

 OPCODE

OPCODE only

ADDWF MYREG, W

BSF MYREG, BIT

MOVLW 0x45

CALL LABEL

MOVLP 15

MOVLB 3

BRA LABEL

ADDFSR FSR1, 3

MOVIW ++FSR0

Example Instruction

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 24 2012 Microchip Technology Inc.

FIGURE 2-5: PIC18 GENERAL FORMAT FOR INSTRUCTIONS

There are some subtle differences between the block diagrams in Figure 2-1 and

Figure 2-3. This document will point out a few of the important ones.

Byte-oriented file register operations

15 10 9 8 7 0

d = 0 for result destination to be WREG register

OPCODE d a f (FILE #)

d = 1 for result destination to be file register (f)
a = 0 to force Access Bank

Bit-oriented file register operations

15 12 11 9 8 7 0

OPCODE b (BIT #) a f (FILE #)

b = 3-bit position of bit in file register (f)

Literal operations

15 8 7 0

 OPCODE k (literal)

k = 8-bit immediate value

Byte to Byte move operations (2-word)

15 12 11 0

OPCODE f (Source FILE #)

CALL, GOTO and Branch operations

15 8 7 0

OPCODE n<7:0> (literal)

n = 20-bit immediate value

a = 1 for BSR to select bank
f = 8-bit file register address

a = 0 to force Access Bank

a = 1 for BSR to select bank

f = 8-bit file register address

15 12 11 0

1111 n<19:8> (literal)

15 12 11 0

 1111 f (Destination FILE #)

f = 12-bit file register address

Control operations

Example Instruction

ADDWF MYREG, W, B

MOVFF MYREG1, MYREG2

BSF MYREG, bit, B

MOVLW 7Fh

GOTO Label

15 8 7 0

OPCODE n<7:0> (literal)

15 12 11 0

1111 n<19:8> (literal)

CALL MYFUNC

15 11 10 0

 OPCODE n<10:0> (literal)

S = Fast bit

BRA MYFUNC

15 8 7 0

OPCODE n<7:0> (literal) BC MYFUNC

S

PIC® MCU Architecture

 2012 Microchip Technology Inc. DS41628B-page 25

2.10 STACK LEVEL

The PIC18 has a deeper stack level of 31, whereas the enhanced core has 16. A

deeper stack allows the PIC device to make more calls in the software before returning

to the original address where the first call was made.

A call or goto modifies the program counter to point to a different place in code. With-

out these, the code would execute from the top to the bottom. The lessons will show

the significance of this.

The call stack is used to save the return address before going to a new position in

program memory.

As a frame of reference, some of the baseline parts (PIC10/12) devices have a call

stack that is only two levels deep. It is quite a challenge to create modular code with a

limited stack depth.

2.11 MEMORY ORGANIZATION

There are three sections of memory in the PIC16 enhanced mid-range and PIC18

devices:

1. Program Memory

2. Data RAM

3. Data EEPROM

2.12 PROGRAM MEMORY

There are five sections of program memory:

1. Flash Program Memory

2. Configuration Words

3. Device ID

4. Revision ID

5. User ID

2.12.1 Flash Program Memory

All enhanced mid-range and PIC18 devices use Flash memory for programming. Flash

allows the PIC device to be erased and written to hundreds of thousands of times.

2.12.2 Configuration Words

There are several Configuration Word bits, or fuses, that allow different configurations

at run-time. Oscillator selections, memory protection, low-voltage detection, etc., are

some examples of configuration options. Each device has different configuration

options. Enhanced mid-range Configuration bits are read-only during code execution.

PIC18 can read all and write most Configuration bits during code execution. The

Configuration bits are programmed in a special way, as seen in the lesson source files.

2.12.3 Device ID

The Device ID contains the read-only manufacture�s ID for the PIC MCU. The

PIC16F1829 ID is stored in DEVICEID and the PIC18F14K22 is stored in DEVID1 and

DEVID2.

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 26 2012 Microchip Technology Inc.

2.12.4 Revision ID

There are five bits in each PIC MCU that indicate the silicon revision of the PIC device.

These bits are read-only and found in the DEVID register. There are usually multiple

revisions of silicon for each PIC device. The errata document, which points out any

errors and their temporary work-arounds, should be read alongside the data sheet.

The PIC18 has a program bus that is 21 bits wide, whereas the enhanced core is only

15 bits wide. A larger program bus infers that the program memory is larger, since it

allows the core to locate a higher address value. The enhanced core program counter

is capable of addressing 32K x 14 program memory space as seen in Figure 2-6.

FIGURE 2-6: ENHANCED MID-RANGE PROGRAM MEMORY MAP AND

CALL STACK

PIC18 devices are capable of addressing a 2-Mbyte program memory space, as seen

in Figure 2-7. PIC18 devices also have two interrupt vectors, whereas the enhanced

PIC devices only have one. A stark difference is that the PIC18 has no concept of

pages, whereas the enhanced core has its program memory split into different pages.

PC<14:0>

15

0000h

0004H

Stack Level 0

Stack Level 15

Reset Vector

Interrupt Vector

Stack Level 1

0005h

On-chip
Program
Memory

Page 0
07FFh

Rollover to Page 0

0800h

0FFFh

1000h

7FFFh

Page 1

Rollover to Page 3

Page 2

Page 3

17FFh

1800h

1FFFh

2000h

CALL, CALLW
 RETURN, RETLW

 Interrupt, RETFIE

PIC® MCU Architecture

 2012 Microchip Technology Inc. DS41628B-page 27

Changing pages is necessary in the enhanced core when changing execution from one

page to another. None of the lessons for the enhanced PIC16 occupy more than one

page and, therefore, page changes are not necessary. If the code does overflow into

another page, the assembler will give a warning, indicating that a pagesel may be

required.

FIGURE 2-7: PIC18 PROGRAM MEMORY MAP AND CALL STACK

2.12.5 User ID

These four memory locations are designated as ID locations where the programmer

can store checksum or other code identification numbers. These are readable and

writable during normal execution.

2.13 DATA MEMORY

The data memory layout of the two device families is perhaps the most significant. Data

memory on both families can be split into four types:

1. Core Registers

2. Special Function Registers

3. General Purpose RAM

4. Common RAM

PC<20:0>

Stack Level 1

Stack Level 31

Reset Vector

Low Priority Interrupt Vector

CALL,RCALL,RETURN
RETFIE,RETLW

21

0000h

0018h

High Priority Interrupt Vector 0008h

U
s
e

r
M

e
m

o
ry

 S
p
a

c
e

1FFFFFh

4000h

3FFFh

200000h

On-Chip
Program Memory

Read �0�

1FFFh

2000h

On-Chip
Program Memory

Read �0�

PIC18(L)F14K22

PIC18(L)F13K22

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 28 2012 Microchip Technology Inc.

2.13.1 Core Registers

The core registers contain the registers that directly affect the basic operation of the

PIC device, repeated at the top of every data memory bank. Here are three examples

of the 12 core registers:

1. STATUS

2. WREG

3. INTCON

The STATUS register contains the arithmetic status of the ALU. The WREG register is

used to move bits in and out of registers. The INTCON register contains the various

enable and flag bits that would cause the PIC MCU to jump to the Interrupt Vector.

2.13.2 Special Function Registers

The Special Function Registers provide access to the peripheral functions in the

device. The Special Function Registers occupy 20 bytes immediately after the core reg-

isters of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh) on the

enhanced mid-range core. The PIC18 enhanced core has all of its SFRs in Access

RAM, which is discussed in Section 2.14 �Banks�.

2.13.3 General Purpose RAM

GPRs are used for data storage and scratchpad operations in the user�s application.

Think of this as RAM that can be used for your program, but the correct bank must be

selected before using. For the enhanced mid-range PIC devices, there are up to 80

bytes of GPR that follow immediately after the SFR space in each data memory bank.

2.13.4 Common RAM

There are 16 bytes of common RAM accessible from all banks in the enhanced core.

The PIC18 architecture has something similar called Access RAM, which contains up

to 96 bytes.

2.14 BANKS

The PIC18F14K22 data memory is divided into 16 banks that contain 256 bytes each.

The PIC16F1829 data memory is partitioned in 32 memory banks with 128 bytes in

each bank. For the PIC16 enhanced mid-range, each bank consists of:

1. 12 core registers

2. 20 Special Function Registers (SFR)

3. Up to 80 bytes of General Purpose RAM (GPR)

4. 16 bytes of shared RAM (accessible by any bank)

Figure 2-8 shows the above information on the enhanced PIC16.

PIC® MCU Architecture

 2012 Microchip Technology Inc. DS41628B-page 29

FIGURE 2-8: ENHANCED MID-RANGE BANKED MEMORY PARTITIONING

Addresses 70h-7Fh are shared by all of the banks. This is useful for storing a few bytes

of RAM without the need to switch banks each time the byte is used. Figure 2-9 shows

the first eight banks on the PIC16F1829. Notice how the top 12 core registers are

accessible from every bank, as are the 16 bytes of common RAM.

0Bh

0Ch

1Fh

20h

6Fh

70h

7Fh

00h

Common RAM

(16 bytes)

General Purpose RAM

(80 bytes maximum)

Core Registers

(12 bytes)

Special Function Registers

(20 bytes maximum)

Memory Region7-bit Bank Offset

P
IC

k
it�

 3
 S

ta
rte

r K
it U

s
e

r�s
 G

u
id

e

D
S

4
1

6
2

8
B

-p
a

g
e

 3
0

 2

0
1

2
 M

ic
ro

c
h

ip
 T

e
c
h

n
o

lo
g

y
 In

c
.

FIGURE 2-9: PIC16F1829 MEMORY MAP � THE CORRECT BANK MUST BE SELECTED BEFORE WRITING/READING FROM A

REGISTER

BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5 BANK 6 BANK 7

000h INDF0 080h INDF0 100h INDF0 180h INDF0 200h INDF0 280h INDF0 300h INDF0 380h INDF0

001h INDF1 081h INDF1 101h INDF1 181h INDF1 201h INDF1 281h INDF1 301h INDF1 381h INDF1

002h PCL 082h PCL 102h PCL 182h PCL 202h PCL 282h PCL 302h PCL 382h PCL

003h STATUS 083h STATUS 103h STATUS 183h STATUS 203h STATUS 283h STATUS 303h STATUS 383h STATUS

004h FSR0L 084h FSR0L 104h FSR0L 184h FSR0L 204h FSR0L 284h FSR0L 304h FSR0L 384h FSR0L

005h FSR0H 085h FSR0H 105h FSR0H 185h FSR0H 205h FSR0H 285h FSR0H 305h FSR0H 385h FSR0H

006h FSR1L 086h FSR1L 106h FSR1L 186h FSR1L 206h FSR1L 286h FSR1L 306h FSR1L 386h FSR1L

007h FSR1H 087h FSR1H 107h FSR1H 187h FSR1H 207h FSR1H 287h FSR1H 307h FSR1H 387h FSR1H

008h BSR 088h BSR 108h BSR 188h BSR 208h BSR 288h BSR 308h BSR 388h BSR

009h WREG 089h WREG 109h WREG 189h WREG 209h WREG 289h WREG 309h WREG 389h WREG

00Ah PCLATH 08Ah PCLATH 10Ah PCLATH 18Ah PCLATH 20Ah PCLATH 28Ah PCLATH 30Ah PCLATH 38Ah PCLATH

00Bh INTCON 08Bh INTCON 10Bh INTCON 18Bh INTCON 20Bh INTCON 28Bh INTCON 30Bh INTCON 38Bh INTCON

00Ch PORTA 08Ch TRISA 10Ch LATA 18Ch ANSELA 20Ch WPUA 28Ch � 30Ch � 38Ch INLVLA

00Dh PORTB(1) 08Dh TRISB(1) 10Dh LATB(1) 18Dh ANSELB(1) 20Dh WPUB(1) 28Dh � 30Dh � 38Dh INLVLB(1)

00Eh PORTC 08Eh TRISC 10Eh LATC 18Eh ANSELC 20Eh WPUC 28Eh � 30Eh � 38Eh INLVLC

00Fh � 08Fh � 10Fh � 18Fh � 20Fh � 28Fh � 30Fh � 38Fh �

010h � 090h � 110h � 190h � 210h � 290h � 310h � 390h �

011h PIR1 091h PIE1 111h CM1CON0 191h EEADRL 211h SSP1BUF 291h CCPR1L 311h CCPR3L 391h IOCAP

012h PIR2 092h PIE2 112h CM1CON1 192h EEADRH 212h SSP1ADD 292h CCPR1H 312h CCPR3H 392h IOCAN

013h � 093h � 113h CM2CON0 193h EEDATL 213h SSP1MSK 293h CCP1CON 313h CCP3CON 393h IOCAF

014h � 094h � 114h CM2CON1 194h EEDATH 214h SSP1STAT 294h PWM1CON 314h � 394h IOCBP(1)

015h TMR0 095h OPTION_REG 115h CMOUT 195h EECON1 215h SSP1CON 295h CCP1AS 315h � 395h IOCBN(1)

016h TMR1L 096h PCON 116h BORCON 196h EECON2 216h SSP1CON2 296h PSTR1CON 316h � 396h IOCBF(1)

017h TMR1H 097h WDTCON 117h FVRCON 197h � 217h SSP1CON3 297h � 317h � 397h �

018h T1CON 098h OSCTUNE 118h DACCON0 198h � 218h � 298h CCPR2L 318h CCPR4L 398h �

019h T1GCON 099h OSCCON 119h DACCON1 199h RCREG 219h SSP2BUF(1) 299h CCPR2H 319h CCPR4H 399h �

01Ah TMR2 09Ah OSCSTAT 11Ah SRCON0 19Ah TXREG 21Ah SSP2ADD(1) 29Ah CCP2CON 31Ah CCP4CON 39Ah CLKRCON

01Bh PR2 09Bh ADRESL 11Bh SRCON1 19Bh SPBRGL 21Bh SSP2MSK(1) 29Bh PWM2CON 31Bh � 39Bh �

01Ch T2CON 09Ch ADRESH 11Ch � 19Ch SPBRGH 21Ch SSP2STAT(1) 29Ch CCP2AS 31Ch � 39Ch MDCON

01Dh � 09Dh ADCON0 11Dh APFCON0 19Dh RCSTA 21Dh SSP2CON(1)
29Dh PSTR2CON 31Dh � 39Dh MDSRC

01Eh CPSCON0 09Eh ADCON1 11Eh APFCON1 19Eh TXSTA 21Eh SSP2CON2(1)
29Eh CCPTMRS 31Eh � 39Eh MDCARL

01Fh CPSCON1 09Fh � 11Fh � 19Fh BAUDCON 21Fh SSP2CON3(1) 29Fh � 31Fh � 39Fh MDCARH

020h

General
Purpose
Register
96 Bytes

0A0h

General
Purpose
Register
80 Bytes

120h

General
Purpose
Register
80 Bytes

1A0h

General
Purpose
Register
80 Bytes

220h

General
Purpose
Register
80 Bytes

2A0h

General
Purpose
Register
80 Bytes

320h

General
Purpose
Register
80 Bytes

3A0h

General
Purpose
Register
80 Bytes

06Fh 0EFh 16Fh 1EFh 26Fh 2EFh 36Fh 3EFh

070h 0F0h

Accesses
70h � 7Fh

170h

Accesses
70h � 7Fh

1F0h

Accesses
70h � 7Fh

270h

Accesses
70h � 7Fh

2F0h

Accesses
70h � 7Fh

370h

Accesses
70h � 7Fh

3F0h

Accesses
70h � 7Fh

07Fh 0FFh 17Fh 1FFh 27Fh 2FFh 37Fh 3FFh

Legend: = Unimplemented data memory locations, read as �0�.

Note 1: Available only on PIC16(L)F1829.

PIC® MCU Architecture

 2012 Microchip Technology Inc. DS41628B-page 31

When using the PIC16F1829 in assembly, the reader will be constantly referring back

to Figure 2-9 to make sure that the right bank is selected before writing to an SFR.

For PIC18 devices, the banking situation was streamlined so that the user does not

have to switch banks when using the access SFRs. The data memory is configured

with an Access Bank, which allows users to access a mapped block of memory without

specifying a Bank Select Register (BSR). The Access Bank consists of the first 96

bytes of memory in Bank 0 and the last 160 bytes of memory in Bank Block 15. This

lower half is known as the �Access RAM� and is composed of GPRs. The upper half is

where the device�s SFRs are mapped (Bank 15). When going through the assembly

lessons, the reader will notice the absence of bank switching. Figure 2-10 and

Figure 2-11 show this improved mapping scheme.

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 32 2012 Microchip Technology Inc.

FIGURE 2-10: PIC18F14K22 DATA MEMORY MAP

Bank 0

Bank 1

Bank 14

Bank 15

Data Memory MapBSR<3:0>

= 0000

= 0001

= 1111

060h
05Fh

F60h

FFFh

00h

5Fh
60h

FFh

Access Bank

When �a� = 0:

The BSR is ignored and the

Access Bank is used.

The first 96 bytes are

general purpose RAM

(from Bank 0).

The second 160 bytes are

Special Function Registers

(from Bank 15).

When �a� = 1:

The BSR specifies the bank

used by the instruction.

F5Fh

F00h
EFFh

1FFh

100h
0FFh

000h
Access RAM

FFh

00h

FFh

00h

FFh

00h

GPR

SFR

Access RAM High

Access RAM Low

Bank 2

= 0110

= 0010

(SFRs)

2FFh

200h

3FFh

300h

4FFh

400h

5FFh

500h

6FFh

600h

7FFh

700h

8FFh

800h

9FFh

900h

AFFh

A00h

BFFh

B00h

CFFh

C00h

DFFh

D00h

E00h

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Bank 8

Bank 9

Bank 10

Bank 11

Bank 12

Bank 13

FFh

00h

FFh

00h

FFh

00h

FFh

00h

FFh

00h

FFh

00h

FFh

00h

FFh

00h

FFh

00h

FFh

00h

FFh

00h

FFh

00h

FFh

00h

= 0011

= 0100

= 0101

= 0111

= 1000

= 1001

= 1010

= 1011

= 1100

= 1101

= 1110

Unused

Read 00h

Unused

F53h
SFR(1)

Note 1: SFRs occupying F53h to F5Fh address space are not in the virtual bank.

PIC® MCU Architecture

 2012 Microchip Technology Inc. DS41628B-page 33

FIGURE 2-11: PIC18F14K22 SPECIAL FUNCTION REGISTER MAP � ALL OF THESE ARE IN

BANK 15 WHICH IS INCLUDED IN THE �ACCESS RAM�

All of the SFRs in Figure 2-9 are in Bank 15 and do not require banking since this bank

is covered by the Access Bank. Switching banks in the enhanced mid-range core

requires two instructions, so this could potentially save a great number of instructions

in the overall program.

Address Name Address Name Address Name Address Name Address Name

FFFh TOSU FD7h TMR0H FAFh SPBRG F87h �(2) F5Fh �(2)

FFEh TOSH FD6h TMR0L FAEh RCREG F86h �(2) F5Eh �(2)

FFDh TOSL FD5h T0CON FADh TXREG F85h �(2) F5Dh �(2)

FFCh STKPTR FD4h �(2) FACh TXSTA F84h �(2) F5Ch �(2)

FFBh PCLATU FD3h OSCCON FABh RCSTA F83h �(2) F5Bh �(2)

FFAh PCLATH FD2h OSCCON2 FAAh �(2) F82h PORTC F5Ah �(2)

FF9h PCL FD1h WDTCON FA9h EEADR F81h PORTB F59h �(2)

FF8h TBLPTRU FD0h RCON FA8h EEDATA F80h PORTA F58h �(2)

FF7h TBLPTRH FCFh TMR1H FA7h EECON2(1) F7Fh ANSELH F57h �(2)

FF6h TBLPTRL FCEh TMR1L FA6h EECON1 F7Eh ANSEL F56h �(2)

FF5h TABLAT FCDh T1CON FA5h �(2) F7Dh �(2) F55h �(2)

FF4h PRODH FCCh TMR2 FA4h �(2) F7Ch �(2) F54h �(2)

FF3h PRODL FCBh PR2 FA3h �(2) F7Bh �(2) F53h �(2)

FF2h INTCON FCAh T2CON FA2h IPR2 F7Ah IOCB

FF1h INTCON2 FC9h SSPBUF FA1h PIR2 F79h IOCA

FF0h INTCON3 FC8h SSPADD FA0h PIE2 F78h WPUB

FEFh INDF0(1) FC7h SSPSTAT F9Fh IPR1 F77h WPUA

FEEh POSTINC0(1) FC6h SSPCON1 F9Eh PIR1 F76h SLRCON

FEDh POSTDEC0(1) FC5h SSPCON2 F9Dh PIE1 F75h �(2)

FECh PREINC0(1) FC4h ADRESH F9Ch �(2) F74h �(2)

FEBh PLUSW0(1) FC3h ADRESL F9Bh OSCTUNE F73h �(2)

FEAh FSR0H FC2h ADCON0 F9Ah �(2) F72h �(2)

FE9h FSR0L FC1h ADCON1 F99h �(2) F71h �(2)

FE8h WREG FC0h ADCON2 F98h �(2) F70h �(2)

FE7h INDF1(1) FBFh CCPR1H F97h �(2) F6Fh SSPMASK

FE6h POSTINC1(1) FBEh CCPR1L F96h �(2) F6Eh �(2)

FE5h POSTDEC1(1) FBDh CCP1CON F95h �(2) F6Dh CM1CON0

FE4h PREINC1(1) FBCh VREFCON2 F94h TRISC F6Ch CM2CON1

FE3h PLUSW1(1) FBBh VREFCON1 F93h TRISB F6Bh CM2CON0

FE2h FSR1H FBAh VREFCON0 F92h TRISA F6Ah �(2)

FE1h FSR1L FB9h PSTRCON F91h �(2) F69h SRCON1

FE0h BSR FB8h BAUDCON F90h �(2) F68h SRCON0

FDFh INDF2(1) FB7h PWM1CON F8Fh �(2) F67h �(2)

FDEh POSTINC2(1) FB6h ECCP1AS F8Eh �(2) F66h �(2)

FDDh POSTDEC2(1) FB5h �(2) F8Dh �(2) F65h �(2)

FDCh PREINC2(1) FB4h �(2) F8Ch �(2) F64h �(2)

FDBh PLUSW2(1) FB3h TMR3H F8Bh LATC F63h �(2)

FDAh FSR2H FB2h TMR3L F8Ah LATB F62h �(2)

FD9h FSR2L FB1h T3CON F89h LATA F61h �(2)

FD8h STATUS FB0h SPBRGH F88h �(2) F60h �(2)

Legend: = Unimplemented data memory locations, read as �0�,

Note 1: This is not a physical register.

2: Unimplemented registers are read as �0�.

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 34 2012 Microchip Technology Inc.

2.15 DATA EEPROM MEMORY

The data EEPROM is a nonvolatile memory array, separate from both the data RAM,

and program memory, which is used for long-term storage of program data. The

EEPROM is not directly mapped in either the register file or program memory space,

but is indirectly addressed through special SFRs. The EEPROM is readable and

writable during normal operation.

The PIC16F1829 and PIC18F14K22 have 256 bytes of EEPROM on board.

The EEPROM is rated for high erase/write cycle endurance. A byte write automatically

erases the location and writes the new data. Please see Section 3.14 �Lesson 13:

EEPROM� for more information.

2.16 PROGRAMMING BASICS

This section will briefly discuss essential assembler and �C� basics. There are better

suited tutorials on �C� programming on the web if the user wishes to learn more.

This guide uses the XC8 compiler v.1.00 for both the PIC16F1829 and PIC18F14K22.

Later versions of the compiler will also work. Looking at the XC8 user�s guide would be

a very good start. One of the great benefits of using �C� is that it is very portable and will

build in most compilers with no problem.

The assembly is not compiled, but rather assembled by a utility called MPASM. This

guide uses MPASM assembler v5.43, which is a universal assembler for all PIC1X

devices.

A key advantage of using a high-level language (such as C) is that the programmer

does not need to understand the architecture of the microprocessor being used. Knowl-

edge of the architecture is left to the compiler which will take the �C� and compile it into

assembly. When using assembly, the programmer must use the PIC device�s instruc-

tion set and understand the memory map. A positive benefit of assembly is not only the

knowledge gained, but also the code size will be considerably smaller.

2.16.1 MPASM� Assembler Operation

All of the lessons written in are absolute code. This means that everything that the

assembler needs is contained in the source files. This process is shown below.

FIGURE 2-12: MPASM ASSEMBLER OPERATION

When a source file is assembled in this manner, all variables and routines used in the

source file must be defined within that source file, or in files that have been explicitly

included by that source file. If assembly proceeds without errors, a hex file will be gen-

erated that contains the executable machine code for the targeted PIC device. This file

can then be used by the debugger to test code execution, and by a device programmer

to program the microcontroller.

2.16.2 XC8 Operation

The compiler does all of the translation involved, which is needed to take the high-level

code down to a level in which the PIC device understands. Figure 2-13 explains how

this is done.

code.asm code.hex ProgrammerMPASM�
assembler

MCU

PIC® MCU Architecture

 2012 Microchip Technology Inc. DS41628B-page 35

FIGURE 2-13: XC8 OPERATION

Notice how the output is the same for both the compiler/assembler � a hex file. The

assembly that the compiler generates can be seen in the disassembly window inside

of the MPLAB® IDE.

FIGURE 2-14: DISASSEMBLY FIGURE

Figure 2-14 shown above shows part of the disassembly of lesson 5. The �C�, which is

indented, is easier to understand and write. The assembly underneath it contains twice

as much code, and includes the PIC MCU specific instructions to achieve the desired

result of the �C� above it.

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 36 2012 Microchip Technology Inc.

2.16.3 Numbers in the Assembler

Unless otherwise specified, the assembler assumes any numeric constants in the

program are hexadecimal (base 16). Binary (base 2), octal (base 8), decimal (base 10),

and ASCII coding are also supported.

2.16.4 Numbers in the XC8 Compiler

Unless otherwise specified, the compiler assumes any numeric constants in the

program are decimal (base 10).

2.17 MPASM ASSEMBLER DIRECTIVES

Directives are assembler commands that appear in the source code, but are not usually

translated directly into opcodes. They are used to control the assembler: its input,

output, and data allocation.

Many of the assembler directives have alternate names and formats. These may exist

to provide backward compatibility with previous assemblers from Microchip, and to be

compatible with individual programming practices.

All of the directives for the MPASM assembler can be found inside the IDE under

Help->Help Contents

2.17.1 Banksel

banksel label

This directive is an instruction to the assembler and linker to generate bank selecting

code to set the bank to the bank containing the designated label. The programmer

should always use this directive instead of setting the BSR directly, to avoid the possi-

bility of human error.

2.17.2 cblock

EXAMPLE 2-5:

This is used to define a block of variables starting at address address.

TABLE 2-1: NUMBERS IN THE ASSEMBLER

Radix Format Example

Hexadecimal # or 0x# or H�#� 12 or 0x12 or H�12�

Decimal .# or D�#�Octal or O�#� .12 or D�12�Octal or O�12�

Binary B�#� B�00010010�

ASCII A�#� or �#� A�c� or �c�

TABLE 2-2: NUMBERS IN THE COMPILER

Radix Format Example

Hexadecimal 0x# 0x12

Decimal # 12

Binary 0b# 0b00010010

ASCII �#� �c�

cblock [address]

Variable

endc

PIC® MCU Architecture

 2012 Microchip Technology Inc. DS41628B-page 37

2.17.3 Org (addr)

Org tells the assembler where to start generating code at addr. Normally, the lessons

would start code at address 0x0000.

2.17.4 End

End tells the assembler to stop assembling. There must be one at the end of the

program. It does not necessarily have to be at the end of the file, but nothing after the

end statement will be assembled.

2.17.5 Errorlevel

This is used to suppress warnings that the assembler may give. It is vital that the

programmer understand the message before hiding them from the output window.

EXAMPLE 2-6:

2.17.6 #include

EXAMPLE 2-7:

The specified file is read in as source code. The effect is the same as if the entire text

of the included file were inserted into the file at the location of the include statement.

The angled brackets (< >) indicate that the file can be found in the library folder of the

assembler. Double quotes (� �) indicate that the include file is in the current working

directory. The exact locations can be changed in the IDE.

 �MESSAGE 302 � Operand Not in Bank 0, check to ensure bank bits are correct�

include �include_file�

#include <include_file>

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 38 2012 Microchip Technology Inc.

NOTES:

PICkit� 3 STARTER KIT USER�S GUIDE

 2012 Microchip Technology Inc. DS41628B-page 39

Chapter 3. Lessons

All of the following 13 lessons will include important code snippets, as well as new reg-

isters and instructions for each PIC MCU. Each lesson introduces either a new periph-

eral or feature. There may be slight differences between the PIC16 and PIC18 in each

lesson, but the differences are pointed out and explained. The enhanced PIC16 is

explained first, followed by the PIC18. There are sometimes minimal differences

between the two and, when none exist, a statement of �none� will appear in the PIC18

section(s).

Subsequent lessons inherit these differences, however they are explained only in their

first appearance. This is why it will be vital that the lessons are done in sequence.

These differences are mostly in the assembly, not in the �C� programs due to the nature

of the language. It is strongly recommended that the assembly be done alongside the

�C� version for each lesson.

The lessons follow this folder structure:

For example:

A single source file is shared between both projects, meaning that any changes to the

file while using MPLAB® X will be reflected in the MPLAB® 8 project as well. It is encour-

aged that the new IDE, MPLAB X, be used. Only the source file should be edited and

nothing else in the project folders.

Please see the getting started videos that are linked to on the Start Page inside of the

MPLAB X IDE. Refer to the MPLAB® IDE Quick Start Guide (DS51281)

(http://ww1.microchip.com/downloads/en/DeviceDoc/51281d.pdf) as a getting started

guide for MPLAB 8.XX.

1. <architecture>

a. <language>

i. <lesson>

1. <lesson>.X (MPLABX project)

2. Mplab8 (MPLAB 8.x project)

3. <lesson> . <language> (source file)

2. PIC16

a. Assy

i. 01 Hello World

1. Hello_world.X (MPLABX project)

2. Mplab8 (MPLAB 8.x project)

3. Hello_world.asm

b. C

i. 01 Hello World

1. Hello_world.X (MPLABX project)

2. Mplab8 (MPLAB 8.x project)

3. Hello_world.c

P
IC

k
it�

 3
 S

ta
rte

r K
it U

s
e

r�s
 G

u
id

e

D
S

4
1

6
2

8
B

-p
a

g
e

 4
0

 2

0
1

2
 M

ic
ro

c
h

ip
 T

e
c
h

n
o

lo
g

y
 In

c
.

3.1 LESSONS

Lesson New Modules New Concepts New Registers New Instructions

1 Hello World ALU Latch Port Basics of PIC MCU

programming

TRISC PORTC LATC BSF BCF CLRF

2 Blink 1. GPR

2. SRF

3. ACCESS RAM

4. Oscillator

1. Delay

2. I/O

3. Banking

OSCCON MOVLW DECFSZ GOTO

MOVWF BRA BTG

3 Rotate Bit Check STATUS BTFSC LSRF RRCF

4 Analog-to-Digital ADC Bit shift ANSEL ADCON0/1/2 SWAPF

5 Variable Speed

Rotate

Hardware Stack Functions CALL RETURN XORWF

TSTFSZ RCALL

6 Debounce Preprocessor Macros

7 Reversible

Variable Speed

Rotate

Modular Code RLNCF

8 Pulse-Width

Modulation

ECCP 1. PWM resolution

2. PWM frequency

3. Modulation

CCPxCON PRx TxCON ANDLW

CCPTMRS CCPRxL

9 Timer0 Timer0 Timers OPTION_REG T0CON

1

0

Interrupts and

Pull-ups

1. Interrupt Vector (High/Low)

2. Weak pull-up

1. Usefulness of

interrupts

IOCAN IOCA RETFIE

IOCAF RCON

WPUA

1

1

Indirect

Addressing

Virtual registers 1. Pointers INDFx FSRx INCF

1

2

Look-up Table Program Memory Read 1. Memory

conservation

2. Self Read

3. State Machine

EEADRx EEDATx EECON1 MOVIW RETLW BRW

PCL PCLATH TBLRD*

TBLPTR TABLAT

1

3

EEPROM Nonvolatile Memory Low Power EECON2 SLEEP

Lessons

 2012 Microchip Technology Inc. DS41628B-page 41

3.2 LESSON 1: HELLO WORLD (TURN ON AN LED)

3.2.1 Introduction

The first lesson shows how to turn on an LED.

3.2.2 Hardware Effects

DS1 will light up and stay lit indefinitely.

3.2.3 Summary

The LEDs are connected to input-outpins (I/O) RC0 through RC3. First, the I/O pin

must be configured for an output. In this case, when one of these pins is driven high

(RC0 = 1), the LED will turn on. These two logic levels are derived from the power pins

of the PIC MCU. Since the PIC device�s power pin (VDD) is connected to 5V and the

source (VSS) to ground (0V), a �1� is equivalent to 5V, and a �0� is 0V.

3.2.4 New Registers

3.2.4.1 BOTH

3.2.4.2 LATC

The data latch (LATx registers) is useful for read-modify-write operations on the value

that the I/O pins are driving. A write operation to the LATx register has the same effect

as a write to the corresponding PORTx register. A read of the LATC register reads of

the values held in the I/O port latches.

3.2.4.3 PORTC

A read of the PORTC register reads the actual I/O pin value. Writes should be per-

formed on the LAT register instead of on the port directly.

3.2.4.4 TRISC

This register specifies the data direction of each pin connected to PORTC.

An easy way to remember this is that the number �1� looks like the letter �I� for input, and

the number �0� looks like the letter �0� for output.

The reader should always write to the latch and read from the port.

TABLE 3-1: NEW REGISTERS FOR BOTH DEVICES

Register Purpose

LATC Data Latch

PORTC Holds the status of all pins on PORTC

TRISC Determines if pin is input (1) or output (0)

TABLE 3-2: TRIS DIRECTION

TRIS value Direction

1 input

0 output

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 42 2012 Microchip Technology Inc.

3.2.5 New Instructions

All of the instructions for the enhanced mid-range or PIC18 can be studied in detail in

the �Instruction Set Summary� chapter in each corresponding PIC® microcontroller

data sheet. This document will briefly explain the importance of each.

3.2.5.1 BOTH

3.2.5.2 bsf

Set a bit in register.

EXAMPLE 3-1:

3.2.5.3 bcf

Clear a bit in register.

EXAMPLE 3-2:

3.2.5.4 clrf

This clears an entire register. It is useful during initialization to turn off all attached

peripherals such as LEDs.

EXAMPLE 3-3:

TABLE 3-3: NEW INSTRUCTIONS FOR BOTH DEVICES

Instruction English Purpose

bsf Bit Set Make the bit a �1� (5V)

bcf Bit Clear Make the bit a �0� (0V)

clrf Clear File Register Force the register to all 0�s

bsf LATC, 0

Before Instruction:

RC0 = 0

After Instruction:

RC0 = 1

bcf LATC, 0

Before Instruction:

RC0 = 1

After Instruction:

RC0 = 0

clrf LATC

Before Instruction:

LATC = b�11011000�

After Instruction:

LATC = b�00000000�

Lessons

 2012 Microchip Technology Inc. DS41628B-page 43

3.2.6 Assembly

3.2.6.1 ENHANCED MID-RANGE

EXAMPLE 3-4:

This starts a comment. Any text on this line following the semicolon is ignored by the

assembler. Be sure to place lots of these in your code for readability.

The p16F1829.inc defines all of the PIC device-specific SFRs as well as other

memory addresses. This should always be the first line of your program after any

header comments and before the __CONFIG directive.

This sets the processor�s Configuration bits. Before this directive is used, the processor

must be declared! Refer to the PIC16F1829 data sheet for the description of each

Configuration Word used here. The most important of these is the �MCLRE_OFF�,

which turns off master clear on RA3.

This suppresses the printing of the warning: �MESSAGE 302 � Operand not in Bank 0,

check to ensure bank bits are correct�.

This sets the program origin for subsequent code at the address xx. If no org is

specified, code generation will begin at address 0.

This is a label. Labels are assigned the same memory address as the opcode immedi-

ately following the label. Labels can, and should be, used in your code to specify the

destination for call, goto and branch instructions.

#include <p16F1829.inc>

 __CONFIG _CONFIG1, (_FOSC_INTOSC & _WDTE_OFF & _PWRTE_OFF & _MCLRE_OFF &

_CP_OFF & _CPD_OFF & _BOREN_ON & _CLKOUTEN_OFF & _IESO_OFF & _FCMEN_OFF);

 __CONFIG _CONFIG2, (_WRT_OFF & _PLLEN_OFF & _STVREN_OFF & _LVP_OFF);

 errorlevel -302 ;supress the 'not in bank0' warning

 ORG 0

Start:

 banksel TRISC ; select bank1

 bcf TRISC,0 ; make IO Pin C0 an output

 banksel LATC ; select bank2

 clrf LATC ; init the LATCH by turning off everything

 bsf LATC,0 ; turn on LED C0 (DS1)

 goto $; sit here forever!

 end

;

;

#include <p16xxxx.inc>

__CONFIG

Errorlevel -302

Org xx

Start:

Banksel TRISC

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 44 2012 Microchip Technology Inc.

This is a very important directive that is used the most in the enhanced mid-range core.

This is an instruction to the assembler and linker to generate bank selecting code to set

the bank to the one containing the TRISC register. In our case, that is Bank 1. This

takes one instruction cycle.

This allows pin RC0 to be an output. A �1� in the register configures the pin for an input

and a �0� for output.

It is good practice to initialize all output registers to �0�. It is not guaranteed that all

registers will be cleared on Reset.

This turns on DS1 on PortC0.

This merely tells the assembler to go to the current instruction, which it will do

indefinitely.

3.2.6.2 PIC18

EXAMPLE 3-5:

The Configuration Words and the CONFIG directive are different here. The PIC18 has

more feature-rich configurations. Please see the PIC18F14K22 data sheet for more

information on what each Configuration Word does.

The most important different distinction here is the lack of having to change banks. All

of the SFRs are in the Access Bank and do not require a banksel statement.

bcf TRISC, 0

clrf LATC

bsf LATC, 0

goto $

#include <p18F14K22.inc>

 ;Config settings

 CONFIG IESO = OFF, PLLEN = OFF, FOSC = IRC, FCMEN = OFF, PCLKEN = OFF

 CONFIG BOREN = SBORDIS, BORV = 19, PWRTEN = OFF, WDTEN = OFF

 CONFIG MCLRE = OFF, HFOFST = OFF, DEBUG = OFF, STVREN = ON

 CONFIG XINST = OFF, BBSIZ = OFF, LVP = OFF

 CONFIG CP0 = OFF, CP1 = OFF

 CONFIG CPD = OFF, CPB = OFF

 CONFIG WRT0 = OFF, WRT1 = OFF

 CONFIG WRTB = OFF, WRTC = OFF, WRTD = OFF

 CONFIG EBTR0 = OFF, EBTR1 = OFF

 CONFIG EBTRB = OFF

 errorlevel -302 ;suppress the 'not in bank0' warning

 ORG 0

Start:

 bcf TRISC,0 ;make IO Pin C0 an output

 clrf LATC ;init the LATCH by turning off everything

 bsf LATC,0 ;turn on LED C0 (DS1)

 goto $;sit here forever!

 end

Lessons

 2012 Microchip Technology Inc. DS41628B-page 45

3.2.7 C Language

The reader should notice that the PIC16 and PIC18 source code for the �C� language

is very similar.

3.2.7.1 ENHANCED MID-RANGE

EXAMPLE 3-6:

This starts a comment. Any of the following text on this line is ignored by the compiler.

Be sure to place lots of these in your code for readability.

The htc.h file will automatically load the correct header file for the selected processor,

which is selected when first creating a project.

This programs the Configuration Words. See the data sheet for more specific informa-

tion on these.

Every �C� program needs, and starts in, the main function.

The LATCbits is a structure defined in the included file (htc.h). The program only

needs to select DS1, which is located at pin RC0. This could also have been done:

LATC |= 0b00000001. This performs an �or-equals� operation which will preserve all

of the pins except C0. If the �or� operation was omitted: LATC = 0b00000001, then

all of the bits except C0 will be cleared.

This while statement will always evaluate to be true, and the continue statement

merely stays in the current loop. It will sit here forever. The continue statement is not

required for correct operation.

Notice how few lines were needed to replicate the same behavior as the assembly

version.

#include <htc.h> //PIC hardware mapping

//config bits that are part-specific for the PIC16F1829

__CONFIG(FOSC_INTOSC & WDTE_OFF & PWRTE_OFF & MCLRE_OFF & CP_OFF & CPD_OFF &

BOREN_ON & CLKOUTEN_OFF & IESO_OFF & FCMEN_OFF);

__CONFIG(WRT_OFF & PLLEN_OFF & STVREN_OFF & LVP_OFF);

//Every program needs a `main` function

void main(void) {

 TRISCbits.TRISC0 = 0; //using pin as output

 LATC = 0; //init to zero

 LATCbits.LATC0 = 1; //turn on the LED by writing to the latch

 while(1) continue; //sit here forever doing nothing

}

//

#include <htc.h>

__CONFIG

void main(void)

LATCbits.LATC0 = 1

while (1) continue;

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 46 2012 Microchip Technology Inc.

3.2.7.2 PIC18

There is nothing different from the PIC16 version, except for the Configuration Words.

For more information, see the PIC18F14K22 data sheet.

Lessons

 2012 Microchip Technology Inc. DS41628B-page 47

3.3 LESSON 2: BLINK

3.3.1 Introduction

This lesson blinks the same LED used in the previous lesson (DS1). This may seem

trivial, but it requires a deep understanding on how the PIC MCU executes each

instruction if using the assembly version.

3.3.2 Hardware Effects

DS1 blinks at a rate of approximately 1.5 seconds.

3.3.3 Summary

One way to create a delay is to spend time decrementing a value. In assembly, the tim-

ing can be accurately programmed since the user will have direct control on how the

code is executed. In �C�, the compiler takes the �C� and compiles it into assembly before

creating the file to program to the actual PIC MCU (HEX file). Because of this, it is hard

to predict exactly how many instructions it takes for a line of �C� to execute.

MPLAB X and MPLAB 8.xx both have options on viewing the disassembly in a �C� proj-

ect. After a successful build of the program, the instructions that the compiler created

can be viewed.

3.3.4 New Registers

3.3.4.1 BOTH

3.3.4.1.1 OSCCON

This register should always be written to in every program. It is important to set the pro-

cessor speed so that the delay loops are accurate. If it is not written to, like in the first

lesson, then the frequency will default to 500 kHz if using the PIC16F1829, and 1 MHz

if using the PIC18F14K22. This varies between devices.

3.3.5 New Instructions

3.3.5.1 BOTH DEVICES

3.3.5.1.1 movlw

An 8-bit literal, or rather constant, is loaded into the Working Register (W)

TABLE 3-4: NEW REGISTERS FOR BOTH DEVICES

Register Purpose

OSCCON Sets the Processor speed

TABLE 3-5: NEW INSTRUCTIONS FOR BOTH DEVICES

Instruction English Purpose

movlw Move literal into WREG Move bytes around

movwf Move literal from WREG into register Move bytes around

decfsz Decrement the register � skip next line if zero Useful for delay loops

bra label Relative to the label Makes code modular

goto label Unconditional Make code modular

movlw 0x5A

After instruction: W = 0x5A

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 48 2012 Microchip Technology Inc.

In assembly, this is the most common instruction. Data is typically moved into WREG,

where operations can be performed or moved into another register.

3.3.5.1.2 movwf

Similar to movlw, data is moved from WREG to another register.

EXAMPLE 3-7:

3.3.5.1.3 decfsz

Use this to decrement a register by one. If the register is �0� after decrementing, then

the next instruction is skipped. This is useful for delay loops.

3.3.5.1.4 bra/goto

These two instructions are used to jump to a new section of code. A (BRA) is a relative

jump from where the program counter is currently at. For the enhanced core, the coun-

ter can access -256≤n≤255 locations in program memory. The PIC18 BRA can access

-1024≤n≤1023 locations in program memory. Notice how the value is signed. A branch

is nice since it can jump across page boundaries on the enhanced mid-range core.

The goto is an unconditional jump and can access every location in the current page

on the enhanced mid-range. The PIC18 can access all program memory with a goto.

The downside of this is that it requires two words of programming memory. This means

that each goto instruction in PIC18 requires twice as much space than the BRA.

In PIC18, when the destination is within 1024 program locations, a relative should be

used instead of a GOTO. In enhanced mid-range, the relative branch offers an advan-

tage only when crossing back and forth between pages.

3.3.5.2 PIC18

3.3.5.2.1 BTG

This will invert the value of a bit in the target register.

3.3.6 Assembly

3.3.6.1 ENHANCED MID-RANGE

EXAMPLE 3-8:

TABLE 3-6: NEW INSTRUCTIONS FOR PIC18

Instruction English Purpose

btg Toggle Bit Blink LED

movwf OPTION_REG

Before Instruction:

OPTION_REG = 0xFF

W = 0x4F

After Instruction:

OPTION_REG = 0x4F

W = 0x4F

movlw b'00111000' ;set cpu clock speed

movwf OSCCON

Lessons

 2012 Microchip Technology Inc. DS41628B-page 49

This configures the PIC MCU to run at 500 kHz. The working register (WREG) is used

to move bytes into the register. Upon default, if this register was not written to, the

PIC16F1829 would also run at 500 kHz. Other PIC devices are different, however, so

this should always be written to in the first few lines of code. The PIC MCU will now

execute with each instruction taking eight microseconds, as seen in Equation 3-1:

EQUATION 3-1: DELAY SPEED

In order to make the LED blink, the program needs some way of turning on the LED,

waiting for a set amount of time, and then turning it off for the same period. This can be

achieved by using the on-board RAM.

EXAMPLE 3-9:

Remember that CBLOCK allocates user memory. The number after CBLOCK is the

address of where to put the memory. 0x70 is the address of shared memory across all

banks in the enhanced mid-range core. Only 16 bytes can be saved here. Now the

program does not need to change banks when using any of these variables. The rest

of the lessons will be using variables stored here on the PIC16 and in access RAM for

the PIC18. Two variables will be stored here to write the following delay loop.

EXAMPLE 3-10:

The bra Loop backs up and repeats. This loop takes three instruction times; one for

the decrement and two for the bra, and the counter will force it to go around 256 times,

which takes a total of 768 instruction times to execute. Even that is still too fast for the

eye to see. It can be slowed down even more by adding a second loop around this one.

The inner loop still takes 768 cycles plus three for the outer loop, but now it is executed

another (768+3) * 256 = 197376 instructions/125K instructions per second = 1.579s.

goto and bra instructions take two instructions due to the pipelined design of the pro-

cessor. The processor fetches the next instruction while executing the current instruc-

tion. When a program occurs, the already fetched instruction located after the goto or

bra is not executed. Instead, a NOP is executed while the instruction located at the des-

tination is fetched.

Instruction time
1

FOSC

4

1

500kHz

4

------------------- 8 µS= = =

 cblock 0x70 ;shared memory location that is accessible from all banks

Delay1 ; Define two file registers for the delay loop in shared memory

Delay2

 endc

 bsf LATC, 0 ; turn LED on

OndelayLoop:

 decfsz Delay1,f ; Waste time.

 bra OndelayLoop ; The Inner loop takes 3 instructions per loop * 256 loops = 768

instructions

 decfsz Delay2,f ; The outer loop takes an additional 3 instructions per lap * 256 loops

 bra OndelayLoop ; (768+3) * 256 = 197376 instructions / 125K instructions per second =

 1.579 ;sec.

 bcf PORTC,0 ; Turn off LED C0 - NOTE: do not need to switch banks with 'banksel'

 since ;bank0 is still selected

OffDelayLoop:

 decfsz Delay1,f ; same delay as above

 bra OffDelayLoop

 decfsz Delay2,f

 bra OffDelayLoop

 bra MainLoop ; Do it again...

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 50 2012 Microchip Technology Inc.

The variables, Delay1 and Delay2 will rollover from 0 to 255. This is why it is unnec-

essary to assign a value to the Delay1 and Delay2 variables before decrementing.

3.3.6.2 PIC18

While the Enhanced Core has its 16 bytes of general purpose RAM that is shared

between all banks, the PIC18 has its equivalent at locations 0x00->0x5F. It gives the

user access to 96 bytes, which the user can access without specifying the bank.

EXAMPLE 3-11:

3.3.7 C Language

3.3.7.1 BOTH

Delay loops in �C� that are based solely on a variable counter result in an unpredictable

delay time. The compiler essentially breaks down your code into assembly before

being programmed onto the PIC MCU. Depending on how efficient the compiler is and

how well the program is written will determine the length of time the loop takes. A library

function a for delay loop is the preferred method.

For completion, this lesson includes both ways. The commented out section at the end

of the code in this lesson uses the accurate delay function that is bundled in with the

XC8 compiler. Subsequent lessons will use the built-in delay macro.

EXAMPLE 3-12:

In order to take advantage of this highly accurate routine, the PIC MCU processor

speed must be defined.

EXAMPLE 3-13:

A variable, delay, is created and then decremented before toggling an LED. The ^

XORs the pin with �1� to create the toggling affect. If the optimization of the compiler is

heightened or lowered, the delay will increase or decrease since the compiler produces

different code for each optimization level.

 cblock 0x00 ; Access RAM

Delay1 ; Define two file registers for the delay loop in shared memory

Delay2

 endc

#define _XTAL_FREQ 500000 //Used by the HI-TECH delay_ms(x) macro

 delay = 7500;

 while (1) {

 while(delay-- != 0)continue; //each instruction is 8us (1/(500KHz/4))

 LATCbits.LATC0 ^= 1; //toggle the LED

 delay = 7500; //assign a value since it is at 0 from the

 delay loop

Lessons

 2012 Microchip Technology Inc. DS41628B-page 51

3.4 LESSON 3: ROTATE

3.4.1 Introduction

Rotate the lit LED between the four available LEDs.

3.4.2 Hardware Effects

LEDs rotate from right to left.

3.4.3 Summary

This lesson will introduce shifting instructions as well as bit-oriented skip operations to

move the LED display.

3.4.4 New Registers

3.4.4.0.1 BOTH

3.4.4.0.2 STATUS

The STATUS register is automatically updated in hardware after every arithmetic

operation. This is used to check for the following conditions:

1. Zero

2. Digit Carry

3. Carry

4. Overflow

5. Negative

The Instruction Set Summary section in each PIC microcontroller data sheet will indi-

cate what instructions affect which bit(s).

3.4.5 New Instructions

3.4.5.1 BOTH

3.4.5.1.1 BTFSC

This tests a specific bit in a specific register. If it is clear (value of �0�), then the next

instruction is skipped. This is useful for performing IF-ELSE statements.

TABLE 3-7: NEW REGISTERS FOR BOTH DEVICES

Register Purpose

STATUS Used to check ALU status

TABLE 3-8: NEW INSTRUCTIONS FOR BOTH DEVICES

Instruction English Purpose

btfsc Skip next line if bit is clear If/Else statements

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 52 2012 Microchip Technology Inc.

3.4.5.2 ENHANCED MID-RANGE

3.4.5.3 PIC18

3.4.5.3.1 lsrf/rrcf

The difference between a logical shift and a shift through carry is that a logical shift right

will shift in a �0� from the left. The latter will shift whatever was in the carry bit to the left

most bit. They both shift the LSb into the carry bit. For example:

FIGURE 3-1: LOGIC SHIFT TO THE RIGHT

FIGURE 3-2: ROTATE RIGHT THROUGH CARRY

If a bit is shifted into a carry, it is crucial that the designer clear it before a next rotate is

performed since the bit will then be shifted into the register, unless of course, that is

what is intended.

3.4.6 Assembly

3.4.6.1 ENHANCED MID-RANGE

EXAMPLE 3-14:

TABLE 3-9: NEW INSTRUCTIONS FOR ENHANCED MID-RANGE

Instruction English Purpose

lsrf Logical shift right Shift bits to the right

TABLE 3-10: NEW INSTRUCTIONS FOR PIC18

Instruction English Purpose

rrcf Rotate right through carry Shift bits to the right

7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 1 X

0 0 1 0 1 1 1 100

M
S

b

L
S

b

C

7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 1

C

0 0 1 0 1 1 1 10

M
S

b

L
S

b

1

Rotate:

 lsrf LATC,F ;shift the LEDs and turn on the next LED to the right

 btfsc STATUS,C ;did the bit rotate into the carry (i.e. was DS1 just lit?)

 bsf LATC, 3 ;yes, it did and now start the sequence over again by turning on DS4

 goto MainLoop ;repeat this program forever

Lessons

 2012 Microchip Technology Inc. DS41628B-page 53

DS1 is connected to RC0 and DS2 to RC1 and so forth. A shift to the right would actu-

ally be turning on the LEDs from right to left. This can be better explained in the follow-

ing figures.

Start of program begins with lighting up DS4;

After the delay, a logic shift to the right is performed:

Now DS3 is lit. The carry bit now contains whatever was previously in

LATCbits.LATC0. In this case, it was �0�. The program then checks if the carry bit was

set. This will only be true if DS1 was previously lit, and then an lsrf was performed.

Now, the carry bit would be set and the following line would be executed.

EXAMPLE 3-15:

Now the program will restart the sequence by relighting DS4. It is important to note that

the MSb, bit 7, will ALWAYS be cleared. This is due to the nature of the lsrf instruc-

tion.

3.4.6.2 PIC18

The PIC18 does not have the same logical shift instruction as the enhanced mid-range.

EXAMPLE 3-16:

TABLE 3-11: PIN TO LED MAPPING

LATC

Bit # MSb (7) 6 5 4 3 2 1 LSb (0)

LED � � � � DS4 DS3 DS2 DS1

TABLE 3-12: LED ROTATE

LATC

Bit # MSb (7) 6 5 4 3 2 1 LSb (0)

LED � � � � DS4 DS3 DS2 DS1

value 0 0 0 0 1 0 0 0

TABLE 3-13: LED ROTATE

LATC

Bit # MSb (7) 6 5 4 3 2 1 LSb (0)

LED � � � � DS4 DS3 DS2 DS1

value 0 0 0 0 0 1 0 0

bsf LATC, 3 ;yes, it did and now start the sequence over again by turning on DS4

Rotate:

 rrcf LATC,f ;rotate the LEDs (through carry) and turn on the next LED to the right

 btfss STATUS,C ;did the bit rotate into the carry (i.e. was DS1 just lit?)

 goto MainLoop ;nope, repeat this program forever

 bsf LATC, 3 ;yes, it did and now start the sequence over again by turning on DS4

 bcf STATUS, C ;clear the carry

 goto MainLoop ;repeat this program forever

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 54 2012 Microchip Technology Inc.

The PIC18 can rotate through carry or not. If not, the LSb would simply be loaded into

the MSb. The program needs to use the carry bit to test if it rotated the LED out of the

displayable range, much like in the PIC16. The only difference is now the carry bit

MUST be cleared when it rotates out of the display. If it is not cleared, the program will

light up DS3 as intended, but soon all LEDs will be lit since LATCbits. LATC7 will be

set, and then subsequent rotations will move it down onto the visible range of

<RC3:RC0>.

3.4.7 C Language

3.4.7.1 BOTH

The �C� version is much simpler and easier to understand. The program delays for 500

ms, shifts the LATC register to the right, and then checks if the carry bit in LATC is set.

If so, the program will set RC3 in anticipation of the next rotate.

EXAMPLE 3-17:

It is important to note that the above shift is a logical shift since it is an unsigned register.

The STATUS register is still updated after the shift. The shift in Example 3-17 incorpo-

rates one of the many short-hand notations of �C�, as described in Example 3-18.

EXAMPLE 3-18:

 __delay_ms(500); //delay 500ms

 LATC >> = 1; //shift to the right by 1

 if(STATUSbits.C) //when the last LED is lit, restart the pattern

 LATCbits.LATC3 = 1;

LATC >> = 1;

This is equivalent as:

LATC = LATC >> 1;

Or rather:

lsrf LATC,F ;shift the LEDs and turn on the next LED to the right

Lessons

 2012 Microchip Technology Inc. DS41628B-page 55

3.5 LESSON 4: ANALOG-TO-DIGITAL CONVERSION

3.5.1 Introduction

This lesson shows how to configure the ADC, run a conversion, read the analog voltage

controlled by the potentiometer (RP1) on the board, and display the high order four bits

on the display.

3.5.2 Hardware Effects

The top four MSbs of the ADC are mirrored onto the LEDs. Rotate the potentiometer

to change the display.

3.5.3 Summary

Both PIC devices have an on-board Analog-to-Digital Converter (ADC) with 10 bits of

resolution on any of 11 channels. The converter can be referenced to the device�s VDD

or an external voltage reference. The lesson references it to VDD. The result from the

ADC is represented by a ratio of the voltage to the reference.

EQUATION 3-2:

Here�s the checklist for this lesson:

1. Configure the ADC pin as an analog input.

2. Select clock scaling.

3. Select channel, result justification, and VREF source.

3.5.4 New Registers

3.5.4.1 BOTH

3.5.4.1.1 ANSEL:

The ANSEL register determines whether the pin is a digital (1 or 0) or analog (varying

voltage) I/O. I/O pins configured as analog input have their digital input detectors dis-

abled and, therefore always read �0� and allow analog functions on the pin to operate

correctly. The state of the ANSELX bits have no effect on digital output functions. When

setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode

in order to allow external control of the voltage on the pin.

This lesson sets RA4 as an analog input, since the POT will vary the voltage.

TABLE 3-14: NEW REGISTERS FOR BOTH DEVICES

Register Purpose

ANSELX Determines if the pin is digital or analog.

ADCON0 Selects ADC channel � Enables module � Contains the �I�m done with conversion� bit

ADC = (V/VREF) * 1023

Converting the answer from the ADC back to voltage requires solving for V.

V = (ADC/1023) * VREF

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 56 2012 Microchip Technology Inc.

The PIC18F14K22 has a slightly different ANSEL register, but the functionality is the

same. The top row of each register screen shot in every PIC microcontroller data sheet

and in this document indicates more information on the functionality of each bit, such

as its default state. The bit ANSA0, is read/writable, and will default to an analog input

both on Power-on Reset (POR) and Brown-out Reset (BOR). A BOR will happen if the

supply voltage sags below the threshold determined by the Configuration Words.

3.5.4.1.2 ADCON0

ADCON0 controls the ADC operation. Bit 0 turns on the ADC module. Bit 1 starts a con-

version and bits <6:2> select which channel the ADC will read.

For purposes of this lesson, the ADC must be turned on with RA4 selected as the input

channel. Choose the internal voltage reference and 8TOSC conversion clock. The ADC

needs about 5 μs, after changing channels, to allow the ADC sampling capacitor to set-

tle. Finally, the conversion can be started by setting the GO bit in ADCON0. The GO bit

also serves as the DONE flag. That is, the ADC will clear the GO bit in hardware when

the conversion is complete. The result is then available in ADRESH:ADRESL.

The Most Significant four bits of the result are copied and displayed on the LEDs driven

by PORTC.

3.5.4.2 PIC16

3.5.4.3 PIC18

3.5.4.3.1 ADCON1:

ADCON1 for the PIC16 and ADCON2 for the PIC18 select the ratio between processor

clock speed and conversion speed. This is important because the ADC needs at least

1.6 μs conversion time per bit. Accuracy degrades if the clock speed is too high or too

slow. As the processor clock speed increases, an increasingly large divider is neces-

sary to maintain the conversion speed.

ADFM bit <7> selects whether the ten result bits are right or left justified. The program

will left justify the result so that the two LSbs are contained in ADRESL and the top eight

in ADRESH. The program, however, will only use the top four MSbs in ADRESH.

The ADNREG/ADPREG bits select the ADC reference, which may be either VDD or a

separate reference voltage on VREF.

TABLE 3-15: ADC RESULT THAT IS LEFT JUSTIFIED � BITS IN BLUE ARE MIRRORED TO LATC.

BIT 6 REFLECTS DS1, BIT 7 CONTROLS DS2, AND SO FORTH.

Reg ADRESH ADRESL

Merged

Bit #

10 8 7 6 5 4 3 2 1 (LSb) 0

TABLE 3-16: NEW REGISTERS FOR ENHANCED MID-RANGE

Register Purpose

ADCON1 Result format � Speed � Reference voltage

TABLE 3-17: NEW REGISTERS FOR PIC18

Register Purpose

ADCON1 Reference voltage

ADCON2 Result format � Speed

Lessons

 2012 Microchip Technology Inc. DS41628B-page 57

3.5.5 New Instructions

3.5.5.1 BOTH

3.5.5.1.1 swapf

This allows nibbles to be switched. A nibble consists of four bits and a byte contains

two nibbles. For example:

EXAMPLE 3-19:

ADC is performed. ADRESH is full with ADC result of b'10100011�.

EXAMPLE 3-20:

FIGURE 3-3: SWAPF DIAGRAM

TABLE 3-18: NEW INSTRUCTIONS FOR BOTH DEVICES

Instruction English Purpose

SWAPF Swapf WREG with register Swap nibbles

TABLE 3-19: BEFORE SWAPF

Registers Value

WREG B�01100110�

TABLE 3-20: BEFORE SWAPF

Registers Value

ADRESH B�10100011�

TABLE 3-21: AFTER SWAPF

Registers After swapf

WREG B�0011-1010�

ADRESH B�1010-0011�

movlw b�01100110�

swapf ADRESH, w ; now perform the swapf and save in WREG, leaving

 ADRESH intact

ADRESH

WREG

1 0 1 0 0 0 1 1

1 0 1 00 0 1 1

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 58 2012 Microchip Technology Inc.

3.5.6 Assembly

3.5.6.1 ENHANCED MID-RANGE

It is important to note that the ADC result is left justified. This allows the swapf instruc-

tion to move the top four MSbs onto LATC.

EXAMPLE 3-21:

The dollar sign represents the current value of the address counter. The $-1 tells the

assembler to make the destination of the goto one less than the current address, in

other words, the previous instruction.

3.5.6.2 PIC18:

EXAMPLE 3-22:

Notice how it is $-2 instead of �1�. This is a very important difference. PIC18 instruction

words are two bytes long, and program memory in the PIC18 is byte addressable. The

previous instruction is two bytes back in address space. PIC18 instructions always

have an even numbered address.

3.5.7 C Language

3.5.7.0.1 Both Devices:

EXAMPLE 3-23:

Here, the ADRESH register is shifted to the right by four spaces. For an unsigned vari-

able, shifts are logical. For example:

;Start the ADC

 nop ;requried ADC delay of 8uS => (1/(Fosc/4)) = (1/(500KHz/4)) = 8uS

 banksel ADCON0

 bsf ADCON0, GO ;start the ADC

 btfsc ADCON0, GO ;this bit will be cleared when the conversion is complete

 goto $-1 ;keep checking the above line until GO bit is clear

 ;Grab Results and write to the LEDs

 swapf ADRESH, w ;Get the top 4 MSbs (remember that the ADC result is LEFT justified!)

 Banksel LATC

 movwf LATC ;move into the LEDs

 bra MainLoop

TABLE 3-22: ADRESH BEFORE SHIFT

ADRESH � before shift

Bit # MSb (7) 6 5 4 3 2 1 LSb (0)

value 0 1 0 1 1 1 0 1

goto $-1 ;keep checking the above line until GO bit is clear

goto $-2 ;keep checking the above line until GO bit is clear

 __delay_us(5); //wait for ADC charging cap to settle

 GO = 1;

 while (GO) continue; //wait for conversion to be finished

 LATC = (ADRESH >> 4); //grab the top 4 MSbs

Lessons

 2012 Microchip Technology Inc. DS41628B-page 59

Now LATC can be assigned to the temporary workspace register, since all of the LEDs

are on pins <RC3:RC0>. The rest of the bits in PORTC can be ignored.

Most of the LEDs will not turn on when the POT is turned clockwise, because the top

four MSbs are being grabbed, meaning that there needs to be a great swing in voltage

change to affect the topmost MSbs. As an added exercise, try using the lower nibble

(bits 0 through 3) and assign them to LATC. The LEDs will change more frequently.

TABLE 3-23: TEMPORARY WORKSPACE REGISTER AFTER SHIFT

ADRESH � after shift

Bit # MSb (7) 6 5 4 3 2 1 LSb (0)

value 0 0 0 0 0 1 0 1

ADRESH >> 4; //grab the top 4 MSbs

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 60 2012 Microchip Technology Inc.

3.6 LESSON 5: VARIABLE SPEED ROTATE

3.6.1 Introduction

This lesson combines all of the previous lessons to produce a variable speed rotating

LED display that is proportional to the ADC value. The ADC value and LED rotate

speed are inversely proportional to each other.

3.6.2 Hardware Effects

Rotate the POT counterclockwise to see the LEDs shift faster.

3.6.3 Summary

A crucial step in this lesson is to check if the ADC value is 0. If it does not perform the

zero check, and the ADC result is zero, the LEDs will rotate at an incorrect speed. This

is an effect of the delay value underflowing from 0 to 255.

FIGURE 3-4: PROGRAM FLOW

3.6.4 New Registers

None

3.6.5 New Instructions

3.6.5.1 BOTH

3.6.5.1.1 call

The call is equivalent to adding functions in �C�. They are convenient since they allow

the designer to create subroutines which can then be called from a main function. This

improves the memory use efficiency and readability of your program.

TABLE 3-24: NEW INSTRUCTIONS FOR BOTH DEVICES

Instruction English Purpose

call label Call a subroutine Modular code

return Return to previous call statement Modular code

xorwf XOR register with WREG Toggle a register

Configure ADC

Get ADC measurement

Delay according to ADC result

Rotate LEDs

Configure I/O Port

Check if ADC result is �0�

Lessons

 2012 Microchip Technology Inc. DS41628B-page 61

Calls use one stack level. Remember that the PIC18 has a stack size of 31 levels,

whereas the enhanced core has 16 levels. Anytime a call is performed, the return

address will be pushed to the stack, then the program counter will go to the location in

program memory where the label is located.

It is important to note that stack depth should not be exceeded. For instance, perform-

ing 17 embedded call statements on the PIC16F1829 without returning at least once

will cause a Stack Overflow.

On the PIC18, a call instruction takes up two words of program space, however, a

PIC18 call can be anywhere in the program space. On the enhanced mid-range, a

call must first set the page select bits if the call is to be outside the currently

selected page.

3.6.5.1.2 return

A return restores the program counter to the last address that was saved into the

stack, and the Stack Pointer moves to the previous call in the list counter. The PC will

now be at the instruction immediately following the call. A Stack Underflow will be

caused if the program executes a return statement with no prior call.

In any case, the programmer can use the STVREN Configuration bit to cause a Reset

if a Stack Underflow/Overflow occurs. Both the call and return instructions take two

cycles.

3.6.5.1.3 xorwf

XORWF is used in this lesson to check if the ADC result is zero. Here is the truth table

of the XOR:

EXAMPLE 3-24:

This performs an exclusive-OR of the Delay2 register with �0� to check if Delay2 has a

value of �0�. If so, the Z bit in the STATUS register will be set, since the answer is �0�.

3.6.5.2 PIC18

3.6.5.2.1 TSTFSZ

This is a quick test if a register is �0� or not. Use this instruction on the PIC18 instead of

the XORWF used on the PIC16, since this saves a few instructions. For example:

TABLE 3-25: XOR TRUTH TABLE

Input
Output

A B

0 0 0

0 1 1

1 0 1

1 1 0

movlw d'0' ;load wreg with '0'

xorwf Delay2, w ;XOR wreg with the ADC result and save in wreg

btfss STATUS, Z ;if the ADC result is NOT '0', then simply return to MainLoop

TABLE 3-26: NEW INSTRUCTIONS FOR PIC18

Instruction English Purpose

tstfsz Test if a register is empty Quick check if zero (IF statement)

rcall Relative call Modular code

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 62 2012 Microchip Technology Inc.

EXAMPLE 3-25:

If Delay2 is �0�, then the return instruction will not be executed, and instead skipped.

3.6.5.2.2 rcall

A relative call should be used if the location to jump to is within 1K of the current

location of the Program Counter. The reason is that rcall consumes only one word

of program spaces, whereas a regular call takes two words.

3.6.6 Assembly

3.6.6.1 BOTH

EXAMPLE 3-26:

The main loop is now more readable than before. There are separate modules, or func-

tions for the ADC, delay loop, and rotate. Be sure to return after a call, and not a

or goto.

The CheckIfZero is necessary so that the delay loop does not rollover to 255 from 0.

If this call is omitted and the ADC result is �0�, then the LEDs will rotate very slowly.

3.6.7 C Language

This implementation is much easier to understand.

EXAMPLE 3-27:

The routine will delay at least 50 ms when the ADC result is zero. For each increment

of the returned ADC value, the loop will pause for 2 ms.

This lesson also introduces function calls.

This is the equivalent of implementing a call in assembly. The program counter will

go to where this ADC function is in program space and execute code. It will then return

a single value and assign it to delay.

A key note is that any function that is instantiated after the main function must have a

prototype.

tstfsz Delay2 ;if the ADC result is NOT '0', then simply return to MainLoop

return ;return to MainLoop

 MainLoop:

 call A2d ;get the ADC result

 ;top 8 MSbs are now in the working register (Wreg)

 movwf Delay2 ;move ADC result into the outer delay loop

 call CheckIfZero ;if ADC result is zero, load in a value of '1' or else

 the delay loop will decrement starting at 255

 call DelayLoop ;delay the next LED from turning ON

 call Rotate ;rotate the LEDs

 bra MainLoop ;do this forever

__delay_ms(50); //delay for AT LEAST 50ms

 while (delay-- != 0) __delay_ms(2); //decrement the 8 MSbs of the ADC and delay

 2ms for each

delay = adc(); //grab the top 8 MSbs

unsigned char adc(void); //prototype

Lessons

 2012 Microchip Technology Inc. DS41628B-page 63

3.7 LESSON 6: DEBOUNCE

3.7.1 Introduction

Mechanical switches play an important and extensive role in practically every com-

puter, microprocessor and microcontroller application. Mechanical switches are inex-

pensive, simple and reliable. In addition, switches can be very noisy. The apparent

noise is caused by the closing and opening action that seldom results in a clean elec-

trical transition. The connection makes and breaks several, perhaps even hundreds, of

times before the final switch state settles.

The problem is known as switch bounce. Some of the intermittent activity is due to the

switch contacts actually bouncing off each other. Imagine slapping two billiard balls

together. The hard non-resilient material does not absorb the kinetic energy of motion.

Instead, the energy dissipates over time and friction in the bouncing action against the

forces pushing the billiard balls together. Hard metal switch contacts react in much the

same way. Also, switch contacts are not perfectly smooth. As the contacts move

against each other, the imperfections and impurities on the surfaces cause the electri-

cal connection to be interrupted. The result is switch bounce.

The consequences of uncorrected switch bounce can range from being just annoying

to catastrophic. For example, imagine advancing the TV channel, but instead of getting

the next channel, the selection skips one or two. This is a situation a designer should

strive to avoid.

Switch bounce has been a problem even before the earliest computers. The classic

solution involved filtering, such as through a resistor-capacitor circuit, or through reset-

ting table shift registers. These methods are still effective, but they involve additional

cost in material, installation and board real estate.

FIGURE 3-5: SWITCH DEBOUNCING

One of the simplest ways to switch debounce is to sample the switch until the signal is

stable or continue to sample the signal until no more bounces are detected. How long

to continue sampling requires some investigation. However, 5 ms is usually plenty long,

while still reacting fast enough that the user will not notice.

The switch on the LPC Demo Board does not bounce much, but it is good practice to

debounce all switches in the system.

3.7.2 Hardware Effects

When the switch is held down, DS1 will be lit. When the switch is not held down, all

LEDs are OFF.

+V

R1

R2

Filtered
Switch
Output

SW

C1

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 64 2012 Microchip Technology Inc.

3.7.3 Summary

This lesson uses a simple software delay routine to avoid the initial noise on the switch

pin. The code will delay for only 5 ms, but should overcome most of the noise. The

required delay amount differs with the switch being used. Some switches are worse

than others.

This lesson also introduces the #define preprocessing symbol in both �C� and assem-

bly. Hard coding pin locations is bad practice. Values that may be changed in the future

should always be defined once in preprocessing. Imagine if another user wanted to use

these lessons in a different PIC device and all of the pins changed! This would require

going into the code and finding every instance of any pin reference.

EXAMPLE 3-28:

Now all that is needed is to change this one line and it will be reflected everywhere it is

used.

The preprocessor will substitute LATC, 0 every time the LED identifier is seen. This is

done before the code is assembled/compiled, or rather processed, hence the name

preprocessor.

3.7.4 New Registers

Nothing new.

3.7.5 New Instructions

Nothing new.

3.7.6 Assembly

3.7.6.1 ENHANCED MID-RANGE

EXAMPLE 3-29:

There is only one important main difference in this lesson from previous ones. Notice

how the port is being read, and not the latch, when the program is checking the switch.

If LATC is substituted in where PORTC is, the switch will never be detected. Remember

to read from the port and write to the latch. Read-modify-write operations on the LATC

register will read and write the latched output value for PORTC.

3.7.7 PIC18

Nothing new.

3.7.8 C Language

Nothing new.

#define SWITCH PORTA, 3 ;pin where SW1 is connected..NOTE: always READ from

 the PORT and WRITE to the LATCH

#define LED LATC, 0 ;DS1

bsf LATC, 0 ;turn on the LED

bsf LED ;turn on the LED

MainLoop:

 banksel PORTA ;get into Bank0

 btfsc SWITCH ;defined above....notice how the PORT is being read and not the LATCH

 bra LedOff ;switch is not pressed - turn OFF the LED

 bra Debounce ;switch is held down, pin needs to be debounced

Lessons

 2012 Microchip Technology Inc. DS41628B-page 65

3.8 LESSON 7: REVERSIBLE VARIABLE SPEED ROTATE

3.8.1 Introduction

This lesson combines all of the previous lessons in using the button to reverse the

direction of rotation when the button is pressed. The speed of rotation is controlled

using the potentiometer.

3.8.2 Hardware Effects

LEDs will rotate at a speed that is proportional to the ADC value. The switch will toggle

the direction of the LEDs.

3.8.3 Summary

The program needs to keep track of rotation direction and new code needs to be added

to rotate in the other direction. Lesson 5 rotates right and checks for a �1� in the carry

bit to determine when to restart the sequence. In Lesson 7, the program needs to rotate

both ways and check for a �1� in bit 4 of the display when rotating to the left. When the

�1� shows up in bit 4 of LATC, it will be re-inserted into bit 0.

FIGURE 3-6: PROGRAM FLOW FOR LESSON 7

Get ADC Measurement

Delay Using ADC Result

Delay 5ms

Is Switch Still Down?

Check if ADC Result is �0�

Is Switch Down?

Change Direction

YES

YES

NO

Main Init

Was It Held Down Previously?

Rotate LEDs to Left Rotate LEDs to Right

Left Direction

YES NO

YES

NO

NO

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 66 2012 Microchip Technology Inc.

The debounce routine is more in-depth in this lesson because we need to keep in mind

of the scenario of the switch being held down for long periods of time. If SW1 is held

down, the LEDs would change direction rapidly, making the display look like it is out of

control. The above flowchart will only change direction on the first indication of a solid

press and then ignore the switch until it is released and pushed again. The switch must

be pressed for at least the time it takes for the program to check the switch in its loop.

Since the PIC MCU is running at 500 kHz, this will seem instantaneous.

3.8.4 New Registers

None.

3.8.5 New Instructions

3.8.5.1 PIC18

3.8.5.1.1 rlncf

This rotates bits to the left without using the carry bit. The LSb simply becomes the

previous MSb. This is usually referred to as a circular shift.

FIGURE 3-7: ROTATE LEFT WITHOUT CARRY

3.8.6 Assembly

3.8.6.1 ENHANCED MID-RANGE

EXAMPLE 3-30:

Instead of using the carry bit to check if the LEDs are out of display range, the latch is

shifted to the left and LATC4 is checked. LATC4 is not connected to anything and if this

is ever set, it means that DS4 was just lit and now DS1 needs to be lit to repeat the

pattern. The PIC18 version is similar, but instead uses rlncf instead of lslf.

3.8.6.2 PIC18

The PIC18 always has to make sure that the carry bit is cleared once it is checked,

otherwise more than one LED may become lit.

TABLE 3-27:

Instruction English Purpose

RLNCF Rotate left with no carry Shift bits to the left

7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 1

0 0 1 0 1 1 10

M
S

b

L
S

b

RotateRight:

 lslf LATC, f ;logical shift left

 btfsc LATC, 4 ;did it rotate out of the LED display?

 bsf LATC, 0 ;yes, put in bit 0

 bra MainLoop

Lessons

 2012 Microchip Technology Inc. DS41628B-page 67

EXAMPLE 3-31:

3.8.7 C Language

3.8.7.1 BOTH

This version utilizes global variables. Unlike local variables, global variables have no

function scope, meaning that they are visible to every function within the same source

file where it is declared. It is good practice to uniquely identify global variables such as

preceding each variable with an underscore.

This byte is modified in the check_switch function, and the result is returned to the

main loop.

EXAMPLE 3-32:

Notice how the bytes, delay and direction, were declared inside of main. These cannot

be modified anywhere outside of main. Also, notice how check_switch returns an

unsigned char byte to the main loop. In �C�, only one variable can be returned.

RotateLeft:

 bcf STATUS, C ;clear the carry

 rrcf LATC,f ;rotate the LEDs (through carry) and turn on the next LED to the right

 btfss STATUS,C ;did the bit rotate into the carry (i.e. was DS1 just lit?)

 bra MainLoop

 bsf LATC, 3 ;yes, it did and now start the sequence over again by turning on DS4

 bcf STATUS, C ;clear the carry

 bra MainLoop ;repeat this program forever

unsigned char _previous_state = SWITCH_UP; //global variable

void main(void) {

 unsigned char delay;

 unsigned char direction;

.....

}

unsigned char check_switch(void){

...

..

}

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 68 2012 Microchip Technology Inc.

3.9 LESSON 8: PULSE-WIDTH MODULATION (PWM)

3.9.1 Introduction

This lesson does not rely on any of the previous lessons, but does use the same coding

techniques and information learned thus far.

In this lesson, a PIC MCU generates a PWM signal that lights an LED with the POT

thereby controlling the brightness.

3.9.2 Hardware Effects

Rotating the POT will adjust the brightness of a single LED.

3.9.3 Summary

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching

quickly between fully on and fully off states. The PWM signal resembles a square wave

where the high portion of the signal is considered the on state and the low portion of

the signal is considered the off state. The high portion, also known as the pulse width,

can vary in time and is defined in steps. A longer, high on time will illuminate the LED

brighter. The frequency or period of the PWM does not change. A larger number of

steps applied, which lengthens the pulse width, also supplies more power to the load.

Lowering the number of steps applied, which shortens the pulse width, supplies less

power. The PWM period is defined as the duration of one complete cycle or the total

amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single

PWM period. A higher resolution allows for more precise control of the pulse width time

and, in turn, the power that is applied to the load. In this lesson, the program will be

using 10 bits of resolution � the maximum allowed.

The term duty cycle describes the proportion of the on time to the off time and is

expressed in percentages, where 0% is fully off and 100% is fully on. In this situation,

a lower duty cycle corresponds to less power applied and a higher duty cycle

corresponds to more power applied.

3.9.4 New Registers

3.9.4.1 BOTH

3.9.4.1.1 All

The PIC16F1829 has two CCP modules and this lesson will use CCP2, while the

PIC18F14K22 only has one CCP module, so it will use CCP1.

It is recommended that the reader refer to the Capture/Compare/PWM section in the

data sheet to learn about each register above. This lesson will briefly cover how to

setup a single PWM.

Figure 3-8 summarizes how the PWM waveform is setup:

TABLE 3-28: NEW REGISTERS FOR BOTH DEVICES

Register Purpose

CCPXCON Setup of the �compare-capture-PWM� module

PRX The PWM period is specified by the PRx register of Timer2/4/6

CCPTMRS Selects what timer module is used in association with the PWM

CCPRXL Upper 8 bits (MSb) of PWM

TXCON Timer control register

Lessons

 2012 Microchip Technology Inc. DS41628B-page 69

FIGURE 3-8: PWM ANALYSIS

The PWM period is specified by the PRx register. Timer 2/4/6 is used to count up to the

value in CCPRxH combined with two LSbs in CCPxCON. CCPRxL is used to load

CCPRxH. One can think of CCPRxL as a buffer which can be read or written to, but

CCPRxH is read-only. When the timer is equal to PRx, the following three events occur

on the next increment cycle:

1. TMRx is cleared

2. The CCPx pin is set

3. The PWM duty cycle is latched from CCPRxL into CCPRxH

The following steps should be executed in the order shown when configuring the CCP

module for standard PWM operation:

1. Select the Timer2/4/6 resource to be used for PWM generation by setting the

CxTSEL<1:0> bits in the CCPTMRS register.

2. Disable the CCPx pin output driver by setting the associated TRIS bit.

3. Load the PRx register with the PWM period value.

4. Configure the CCP module for the PWM mode by loading the CCPxCON register

with the appropriate values

5. Load the CCPRxL register and the DCxBx bits of the CCPxCON register, with the

PWM duty cycle value.

6. Configure and start Timer2/4/6:

a) Clear the TMRxIF interrupt flag bit of the PIRx register.

b) Configure the TxCKPS bits of the TxCON register with the Timer prescale

value.

c) Enable the Timer by setting the TMRxON bit of the TxCON register.

7. Enable PWM output pin.

This lesson uses a frequency of 486 Hz. Anything over ~60 Hz will eliminate any notice-

able flicker.

EXAMPLE 3-33:

The designer should also consider the PWM resolution.

EQUATION 3-3: PWM RESOLUTION

Two conditions must hold true for this lesson:

1. 10 bits of resolution

2. No flicker in LED

Period

Pulse Width

TMRx = 0

TMRx = CCPRxH:CCPxCON<5:4>

TMRx = PRx

;PWM Period = [PR2 + 1]*4*Tosc*T2CKPS = [255=6+ 1]*4*(1/500kHz) * 1

Resolution
4 PRx 1+ log

2 log
--- bits=

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 70 2012 Microchip Technology Inc.

Both devices are using some features of the enhanced PWM module. The PIC16 will

operate the CCP module in single output since the CCP2 P2A pin connects directly to

DS4. The PIC18 will operate the CCP module in Full-Bridge mode in order to modulate

P1D on DS3.

Maximum resolution is achieved when the PRx register is set to 0xFF, or rather 255,

the maximum value an 8-bit number can hold.

Below is a scope capture of the PWM signal when the LED is dimly lit. As one can see,

the Period is around ~2 ms, with the pulse width being only few hundred us wide.

FIGURE 3-9: SMALL PULSE WIDTH

Figure 3-10 shows when the dial is turned 30% clockwise. Notice how the pulse width

is greater than that shown in Figure 3-9, and that the frequency did not change.

FIGURE 3-10: GREATER PULSE WIDTH

TABLE 3-29:

Instruction English Purpose

andlw And a literal with WREG Masking values

Lessons

 2012 Microchip Technology Inc. DS41628B-page 71

3.9.5 Assembly

3.9.5.1 ENHANCED MID-RANGE

EXAMPLE 3-34:

This fills the eight MSbs in the PWM register. The next few lines can be commented out

and still provide the same perceived output. This is because the two LSbs do not play

a significant role in terms of duty cycle resolution. This lesson uses all ten bits for com-

pleteness.

EXAMPLE 3-35:

In Example 3-35, the program shifts the ADRESL register, which contains the two LSbs

from the ADC result. Bits <5:0> are always cleared while bits <7:6> contain part of the

ADC result. The PIC MCU will simply shift this register to the right twice so that they are

in bits <5:4>. Notice how the result of the shift is saved in ADRESL and NOT in WREG.

In the next three instructions: the first XOR clears bits that are the same and sets bits

that are different. The result is in WREG. The next AND function clears all control bits

in WREG, so they do not change in the final step. The final XOR changes the bits that

changed and leaves everything else untouched. The result is saved to the CCP2CON

register. A movwf or iorwf would not work, since it would not preserve the settings

applied in the initialization.

3.9.5.2 PIC18

The PIC18 substitutes the rrncf instruction with the lsrf instruction above, although

a rrcf would also work.

3.9.5.3 C LANGUAGE

Nothing new.

 call A2d ;begin the Analog to Digital conversion

 ;ADRESH and ADRESL are now both full of the ADC result!

 movf ADRESH, w ;Get the top 8 MSbs (remember that the ADC result is LEFT justified!)

 banksel CCPR2L

 movwf CCPR2L

 ;to fill all 10 bits of the duty cycle, the 2 LSbs will be put into the

 ;Duty Cycle Bits (DC2B) of the CCP2CON register which are bits 5 and 4.

 ;So we need to shift these LSb into place and OR them with CCP2CON

 ; in order to save the control settings above and fill these last bits in

 banksel ADRESL

 ;ADRESL = b'xx000000' where 'xx' are the 2 LSbs from the

 ;ADC result

 lsrf ADRESL, f ;ADRESL = b'0xx00000'

 lsrf ADRESL, f ;ADRESL = b'00xx0000'

 movf ADRESL, w ;now move into wreg
 banksel CCP2CON
 xorwf CCP2CON, w ;move the 2 LSbs into place without disturbing the rest of
 ;CCP2CON settings

 andlw B'00110000'

 xorwf CCP2CON, f

 bra MainLoop ;do this forever

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 72 2012 Microchip Technology Inc.

3.10 LESSON 9: TIMER0

3.10.1 Introduction

This lesson will produce the same output as 3.4 �Lesson 3: Rotate �. The only differ-

ence is that this version uses Timer0 to provide the delay routine.

3.10.2 Hardware Effects

LEDs rotate from right to left, similar to Lesson 3.

3.10.3 Summary

Timer0 is a counter implemented in the processor. It may be used to count instruction

cycles or external events, that occur at or below the instruction cycle rate.

In the PIC18, Timer0 can be used as either an 8-bit or 16-bit counter, or timer. The

enhanced mid-range core implements only an 8-bit counter.

This lesson configures Timer0 to count instruction cycles and to set a flag when it rolls

over. This frees up the processor to do meaningful work rather than wasting instruction

cycles in a timing loop.

Using a counter provides a convenient method of measuring time or delay loops as it

allows the processor to work on other tasks rather than counting instruction cycles.

3.10.4 New Registers

3.10.4.0.1 Enhanced Mid-range

TABLE 3-30: ENHANCED MID-RANGE NEW REGISTER

Register Purpose

OPTION_REG Timer0 and pull-up/INT configuration

Lessons

 2012 Microchip Technology Inc. DS41628B-page 73

3.10.4.0.2 OPTION_REG

This register controls Timer0 settings as well as some miscellaneous features, such as

weak pull-ups, which will be used in later lessons.

3.10.4.1 PIC18

3.10.4.1.1 T0CON

The T0CON register and OPTION_REG are similar with respect to the prescaler set-

tings and Timer0 assignment bits. The enhanced mid-range Timer0 is always enabled,

so there is no need to enable it. The weak pull-ups and INT detection are performed in

separate registers on the PIC18.

Timer0 will generate an interrupt when the TMR0 register overflows from 0xFF to 0x00

(if in 8-bit mode for the PIC18). The TMR0IF interrupt flag bit of the INTCON register is

set every time the TMR0 register overflows, regardless of whether or not the Timer0

interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 inter-

rupt enable is the TMR0IE bit of the INTCON register.

3.10.5 Assembly

3.10.5.1 PIC16

EXAMPLE 3-36:

The MainLoop label of the program will simply wait for the timer to overflow. When it

does, it will clear the flag and shift the LEDs. The flag MUST be cleared in software. If

this lesson is compared with Lesson 3, the reader should notice a reduction in code,

and that it is easier to follow. Timers greatly simplify delay loops and are great for

events that need precise timing.

3.10.5.2 PIC18

The only differences are that the initialization is slightly different and the relative branch

uses �$-2�.

3.10.6 C Language

Nothing new.

TABLE 3-31: NEW REGISTERS FOR PIC18

Register Purpose

T0CON Timer0 configuration

btfss INTCON, TMR0IF ;did TMR0 roll over yet?

bra $-1 ;wait until TMR0 overflows and sets TMR0IF

bcf INTCON, TMR0IF ;must clear flag in software

;rotate the LEDs

.....

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 74 2012 Microchip Technology Inc.

3.11 LESSON 10: INTERRUPTS AND PULL-UPS

3.11.1 Introduction

This lesson introduces interrupts and how they are useful. It also introduces internal

weak pull-ups that are available on most PIC devices. This lesson expands on the pre-

vious lessons, but mostly Lessons 9 and 3.

3.11.2 Hardware Effects

LEDs rotate at a constant speed and the switch reverses their direction.

3.11.3 Summary

Two new concepts are introduced: interrupts and weak pull-ups.

3.11.3.1 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. This

means that the microcontroller can be configured to be aware of its surroundings. Rou-

tines can be run upon some external event. Firmware is used to determine the source

of the interrupt and act accordingly. All interrupts can be configured to wake the MCU

from Sleep mode.

Most of the peripherals can generate an interrupt. Some of the I/O pins may be config-

ured to generate an interrupt when they change state. When a peripheral needs ser-

vice, it sets its interrupt flag. Each interrupt flag is ANDed with its enable bit and then

these are ORed together to form a master interrupt. This master interrupt is ANDed with

the Global Interrupt Enable (GIE). The enable bits allow the PIC microcontroller to limit

the interrupt sources to certain peripherals. See the Interrupt Logic Figure in the PIC

microcontroller data sheet for a drawing of the interrupt logic. Below is a simplified dia-

gram.

FIGURE 3-11: SUMMARY OF INTERRUPT FLOW

The PIC18 has a slightly different structure to accommodate interrupt priority. The

enhanced mid-range core has only one interrupt vector. This means that whenever an

interrupt occurs, the program counter goes to the interrupt service address, specifically

address 0x0004. The PIC18 allows most interrupt sources to be assigned a high or low

priority level. The high priority vector is at 0x0008 and the low at 0x0018. A high priority

interrupt event will interrupt a low priority that may be in progress. This lesson will not

utilize priority interrupts and will instead make use of the mid-range compatibility fea-

ture by clearing the IPEN bit. Both devices will now service from only one vector.

When an interrupt is responded to, the Global Interrupt Enable (GIE) bit is cleared to

disable further interrupts. The return address is pushed onto the stack and the PC is

loaded with the interrupt vector address. Both the enhanced mid-range and PIC18

devices perform automatic context saving for the WREG, STATUS, and BSR registers.

The FSR and PCLATH registers are saved only in the enhanced mid-range devices.

The PIC18 requires a retfie, fast instruction execution to restore the context.

Ms

Global Interrupt Enable

Other Interrupt Sources

Interrupt Flag

Interrupt Enable

Lessons

 2012 Microchip Technology Inc. DS41628B-page 75

The firmware within the Interrupt Service Routine (ISR) should determine the source of

the interrupt by polling the interrupt flag bits. The serviced interrupt flag bits must be

cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is

cleared, any interrupt that occurs while executing the ISR will be recorded through its

interrupt flag, but will not cause the processor to redirect to the interrupt vector until the

retfie instruction is executed, thereby enabling the GIE bit.

3.11.3.2 WEAK PULL-UPS

Both the enhanced mid-range and PIC18 devices in this tutorial are able to provide

internal pull-up resistors on some pins. This can greatly reduce the need of external

hardware.

FIGURE 3-12: WEAK PULL-UP DIAGRAM

As seen in Figure 3-12, by enabling the weak pull-up on a pin, the pin will always read

a �1� if no other external circuitry is connected to RA2. In this demo, there is a resistor

connected to the switch, which is then connected to ground. When the switch is

pressed, the voltage on RA2 is no longer VDD, but rather close to 0V, or ground.

The pull-up resistor is not given a value in the electrical specifications, but rather the

current, Ipur. For the PIC16F1829, this is typically 140 µA. When the switch is closed,

given the typical current spec, the voltage on RA2 becomes:

EQUATION 3-4:

It is called a �weak� pull-up since it does not bring the pin to VDD quickly. A stronger

pull-up would have a low resistance and bring the pin quickly up to VDD. If there is a fair

amount of capacitance on the pin, the pin may take a while to register as logic-high to

the PIC MCU. Since it is a weak pull-up, the designer can easily override this internal

setting by using an external resistor, typically in the range of 1k-10k, to change the pin�s

state.

VDD

R2

Rpull-up

To PIC® MCU

SW1

GND

Irp

RA2

V I * R=

VA3 140 * 10
6–

 * 2k 28mV==

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 76 2012 Microchip Technology Inc.

3.11.4 New Registers

3.11.4.1 BOTH

This enables the individual internal pull-up circuitry for each pin on PORTA.

3.11.4.2 ENHANCED MID-RANGE

3.11.4.2.1 IOCAN/IOCAF

The PIC16F1829 can detect rising and falling edge interrupts. IOCAN contains the neg-

ative edge detection enable bits and IOCAF contains the interrupt flags. This lesson

enables the switch input as an interrupt-on-change pin through IOCAN and clears all

the flags in IOCAF inside the ISR.

This lesson uses the interrupt-on-change peripheral, which causes the PIC MCU to go

to address 0x0004 (interrupt vector), when RA2 changes from a high-to-low state.

FIGURE 3-13: RISING/FALLING EDGES

3.11.4.3 PIC18

3.11.4.3.1 IOCA

The PIC18F14K22 does not have a negative and positive edge trigger, but rather just

one that detects both. More software is needed to determine which edge occurred.

3.11.4.3.2 RCON

The RCON register is used to detect what caused the PIC MCU to reset as well as

enable/disable priority interrupts. This lesson shows how to use this register to disable

priority interrupts.

TABLE 3-32: NEW REGISTERS FOR BOTH DEVICES

Register Purpose

WPUA Weak pull-up enable

TABLE 3-33: NEW REGISTERS FOR ENHANCED MID-RANGE

Register Purpose

IOCAN Interrupt-on-change PORTA negative edge

IOCAF Interrupt-on-change PORTA flags

TABLE 3-34: NEW REGISTERS FOR PIC18

Register Purpose

IOCA Interrupt-on-change PORTA (both edges)

RCON Detects what caused the interrupt

Rising Edge

Falling Edge

Lessons

 2012 Microchip Technology Inc. DS41628B-page 77

3.11.5 New Instructions

3.11.5.1 BOTH

3.11.5.1.1 retfie

The retfie instruction exits the ISR by popping the previous address from the stack

and setting the GIE bit. The PIC18 requires the retfie, fast instruction to restore

the saved context, whereas the enhanced mid-range does not have this distinction.

3.11.6 Assembly

3.11.6.1 BOTH

EXAMPLE 3-37:

By using interrupts, the main loop can spend time doing other things such as crunching

numbers or writing to an LCD. The program no longer needs to wait for the flag to

become set to continue like the previous lesson did. This example code will simply

branch to MainLoop indefinitely, doing nothing while waiting for the interrupt.

3.11.6.2 ENHANCED MID-RANGE

EXAMPLE 3-38:

This jumps to the ISR routine. Notice how the goto statement is directly after the inter-

rupt vector address.

EXAMPLE 3-39:

Inside the ISR, the cause of the interrupt is determined. Once determined, one of the

services that must be completed is clearing the interrupt flag so that the ISR can be

successfully left. The retfie instruction exits the ISR by restoring the saved context,

re-enables the GIE bit and returns to the instruction following the last instruction

executed when the interrupt occurred.

TABLE 3-35: NEW INSTRUCTIONS FOR BOTH DEVICES

Instruction English Purpose

retfie Return from interrupt Return to normal execution

MainLoop:

 bra MainLoop ;can spend rest of time doing something critical here

Org 0x0 ;Reset Vector starts at 0x0000

bra Start ;main code execution

ORG 0x0004 ;Interrupt Vector starts at address 0x0004

goto ISR

;Enter here if an interrupt has occurred

;First, check what caused the interrupt by checking the ISR flags

;This lesson only has 2 flags to check

ISR:

 banksel IOCAF ;bank7

 btfsc IOCAF, 3 ;check the interrupt-on-change flag

 bra Service_SW1 ;switch was pressed

 bra Service_TMR0 ;Timer0 overflowed

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 78 2012 Microchip Technology Inc.

EXAMPLE 3-40:

The #ifdef is a preprocessor directive, which will look to see if the directive, in this

case PULL_UPS, is defined. If so, the code between the #ifdef and #endif will be

assembled. These two lines activate the weak pull-up resistor on pin RA2.

3.11.6.3 PIC18

The PIC18 does not differentiate between rising and falling edges. Therefore, the same

debounce routine and flowchart in Lesson 7 (Figure 3-6) will be used.

EXAMPLE 3-41:

When priority interrupts are disabled, all interrupts occur at address 0x0008.

EXAMPLE 3-42:

Same as the PIC16, except that the registers and bit names are changed slightly.

3.11.7 C Language

The enhanced core can have only one interrupt vector defined. This is done by creating

a function with the interrupt keyword:

void interrupt ISR(void)

This is a special name and is reserved only for the ISR. The PIC18 can have two, but

this lesson uses only one as shown above.

#ifdef PULL_UPS

 banksel WPUA

 bsf WPUA, 2 ;enable the weak pull-up for the switch

 banksel OPTION_REG

 bcf OPTION_REG, NOT_WPUEN ;enable the global weak pull-up bit

 ;this bit is active HIGH, meaning it must be cleared for it to be enabled

#endif

Org 0x0000 ;Reset Vector starts at 0x0000

bra Start ;main code execution

Org 0x0008 ;High Priority Interrupt Vector starts at address 0x0008

goto ISR

#ifdef PULL_UPS

 bsf WPUA, 2 ;enable the weak pull-up for the switch

 bcf INTCON2, NOT_RABPU ;enable the global weak pull-up bit

 ;this bit is active HIGH, meaning it must be cleared for it to be enabled

#endif

Lessons

 2012 Microchip Technology Inc. DS41628B-page 79

3.12 LESSON 11: INDIRECT ADDRESSING

3.12.1 Introduction

This lesson covers a very important topic of indirect addressing. The code uses indirect

addressing to implement a moving average filter. This lesson adds a moving average

filter to the Analog-to-Digital code in Lesson 4. The moving average keeps a list of the

last ADC values (n) and averages them together. The filter needs two parts: A circular

queue and a function to calculate the average.

Twisting the potentiometer changes the value read by the Analog-to-Digital converter.

The filtered value is then sent to the LED display.

The filter averages the last eight readings. Choosing a power of two for the number of

samples allows division by simple rotates instead of a general purpose divide routine.

Rather than summing the array every time, it is faster to keep a running sum, then

subtract out the oldest value in the queue and add in the new value.

FIGURE 3-14: MOVING AVERAGE WITH INDIRECT ADDRESSING

3.12.2 Hardware Effects

This lesson provides the same outcome as Lesson 4. The user rotates the POT to see

the LEDs rotate. The top four MSbs of the ADC value are reflected onto the LEDs.

3.12.3 Summary

While the program memory can be addressed in only one way � through the program

counter � information in the data memory space can be addressed in several ways. For

most instructions, the addressing mode is fixed. Other instructions may use up to three

modes, depending on which operands are used and whether or not the extended

instruction set is enabled.

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 80 2012 Microchip Technology Inc.

The addressing modes are:

1. Inherent

2. Literal

3. Direct

4. Indirect

3.12.3.1 INHERENT AND LITERAL

Many PIC device control instructions do not need any argument at all; they either

perform an operation that globally affects the device or they operate implicitly on one

register. This addressing mode is known as Inherent Addressing. Examples include

SLEEP and RESET, which are used in the EEPROM lesson.

Other instructions work in a similar way but require an additional explicit argument in

the opcode. This is known as Literal Addressing mode because they require some

literal value as an argument. Examples include addlw, movlb, call, and goto.

3.12.3.2 DIRECT ADDRESSING

Direct addressing specifies all or part of the source and/or destination address of the

operation within the opcode itself. The options are specified by the arguments

accompanying the instruction. In the core PIC device instruction set, bit-oriented and

byte-oriented instructions use some version of direct addressing by default. All of these

instructions include a 7-bit (8-bit for PIC18) literal address in their Least Significant

Byte. This address specifies either a register address in one of the banks of data RAM

or a location in the Access Bank (if using the PIC18) as the data source for the

instruction.

The destination of the operation�s results is determined by the destination bit �d�. When

�d� is �1�, the results are stored back in the source register, overwriting its original

contents. When �d� is �0�, the results are stored in the WREG register.

3.12.3.3 INDIRECT ADDRESSING

Indirect addressing allows the user to access a location in data memory without giving

a fixed address in the instruction. This is done by using File Select Registers (FSRs)

as pointers to the locations which are to be read or written. Since the FSRs are

themselves located in RAM as Special File Registers, they can also be directly

manipulated under program control. This makes FSRs very useful in implementing

data structures, such as tables and arrays in data memory. The registers for indirect

addressing are also implemented with Indirect File Operands (INDFs) that permit

automatic manipulation of the pointer value with auto-incrementing, auto-decrementing

or offsetting with another value.

The INDFn registers are not physical registers. These can be thought of as �virtual�

registers: they are mapped in the SFR space, but are not physically implemented.

Reading or writing to a particular INDF register actually accesses its corresponding

FSR register pair. A read from INDF1, for example, reads the data at the address

indicated by FSR1H:FSR1L.

Lessons

 2012 Microchip Technology Inc. DS41628B-page 81

3.12.4 New Registers

3.12.4.1 BOTH

3.12.4.1.1 INDFx/FSRx

Because indirect addressing on both the PIC18 and enhanced mid-range core use the

full address range, data RAM banking is not necessary. The FSR registers on the

PIC18 form a 12-bit address while the enhanced mid-range forms a 16-bit address.

This means that the PIC18 FSR provides access to the whole data memory range,

while the enhanced mid-range gives access to all of the memory banks including

read-only access program memory.

FIGURE 3-15: ENHANCED MID-RANGE INDIRECT/DIRECT ADDRESSING

3.12.5 New Instructions

3.12.5.1 BOTH

3.12.5.1.1 incf

This increments a file register by a value of one.

TABLE 3-36: NEW REGISTERS FOR BOTH DEVICES

Register Purpose

INDFx Virtual indirect register

FSRx Holds target address of virtual register

Indirect AddressingDirect Addressing

Bank Select Location Select

4 BSR 6 0From Opcode FSRxL7 0

Bank Select Location Select

00000 0000100010 11111
0x00

0x7F

Bank 0 Bank 1 Bank 2 Bank 31

0 FSRxH7 0

0 0 0 0

TABLE 3-37: NEW INSTRUCTIONS FOR BOTH DEVICES

Instruction English Purpose

incf Increment Add a value of one

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 82 2012 Microchip Technology Inc.

3.12.6 Assembly Language

3.12.6.1 BOTH

EXAMPLE 3-43:

Here, FSR0 is pointed towards the Queue location. Figure 3-16 explains the code in

Figure 3-43. It is important to note that FSR0 is two bytes wide in order to address

locations in program memory across multiple pages.

FIGURE 3-16: BEFORE FILTERINIT IS CALLED

FIGURE 3-17: AFTER FILTERINIT IS CALLED

After FilterInit is called, the FSR0 register is pointing towards the fist byte in

queue. The INDF0 register can now be read/written to. Any affects on the INDF0 reg-

ister will affect the value at the assigned address in the FSR0 register. An increment of

FSR0 will point to the next byte in the Queue register. In this case, it is the second ADC

reading.

A rotate or shift to the right is a quick method to divide by two.

FilterInit:

 movlw low Queue ;point to the Queue holding the ADC values

 movwf FSR0L

 movlw high Queue

 movwf FSR0H

INDF0

Queue [7]

Address:

Value: ??????

Address: 0x000

Value: ??????

Address: 0x0054

Value[0]: d�15�

FSR0L:FSR0H

0x004:0x005

INDF0

Queue [7]

Address:

Value: 0x0054

Address: 0x000

Value: d�15�

Address: 0x0054

Value[0]: d�15�

FSR0L:FSR0H

0x004:0x005

rrcf RunningSum,w ; divide by 2 and copy to a version we can corrupt

Lessons

 2012 Microchip Technology Inc. DS41628B-page 83

EQUATION 3-5:

3.12.7 C language

3.12.7.1 BOTH

Pointers in �C� are constructed by using the INDF/FSR pair on the PIC16/PIC18 to

achieve the effect.

EXAMPLE 3-44:

Similar to the assembly version, the main loop starts by resetting the pointer by pointing

(referencing) to the first byte in the queue. Then, an ADC reading is taken and saved

in the queue. LATC is then assigned the average of the queue. Remember that �queue�

is eight bytes wide, so it can hold eight samples of the ADC result (two LSbs of the

result are not saved).

EXAMPLE 3-45:

The average function has the pointer to queue as a parameter. The _sum is a global

variable which retains its value outside of this function. The current value in the running

sum is subtracted. The asterisk means that its value is being used (dereferencing). A

new ADC value is taken and added back into the running sum and the queue. The aver-

age reading is then returned to the main loop to be shifted onto the LED display.

There is a great deal of information about pointers for the �C� language on the web. It

is recommended that the reader look there for additional information.

Before Rotate right: b'00001010'= d'10'

After Rotate right: b'00000101'= d'5'

while (1) {

 ptr_queue = &queue; //point to the first byte in this array

 (RESET the pointer)

 for (i = NUM_READINGS; i != 0; i--){

 LATC = (average(ptr_queue) >> 4); //only want the 4 MSbs for 4 LEDs

 ptr_queue++;

}

unsigned char average(unsigned char *ptr) {

 unsigned char adc_value;

 _sum -= *ptr; //subtract the current value out of the sum

 adc_value = adc();

 *ptr = adc_value; //assign ADC value to the queue

 _sum += adc_value; //add to the sum

 return (_sum/NUM_READINGS); //compute the average

}

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 84 2012 Microchip Technology Inc.

3.13 LESSON 12: LOOK-UP TABLE

3.13.1 Intro

It is sometimes useful to implement a table to convert from one value to another.

Expressed in a high-level language it might look like this:

EQUATION 3-6:

That is, for every value of x, the function returns the corresponding y value. Look-up

tables are a fast way to convert an input to meaningful data because the transfer func-

tion is pre-calculated and �looked up�, rather than calculated on the fly. A function that

converts hexadecimal numbers to the ASCII equivalent is one such example.

The great benefit of using a look-up table is that abundant Flash memory is used to

store constant values in lieu of the more limited RAM space. This allows greater flexi-

bility and expands the memory capability of the program.

3.13.2 Hardware Effects

Gray coded binary will be reflected on the LEDs in accordance with the POT reading.

3.13.3 Summary

This lesson shows multiple ways to access program memory. The table simply converts

from regular binary code to the gray code equivalent. Gray codes are frequently used

in encoder applications to avoid wild jumps between states.

Binary encoders are typically implemented an opaque disk sensed by light sensors.

Due to different threshold levels on different bits, bits may change at slightly different

times, yielding momentary invalid results. Gray code prevents invalid transitions,

because only one bit changes from one sequence to the next. The current code is

correct until it transitions to the next.

The algorithm to convert between binary and Gray code is fairly complex. For a small

number of bits, the table look-up is smaller and faster.

3.13.4 New Registers

3.13.4.1 BOTH

The PC addresses bytes in the program memory. Recall that the enhanced PIC16 has

a Program Counter size of 15 bits and the PIC18 has a Program Counter of 21 bits.

The two devices share the offset implementation rather closely still.

3.13.4.1.1 PCL:

The low byte, known as the PCL register, is both readable and writable. The high byte,

or PCH register is not directly readable or writable. Updates to this register are per-

formed through the PCLATH register.

For the PIC18, the PC contains another register called PCU. This register contains the

PIC18�s PC<20:16> bits; it is also not directly readable or writable. Updates to the PCU

register are performed through the PCLATU register.

TABLE 3-38: NEW REGISTERS FOR BOTH DEVICES

Register Purpose

PCL Program Counter (PC) Least Significant Byte

PCLATH Write Buffer for the higher 7 bits of the Program Counter (8 bits for PIC18)

y = function(x);

Lessons

 2012 Microchip Technology Inc. DS41628B-page 85

3.13.4.1.2 PCLATH:

The contents of PCLATH and PCLATU (if using the PIC18) are transferred to the pro-

gram counter by any operation that writes PCL. Similarly, the upper two bytes of the

program counter are transferred to PCLATH and PCLATU by an operation that reads

PCL. This is useful for the computed offsets to the PC that are used in this lesson.

For the PIC18, the PC increments by two to address sequential instructions in program

memory. The PC increments by one in the enhanced mid-range core. This can be seen

in previous lessons� assembly where there was a dollar sign ($) with an offset literal.

The enhanced core assembly uses a $-1 to go back one valid program instruction in

program memory. Likewise, the PIC18 uses a $-2.

FIGURE 3-18: FIVE SITUATIONS FOR THE LOADING OF THE PC ON THE

ENHANCED MID-RANGE CORE

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 86 2012 Microchip Technology Inc.

3.13.5 New Registers

3.13.5.1 ENHANCED MID-RANGE

Flash program memory is also writable during normal operation. This is commonly

referred to as �Self-modifying code� or �Self-write�. This is achievable by implementing

a modified Harvard architecture.

3.13.5.1.1 EEADRx/EEDATx

When accessing the program memory block, the EEDATH:EEDATL register pair forms

a 2-byte word that holds the 14-bit data for read/write, and the EEADRL and EEADRH

registers form a 2-byte word that holds the 15-bit address of the program memory loca-

tion being accessed.

3.13.5.1.2 EECON1

Control bit EEPGD determines if the access will be a program or data memory access.

When clear, any subsequent operations will operate on the EEPROM memory. When

set, any subsequent operations will operate on the program memory. On Reset,

EEPROM is selected by default.

Control bits RD and WR initiate read and write, respectively. These bits cannot be

cleared, only set, in software. They are cleared in hardware at completion of the read

or write operation. The inability to clear the WR bit in software prevents the accidental,

premature termination of a write operation.

The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN

bit is clear.

3.13.5.2 PIC18

3.13.5.2.1 TBLPTR

The Table Pointer (TBLPTR) points to a byte address in program space. Executing

TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified

automatically for the next table read operation.

The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table

Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL).

These three registers join to form a 22-bit wide pointer.

3.13.5.2.2 TABLAT

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table

Latch register is used to hold 8-bit data during data transfers between program memory

and data RAM.

TABLE 3-39: NEW REGISTERS FOR ENHANCED MID-RANGE

Register Purpose

EEADRx Address to read/write in program or EEPROM memory

EEDATx 2-byte word that holds 14-bit data for read/write

EECON1 Control register for memory access

TABLE 3-40: NEW REGISTERS FOR PIC18

Register Purpose

TBLPTR Points to a byte address in program space

TABLAT Holds 8-bit data from program space

Lessons

 2012 Microchip Technology Inc. DS41628B-page 87

3.13.6 New Instructions:

3.13.6.1 BOTH:

3.13.6.1.1 retlw

The WREG register is loaded with the 8-bit literal specified as 8 bits in the instruction

word. The program counter is then loaded from the top of the stack (the return

address). Recall that the PIC MCU utilizes a modified Harvard architecture. It is mod-

ified because it allows the contents of the instruction memory to be accessed as if it

were data.

3.13.6.2 ENHANCED MID-RANGE

3.13.6.2.1 moviw

This instruction is used to move data between WREG and one of the indirect registers

(INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post increment-

ing/decrementing it.

Recall that the INDFn registers are not physical registers. Any instruction that accesses

an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h-FFFFh. Incrementing/decrementing it beyond

these bounds will cause it to wrap around.

3.13.6.2.2 brw

The brw, relative branch, instruction adds an offset to the PC. brw allows relocatable

code and codes that cross page boundaries. This adds the contents of WREG

(unsigned) to the PC. Since the PC will have incremented to fetch the next instruction,

the new address will be PC + 1 + (WREG). The designer does not need to worry about

program memory boundaries being crossed when using this.

3.13.6.3 PIC18:

3.13.6.3.1 tblrd

This instruction is used to read the contents of program memory. To address the

program memory, a three-byte pointer called Table Pointer is used. All three bytes of

Table Pointer must be setup before executing the tblrd* instruction.

TABLE 3-41: NEW INSTRUCTIONS FOR BOTH DEVICES

Instruction English Purpose

retlw Return with literal in WREG Table look-ups

TABLE 3-42: NEW INSTRUCTIONS FOR ENHANCED MID-RANGE

Instruction English Purpose

moviw Move INDFx to WREG Shorthand movlw with increment/decrement

brw Relative with WREG Local jump table

TABLE 3-43: NEW INSTRUCTIONS FOR PIC18

Instruction English Purpose

tblrd* Table Read Table look-up data retrieval

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 88 2012 Microchip Technology Inc.

FIGURE 3-19: TABLE POINTER USED TO READ ONE BYTE OF DATA �

ANSWER IS REFLECTED IN �TABLAT�

3.13.7 Assembly Language

3.13.7.1 ENHANCED MID-RANGE

There are three methods of accessing constants in program memory:

1. Computed goto

2. Indirect Addressing

3. Table Reads

The code will implement 3 different ways to utilize these methods:

1. Computed goto

a) Program Counter

b) BRW instruction

2. Indirect Addressing

a) FSR/INDF

3. Table Reads

a) EECON/EEDAT/EEADR SFRs

The third method can return the full 14 bits of the program memory words while the first

two only return an 8-bit byte. This lesson demonstrates all three methods, but utilizes

only the lower 8-bits of the data retrieved by method three.

3.13.7.1.1 Program Counter

Calling the look-up table has a limitation: if the table falls across a 256-byte page

boundary, or the index into the table exceeds the table bounds, then it will jump to a

location out of the table.

Good programming practices dictate a few additional instructions for our example: first,

since the table is only sixteen entries, make sure a number no larger than 16 is passed

in. The simplest way to do this is to logically AND the contents of WREG before modi-

fying PCL:

More complex error recovery schemes may be appropriate, depending on your appli-

cation.

In addition, there are some nuances to be aware of, should the table cross a 256-word

boundary. The Program Counter is 15 bits wide, but only the lower eight bits are repre-

sented in PCL. The remaining five bits are stored in PCLATH. However, an overflow of

ANDLW 0x0F

Lessons

 2012 Microchip Technology Inc. DS41628B-page 89

the lower eight bits is not automatically carried over into PCLATH. Because of this, be

sure to check the Carry flag in the STATUS register immediately after the table offset

addition, so that the PCLATH can be modified accordingly.

EXAMPLE 3-46:

3.13.7.1.2 brw instruction

Once the ADC value is loaded into WREG, the Program Counter can be modified in a

somewhat more indirect method than above. The program counter will be offset by the

value in the working register. This is the most efficient method for small tables.

EXAMPLE 3-47:

3.13.7.1.3 Indirect Addressing

The FSRx/INDFx pair can be used nicely in this example. Any large table look-ups

should follow this method.

The below code loads the starting address of the gray code table. Then, the ADC value

is added into FSR0 as the offset, which points to the corresponding gray code value.

EXAMPLE 3-48:

3.13.7.1.4 Table Reads

This method uses special SFRs that are used strictly for Flash program memory

reads/writes. Writing to program memory is more complex and restrictive, but reading

a single word from program memory is straightforward.

 ;Using the Program Counter (PC) directly

 movlw high TableStart ; get high order part of the beginning of the table

 movwf PCLATH

 movlw low TableStart ; load starting address of table

 addwf temp,w ; add offset from ADC conversion

 btfsc STATUS,C ; did it overflow?

 incf PCLATH,f ; yes: increment PCLATH

 movwf PCL ; modify PCL

EnhancedMethod:

 brw ;jumps ahead by the amount currently in wreg

TableStart:

 retlw b'0000' ; 0

 ��

 movlw high TableStart ; get high order part of the beginning of the table

 movwf FSR0H

 movlw low TableStart ; get lower order part of the table

 addwf temp, w ; add offset from ADC conversion

 btfsc STATUS, C ; did it overflow?

 incf FSR0H, f ; yes: increment high byte

 movwf FSR0L ; modify lower byte

 moviw FSR0++ ; move the value that FSR0 is pointing to into wreg

 return ; grey code now in wreg, return to MainLoop

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 90 2012 Microchip Technology Inc.

EXAMPLE 3-49:

This code reads a single byte in program memory. Only the lower eight bits are used.

First, the high address of the table is loaded into EEADRH. The lower address is not

assigned immediately, but rather after adding the offset (ADC result) into the address

first. This is to ensure that the added offset to the low address will not cause an unde-

tected overflow (255->0).

3.13.7.2 PIC18

The PIC18 supports two methods to access constants in program memory:

1. Computed GOTO

2. Table Reads

The code will implement two different ways to utilize these methods:

1. Computed GOTO

� Program Counter

2. Table Reads

� tblrd instruction

The PIC18 can also use the EECON/EEDAT/EEADR SFRs for table reads. Please see

the enhanced core implementation in assembly for more information.

In order to read and write program memory, there are two operations that allow the

processor to move bytes between the program memory space and the data RAM:

� Table Read (tblrd)

� Table Write (tblwt)

This lesson will only perform table reads and hence use the tblrd instruction.

The program memory space is 16 bits wide, while the data RAM space is 8 bits wide.

Table reads and table writes move data between these two memory spaces through an

8-bit register (TABLAT).

The table read operation retrieves one byte of data directly from program memory and

places it into the TABLAT register.

 banksel EEADRL ; bank 3

 movlw high TableStart ;

 movwf EEADRH ; Store MSb of address

 movlw low TableStart ;

 addwf temp, w

 btfsc STATUS, C

 incf EEADRH, f

 movwf EEADRL ; Store LSb of address

 bcf EECON1, CFGS ; Do not select Configuration Space

 bsf EECON1, EEPGD ; Select Program Memory

 bcf INTCON, GIE ; Disable interrupts

 bsf EECON1, RD ; Initiate read

 nop ; Executed

 nop ; Ignored

 bsf INTCON, GIE ; Restore interrupts

 movf EEDATL, w ; Get LSb of word

 return

 ;movwf PROG_DATA_LO ; Store in user location

 ;movf EEDATH,W ; Get MSb of word

 ;movwf PROG_DATA_HI ; Store in user location

Lessons

 2012 Microchip Technology Inc. DS41628B-page 91

3.13.7.3 PROGRAM COUNTER

Like the Enhanced Core implementation, the differences being that PCLATU is used to

address the full 21 bits, and that the ADC value is multiplied by two, because the 16-bit

PIC18 instructions are byte-addressable on the even addresses.

EXAMPLE 3-50:

3.13.7.4 TABLE READ

This code is identical to the above using the Program Counter except that it is using the

TBLPTR registers and not the program counter directly. Also, note how a multiply by

two is performed on the temporary register where the ADC result is stored. This is only

necessary when the data is stored in the lower bytes of the program words. When data

is stored as bytes, then the multiply by two for table access is unnecessary, because

program memory is byte-addressable. Any single rotate to the left performs a multiple

of two and a rotate to the right is a division of two.

EXAMPLE 3-51:

Once properly configured, a read can be performed.

EXAMPLE 3-52:

The code returns to the main loop with the gray code in WREG.

3.13.8 C Language

3.13.8.1 BOTH

Like usual, the �C� implementation is rather easy and much more readable.

A look-up table is achieved by creating an array and declaring it as a constant, so that

the compiler places it into program space and not data space.

;Using the Program Counter (PC) directly

 movlw upper TableStart ; move upper part

 movwf PCLATU

 movlw high TableStart ; get high order part of the beginning of the table

 movwf PCLATH

 movlw low TableStart ; load starting address of table

 rlcf temp, f ; multiply by 2 by shifting to the left (remember

 that the PIC18 has 16bit program counter)

 addwf temp,w ; add offset from ADC conversion

 btfsc STATUS,C ; did it overflow?

 incf PCLATH,f ; yes: increment PCLATH

 movwf PCL ; modify PCL

 movlw upper TableStart ; Load TBLPTR with the base

 movwf TBLPTRU ; address of the word

 movlw high TableStart

 movwf TBLPTRH

 movlw low TableStart

 rlcf temp, f ;multiply by 2 by shifting to the left

 addwf temp, w

 btfsc STATUS, C

 incf TBLPTRH , f

 movwf TBLPTRL

READ_WORD:

 tblrd* ; read into TABLAT

 movf TABLAT, w ; get data

 return

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 92 2012 Microchip Technology Inc.

EXAMPLE 3-53:

For PIC18 devices, the compiler will recognize the �char� type as a byte and assign two

byte addressable data points per program memory word. Notice the data space differ-

ence if this �const� keyword is forgone.

FIGURE 3-20: DECLARED AS A CONSTANT

FIGURE 3-21: NOT DECLARED AS A CONSTANT

The compiler placed 16 more bytes into data space (as it should) when the const key-

word was omitted. With the keyword in place, notice how only one byte of RAM is used.

This one byte is used in main, adc_value, which holds the top eight Most Significant

bits.

Notice how much more space there is in program memory than in data memory.

Sixteen bytes of RAM accounts for 4% of the total available space while adding the

array into Flash only adds an additional 2% of used space.

The main loop then uses the ADC value as the offset into the array which will return the

correct gray code equivalent.

EXAMPLE 3-54:

const unsigned char gray_code[] = { //lookup table for binary->gray code

 0b0000,0b0001,0b0011,0b0010,0b0110,

 0b0111,0b0101,0b0100,0b1100,0b1101,

 0b1111,0b1110,0b1010,0b1011,0b1001,

 0b10000

};

Memory Summary:

Program space used 7Eh (126) of 4000h bytes (0.8%)

Data space used 1h (1) of 1A0h bytes (0.2%)

Memory Summary:

Program space used 9Ch (156) of 4000h bytes (1.0%)

Data space used 11h (17) of 1A0h bytes (4.1%)

while(1){

 adc_value = adc(); //get the ADC value from the POT

 adc_value >> = 4; //save only the top 4 MSbs

 LATC = gray_code[adc_value]; //convert to Gray Code and display on the LEDs

 }

Lessons

 2012 Microchip Technology Inc. DS41628B-page 93

3.14 LESSON 13: EEPROM

3.14.1 Introduction

This lesson provides code for writing and reading a single byte onto the on-board

EEPROM. EEPROM is nonvolatile memory, meaning that it does not lose its value

when power is shut off. This is unlike RAM, which will lose its value when no power is

applied. The EEPROM is useful for storing variables that must still be present during

no power. It is also convenient to use if the entire RAM space is used up. Both the

PIC16F1829 and the PIC18F14K22 have 256 bytes of EEPROM available. Writes and

reads to the EEPROM are relatively quick, and are much faster than program memory

operations.

3.14.2 Hardware Effects

Press the switch to save the LED pattern, and then disconnect the power. When power

is then applied again, the program will start with that same LED pattern lit.

3.14.3 Summary

When the lesson is first programmed, no LEDs will light up, even with movement of the

POT. When the switch is pressed, the LED corresponding to the ADC reading at that

instant will be lit, and the PIC MCU will go to Sleep until the switch is pressed again.

Each press of the switch saves the ADC value into EEPROM. The PIC MCU uses inter-

rupts to wake-up from Sleep, take an ADC reading, save to EEPROM, and then goes

back to Sleep.

FIGURE 3-22: PROGRAM FLOW

Debounce

Init

Sleep

Write ADC value to EEPROM

Switch pressed/released

Still down

Not down

Read EEPROM and move data onto LEDs

Check if ADC result is �0�

Take ADC reading and move it onto LEDs

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 94 2012 Microchip Technology Inc.

3.14.4 New Registers

3.14.4.1 BOTH

3.14.4.1.1 EECON2

In order to write to EEPROM, a special sequence must be performed on EECON2. This

register is only used for EEPROM writes and nothing else.

3.14.5 New Instructions

3.14.5.1 BOTH

3.14.5.1.1 SLEEP

When the SLEEP instruction is executed, the processor is put into Sleep mode with the

oscillator stopped. While sleeping, the processor consumes minimal current (uA lev-

els). During Sleep, some peripherals and interrupts continue to operate.

Upon entering Sleep mode, the following conditions exist:

1. CPU clock is disabled.

2. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may con-

tinue operation in Sleep.

3. Timer1 external oscillator is unaffected, and peripherals that operate from it may

continue operation in Sleep.

4. ADC is unaffected, if the dedicated FRC clock is selected.

5. I/O ports maintain the status they had before.

6. SLEEP was executed (driving high, low or high-impedance).

7. Resets other than WDT are not affected by Sleep mode.

The reader should refer to individual peripheral chapters for more details on peripheral

operation during Sleep.

The interrupt-on-change that both devices utilize in this lesson will wake the processor

from Sleep to perform the EEPROM write and ADC reading.

3.14.6 Assembly Language

3.14.6.1 BOTH

The code only reads and writes one byte from EEPROM. The address, 0x00, is defined

in the first few lines of the program. Much like the previous lesson,

EECON1/EEADRL/EEDAT is used throughout for all memory writes/reads.

An EEPROM write requires that a unique sequence is written to the EECON2 virtual

register.

TABLE 3-44: NEW REGISTERS FOR BOTH DEVICES

Register Purpose

EECON2 Performs the required write sequence

TABLE 3-45: NEW INSTRUCTIONS FOR BOTH DEVICES

Instruction English Purpose

SLEEP Go to Sleep Low-power operation

Lessons

 2012 Microchip Technology Inc. DS41628B-page 95

EXAMPLE 3-55:

When the WR bit is set, it remains set until the write to EEPROM is complete.

3.14.7 C Language

3.14.7.1 BOTH

There are two functions that the XC8 compiler provides, which greatly simplify

EEPROM reads and writes.

EXAMPLE 3-56:

Use this to read and write single bytes from EEPROM.

;REQUIRED SEQUENCE for EEPROM write

 movlw 0x55

 movwf EECON2

 movlw 0xAA

 movwf EECON2

 bsf EECON1, WR ;begin write

eeprom_read(<addr>)

eeprom_write(<addr>,<value>);

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 96 2012 Microchip Technology Inc.

NOTES:

PICkit� 3 STARTER KIT USER�S GUIDE

 2012 Microchip Technology Inc. DS41628B-page 95

Appendix A. Block Diagram and MPLAB® X Shortcuts

FIGURE A-1: LOW PIN COUNT BOARD SCHEMATIC

V
P

P
/M

C
L

R
1

V
D

D
2

G
N

D
3

IC
S

P
D

A
T

4

IC
S

P
C

L
K

5

N
C

6

P
1

V
D

D
1

R
A

5
2

R
A

4
3

R
A

3
4

R
C

5
5

R
C

4
6

R
C

3
7

R
C

6
8

R
C

7
9

R
B

7
1
0

R
B

6
1
1

R
B

5
1
2

R
B

4
1
3

R
C

2
1
4

R
C

1
1
5

R
C

0
1
6

R
A

2
1
7

R
A

1
1
8

R
A

0
1
9

V
S

S
2
0

1
8
2
2

1
8
2
3

1
8
2
8

D
IP

8

D
IP

1
4

D
IP

2
0

U
1

8
,
1
4
 a

n
d
 2

0
 P

IN
 C

o
m

p
at

ib
le

 D
ev

ic
es

1 2

P
2

1
2

JP
1

1
2

JP
2

1
2

JP
3

1
2

JP
4

1
4

1
1852

1
2

1
36 7 9

1
031 4

J
1

HDR1X14

1K

R2

1
0
K

R
1

4
7
0
R

R
6

4
7
0
R

R
3

4
7
0
R

R
4

4
7
0
R

R
5

1K

R7

0
.1
u
F

C
1

0.1uF

C2

D
S
1

D
S
2

D
S
3

D
S
4

S
W
1

S
W
-B
3
F
1
0
0
0

R
A

5

R
A

4
_

T
1
G

R
C

5

R
C

4

R
C

3

R
C

6

R
C

7

R
B

7

R
A

1
_

IC
S

P
C

L
K

R
A

2

R
C

0

R
C

1

R
C

2

R
B

4

R
B

5

R
B

6

R
A

3
_
M

C
L

R
_
V

P
P

R
A

0
_
IC

S
P

D
A

T
R

A
1
_
IC

S
P

C
L

K

+
V

+
V

+
V

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

12

JP
5

R
A

3
_
M

C
L

R
_
V

P
P

R
A

0
_
IC

S
P

D
A

T

R
A

4
_
T

1
G

+
V

+
V

R
C

0

R
C

1

R
C

2

R
C

3

R
A

2

3 1

2

C
W

C
C
W

1
0
K

R
P
1

P
O
T
-3
3
5
2
E

R
A

5

R
A

4
_

T
1
G

R
A

3
_
M

C
L

R
_
V

P
P

R
C

5

R
C

4

R
C

3

R
A

0
_

IC
S

P
D

A
T

R
A

1
_
IC

S
P

C
L

K

R
A

2

R
C

0

R
C

1

R
C

2
+

V

G
N

D

G
N

D

R
A

4
_

T
1
G

R
C

0

R
C

1

R
C

2

R
C

3

+
V

P
IC
k
it
®

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 96 2012 Microchip Technology Inc.

A.1 USEFUL MPLAB® X SHORTCUTS

MPLAB X provides several new features to the MPLAB IDE. It is based on the existing

development platform, Netbeans. The following is a list of useful shortcuts available

while developing code:

1. ALT+SHIFT+�F�

a) Auto Format code

2. CTRL+E

a) Delete the currently selected line and move up the next

3. CTRL+SEMICOLON

a) Append a semicolon to the end of the currently selected line

4. CTR+SHIFT+UP

a) Copy the selected line to a new line below it

b) Supports multiple lines via highlighting

� Custom macros can be created by going to edit->start macro recording

� Hover over any function call and hold CTRL to go to that function definition.

Visit netbeans.com to learn more shortcuts. The forums will provide a great deal of help

as well.

A.2 FINDING REGISTER NAMES

All of the register definitions are defined in a header file that must be included at the top

of each source file. For these lessons, the expected system directory locations are as

follows:

Assembler (MPASM):

1. C:\Program Files\Microchip\MPASM Suite\P18F14K22.inc

2. C:\Program Files\Microchip\MPASM Suite\P16F1829.inc

XC8

1. C:\Program Files\microchip\xc8\v1.00\include\pic16f1829.h

2. C:\Program Files\microchip\xc8\v1.00\include\pic18f14K22.h

A.3 PIC MCU ASSEMBLY CODING PRACTICES:

In general, assembly should be commented profusely due to the complexity and obscu-

rity of the language.

� Write to the latch, read from the port.

� Use bit operations (bcf/bsf) when modifying important parts that should be

emphasized instead of a simple movlw.

� Put the Interrupt Service Routine (ISR) as the last function.

� Assembler directives should be in lowercase:

res, org, #define, #include, banksel, �

� Labels should be descriptive and should have a colon.

� Do not hard code addresses. Use clbock/endc (non-linker) or #pragma

udata sections (linker) to allow assembler or linker to assign variable

addresses.

Block Diagram and MPLAB® X Shortcuts

 2012 Microchip Technology Inc. DS41628B-page 97

EXAMPLE A-1:

Bad:

#define flowRate 0x20

flowRate equ 0x20

Good:

Cblock 0x20

 flowRate

 flowTotal

endc

PICkit� 3 Starter Kit User�s Guide

DS41628B-page 98 2012 Microchip Technology Inc.

NOTES:

DS41628B-page 99 2012 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-792-7200

Fax: 480-792-7277

Technical Support:

http://www.microchip.com/

support

Web Address:

www.microchip.com

Atlanta
Duluth, GA

Tel: 678-957-9614

Fax: 678-957-1455

Boston
Westborough, MA

Tel: 774-760-0087

Fax: 774-760-0088

Chicago
Itasca, IL

Tel: 630-285-0071

Fax: 630-285-0075

Cleveland
Independence, OH

Tel: 216-447-0464

Fax: 216-447-0643

Dallas
Addison, TX

Tel: 972-818-7423

Fax: 972-818-2924

Detroit
Farmington Hills, MI

Tel: 248-538-2250

Fax: 248-538-2260

Indianapolis
Noblesville, IN

Tel: 317-773-8323

Fax: 317-773-5453

Los Angeles

Mission Viejo, CA

Tel: 949-462-9523

Fax: 949-462-9608

Santa Clara

Santa Clara, CA

Tel: 408-961-6444

Fax: 408-961-6445

Toronto
Mississauga, Ontario,

Canada

Tel: 905-673-0699

Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor

Tower 6, The Gateway

Harbour City, Kowloon

Hong Kong

Tel: 852-2401-1200

Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000

Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511

Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-8980-9588

Fax: 86-23-8980-9500

China - Hangzhou

Tel: 86-571-2819-3187

Fax: 86-571-2819-3189

China - Hong Kong SAR

Tel: 852-2943-5100

Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460

Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355

Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533

Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829

Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660

Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300

Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252

Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138

Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040

Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444

Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631

Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512

Fax: 91-20-2566-1513

Japan - Osaka

Tel: 81-66-152-7160

Fax: 81-66-152-9310

Japan - Yokohama

Tel: 81-45-471- 6166

Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301

Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200

Fax: 82-2-558-5932 or

82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857

Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870

Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065

Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870

Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366

Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828

Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2508-8600

Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351

Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611

Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399

Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90

Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869

Fax: 44-118-921-5820

Worldwide Sales and Service

11/14/12

http://support.microchip.com
http://www.microchip.com

	Chapter 1. Overview
	1.1 Introduction
	1.2 Highlights
	1.3 What’s New
	1.4 Included Items
	1.5 The Low Pin Count Board
	Figure 1-1: Demo Board Hardware Layout
	Table 1-1: Pin Assignments

	1.6 Software Overview
	1.7 Running the Demonstrations
	Chapter 2. PIC® MCU Architecture
	2.1 Introduction
	2.2 Core Basics
	Figure 2-1: Simplified Enhanced Mid-Range PIC® MCU Block Diagram
	Figure 2-2: Simplified Enhanced Mid-Range PIC® MCU Data Block Diagram
	Figure 2-3: Simplified PIC18 Block Diagram

	2.3 Data/Program Bus
	2.4 Accumulator
	2.5 Instructions
	Equation 2-1: Instruction Time
	Example 2-1:

	2.6 Byte
	Example 2-2:

	2.7 Bit
	Example 2-3:

	2.8 Literal
	Example 2-4:

	2.9 Control
	Figure 2-4: Enhanced PIC16 General Format for Instructions
	Figure 2-5: PIC18 General Format for Instructions

	2.10 Stack Level
	2.11 Memory Organization
	2.12 Program Memory
	2.12.1 Flash Program Memory
	2.12.2 Configuration Words
	2.12.3 Device ID
	2.12.4 Revision ID
	Figure 2-6: Enhanced Mid-Range program memory map and call stack
	Figure 2-7: PIC18 Program Memory Map and Call Stack

	2.12.5 User ID

	2.13 Data Memory
	2.13.1 Core Registers
	2.13.2 Special Function Registers
	2.13.3 General Purpose RAM
	2.13.4 Common RAM

	2.14 Banks
	Figure 2-8: Enhanced Mid-range Banked Memory Partitioning
	Figure 2-9: PIC16F1829 Memory Map – The correct bank must be selected before writing/reading from a register
	Figure 2-10: PIC18F14K22 Data Memory Map
	Figure 2-11: PIC18F14K22 Special Function Register Map – All of these are in bank 15 which is included in the “Access RAM”

	2.15 Data EEPROM Memory
	2.16 Programming Basics
	2.16.1 MPASM™ Assembler Operation
	Figure 2-12: MPASM Assembler Operation

	2.16.2 XC8 Operation
	Figure 2-13: XC8 Operation
	Figure 2-14: Disassembly Figure

	2.16.3 Numbers in the Assembler
	Table 2-1: Numbers in the Assembler

	2.16.4 Numbers in the XC8 Compiler
	Table 2-2: Numbers in the Compiler

	2.17 MPASM Assembler Directives
	2.17.1 Banksel
	2.17.2 cblock
	Example 2-5:

	2.17.3 Org (addr)
	2.17.4 End
	2.17.5 Errorlevel
	Example 2-6:

	2.17.6 #include
	Example 2-7:

	Chapter 3. Lessons
	3.1 Lessons
	3.2 Lesson 1: Hello World (Turn on an LED)
	3.2.1 Introduction
	3.2.2 Hardware Effects
	3.2.3 Summary
	3.2.4 New Registers
	3.2.4.1 Both
	Table 3-1: New Registers for Both Devices

	3.2.4.2 LATC
	3.2.4.3 PORTC
	3.2.4.4 TRISC
	Table 3-2: TRIS Direction

	3.2.5 New Instructions
	3.2.5.1 Both
	Table 3-3: New Instructions for Both Devices

	3.2.5.2 bsf
	Example 3-1:

	3.2.5.3 bcF
	Example 3-2:

	3.2.5.4 CLRF
	Example 3-3:

	3.2.6 Assembly
	3.2.6.1 Enhanced Mid-range
	Example 3-4:

	3.2.6.2 PIC18
	Example 3-5:

	3.2.7 C Language
	3.2.7.1 Enhanced Mid-range
	Example 3-6:

	3.2.7.2 PIC18

	3.3 Lesson 2: Blink
	3.3.1 Introduction
	3.3.2 Hardware Effects
	3.3.3 Summary
	3.3.4 New Registers
	3.3.4.1 Both
	Table 3-4: New Registers for Both Devices

	3.3.5 New Instructions
	3.3.5.1 Both Devices
	Table 3-5: New Instructions for Both Devices
	Example 3-7:

	3.3.5.2 PIC18
	Table 3-6: New Instructions for PIC18

	3.3.6 Assembly
	3.3.6.1 Enhanced Mid-range
	Example 3-8:
	Equation 3-1: Delay Speed
	Example 3-9:
	Example 3-10:

	3.3.6.2 PIC18
	Example 3-11:

	3.3.7 C Language
	3.3.7.1 Both
	Example 3-12:
	Example 3-13:

	3.4 Lesson 3: Rotate
	3.4.1 Introduction
	3.4.2 Hardware Effects
	3.4.3 Summary
	3.4.4 New Registers
	Table 3-7: New Registers for Both Devices

	3.4.5 New Instructions
	3.4.5.1 Both
	Table 3-8: New Instructions for Both Devices

	3.4.5.2 Enhanced Mid-range
	Table 3-9: New Instructions for Enhanced Mid-range

	3.4.5.3 PIC18
	Table 3-10: New Instructions for PIC18
	Figure 3-1: Logic Shift to the Right
	Figure 3-2: Rotate Right through Carry

	3.4.6 Assembly
	3.4.6.1 Enhanced Mid-range
	Example 3-14:
	Table 3-11: Pin to LED Mapping
	Table 3-12: LED Rotate
	Table 3-13: LED Rotate
	Example 3-15:

	3.4.6.2 PIC18
	Example 3-16:

	3.4.7 C Language
	3.4.7.1 Both
	Example 3-17:
	Example 3-18:

	3.5 Lesson 4: Analog-to-Digital Conversion
	3.5.1 Introduction
	3.5.2 Hardware Effects
	3.5.3 Summary
	Equation 3-2:

	3.5.4 New Registers
	3.5.4.1 Both
	Table 3-14: New Registers for Both Devices
	Table 3-15: ADC result that is left justified – Bits in Blue are mirrored to LATC. Bit 6 Reflects DS1, Bit 7 controls DS2, and so forth.

	3.5.4.2 PIC16
	Table 3-16: New Registers for Enhanced Mid-range

	3.5.4.3 PIC18
	Table 3-17: New Registers for PIC18

	3.5.5 New Instructions
	3.5.5.1 Both
	Table 3-18: New Instructions for Both Devices
	Example 3-19:

	Table 3-19: Before SWAPF
	Table 3-20: Before SWAPF
	Example 3-20:

	Table 3-21: After SWAPF
	Figure 3-3: SWAPF Diagram

	3.5.6 Assembly
	3.5.6.1 Enhanced Mid-range
	Example 3-21:

	3.5.6.2 PIC18:
	Example 3-22:

	3.5.7 C Language
	Example 3-23:
	Table 3-22: ADRESH Before Shift
	Table 3-23: Temporary Workspace Register After Shift

	3.6 Lesson 5: Variable Speed Rotate
	3.6.1 Introduction
	3.6.2 Hardware Effects
	3.6.3 Summary
	Figure 3-4: Program Flow

	3.6.4 New Registers
	3.6.5 New Instructions
	3.6.5.1 Both
	Table 3-24: New Instructions for Both Devices
	Table 3-25: XOR Truth Table
	Example 3-24:

	3.6.5.2 PIC18
	Table 3-26: New Instructions for PIC18
	Example 3-25:

	3.6.6 Assembly
	3.6.6.1 Both
	Example 3-26:

	3.6.7 C Language
	Example 3-27:

	3.7 Lesson 6: Debounce
	3.7.1 Introduction
	Figure 3-5: Switch Debouncing

	3.7.2 Hardware Effects
	3.7.3 Summary
	Example 3-28:

	3.7.4 New Registers
	3.7.5 New Instructions
	3.7.6 Assembly
	3.7.6.1 Enhanced Mid-range
	Example 3-29:

	3.7.7 PIC18
	3.7.8 C Language

	3.8 Lesson 7: Reversible Variable Speed Rotate
	3.8.1 Introduction
	3.8.2 Hardware Effects
	3.8.3 Summary
	Figure 3-6: Program Flow for Lesson 7

	3.8.4 New Registers
	3.8.5 New Instructions
	3.8.5.1 PIC18
	Table 3-27:
	Figure 3-7: Rotate Left without Carry

	3.8.6 Assembly
	3.8.6.1 Enhanced Mid-range
	Example 3-30:

	3.8.6.2 PIC18
	Example 3-31:

	3.8.7 C Language
	3.8.7.1 Both
	Example 3-32:

	3.9 Lesson 8: Pulse-Width Modulation (PWM)
	3.9.1 Introduction
	3.9.2 Hardware Effects
	3.9.3 Summary
	3.9.4 New Registers
	3.9.4.1 Both
	Table 3-28: New Registers for Both Devices
	Figure 3-8: PWM Analysis
	Example 3-33:
	Equation 3-3: PWM Resolution
	Figure 3-9: Small Pulse Width
	Figure 3-10: Greater Pulse Width

	Table 3-29:

	3.9.5 Assembly
	3.9.5.1 Enhanced Mid-range
	Example 3-34:
	Example 3-35:

	3.9.5.2 PIC18
	3.9.5.3 C Language

	3.10 Lesson 9: Timer0
	3.10.1 Introduction
	3.10.2 Hardware Effects
	3.10.3 Summary
	3.10.4 New Registers
	Table 3-30: Enhanced Mid-range New Register
	3.10.4.1 PIC18
	Table 3-31: New Registers for PIC18

	3.10.5 Assembly
	3.10.5.1 PIC16
	Example 3-36:

	3.10.5.2 PIC18

	3.10.6 C Language

	3.11 Lesson 10: Interrupts and Pull-ups
	3.11.1 Introduction
	3.11.2 Hardware Effects
	3.11.3 Summary
	3.11.3.1 Interrupts
	Figure 3-11: Summary of Interrupt Flow

	3.11.3.2 Weak Pull-ups
	Figure 3-12: Weak Pull-up Diagram
	Equation 3-4:

	3.11.4 New Registers
	3.11.4.1 Both
	Table 3-32: New Registers for Both Devices

	3.11.4.2 Enhanced Mid-range
	Table 3-33: New Registers for Enhanced mid-range
	Figure 3-13: Rising/Falling Edges

	3.11.4.3 PIC18
	Table 3-34: New Registers for PIC18

	3.11.5 New Instructions
	3.11.5.1 Both
	Table 3-35: New Instructions for Both Devices

	3.11.6 Assembly
	3.11.6.1 Both
	Example 3-37:

	3.11.6.2 Enhanced mid-range
	Example 3-38:
	Example 3-39:
	Example 3-40:

	3.11.6.3 PIC18
	Example 3-41:
	Example 3-42:

	3.11.7 C Language

	3.12 Lesson 11: Indirect Addressing
	3.12.1 Introduction
	Figure 3-14: Moving Average with Indirect Addressing

	3.12.2 Hardware Effects
	3.12.3 Summary
	3.12.3.1 Inherent and Literal
	3.12.3.2 Direct Addressing
	3.12.3.3 Indirect Addressing

	3.12.4 New Registers
	3.12.4.1 Both
	Table 3-36: New Registers for Both Devices
	Figure 3-15: Enhanced Mid-Range Indirect/Direct Addressing

	3.12.5 New Instructions
	3.12.5.1 Both
	Table 3-37: New Instructions for Both Devices

	3.12.6 Assembly Language
	3.12.6.1 Both
	Example 3-43:
	Figure 3-16: Before FilterInit Is Called
	Figure 3-17: After FilterInit is Called
	Equation 3-5:

	3.12.7 C language
	3.12.7.1 Both
	Example 3-44:
	Example 3-45:

	3.13 Lesson 12: Look-up Table
	3.13.1 Intro
	Equation 3-6:

	3.13.2 Hardware Effects
	3.13.3 Summary
	3.13.4 New Registers
	3.13.4.1 Both
	Table 3-38: New Registers for Both Devices
	Figure 3-18: Five situations for the loading of the PC on the Enhanced mid-range core

	3.13.5 New Registers
	3.13.5.1 Enhanced Mid-range
	Table 3-39: New Registers for Enhanced Mid-range

	3.13.5.2 PIC18
	Table 3-40: New Registers for PIC18

	3.13.6 New Instructions:
	3.13.6.1 Both:
	Table 3-41: New Instructions for Both Devices

	3.13.6.2 Enhanced Mid-range
	Table 3-42: New Instructions for Enhanced Mid-range

	3.13.6.3 PIC18:
	Table 3-43: New Instructions for PIC18
	Figure 3-19: Table Pointer Used to Read One Byte of Data – Answer is reflected in ‘TABLAT’

	3.13.7 Assembly Language
	3.13.7.1 Enhanced Mid-range
	Example 3-46:
	Example 3-47:
	Example 3-48:
	Example 3-49:

	3.13.7.2 PIC18
	3.13.7.3 Program Counter
	Example 3-50:

	3.13.7.4 Table Read
	Example 3-51:
	Example 3-52:

	3.13.8 C Language
	3.13.8.1 Both
	Example 3-53:
	Figure 3-20: Declared as a Constant
	Figure 3-21: Not Declared as a Constant
	Example 3-54:

	3.14 Lesson 13: EEPROM
	3.14.1 Introduction
	3.14.2 Hardware Effects
	3.14.3 Summary
	Figure 3-22: Program Flow

	3.14.4 New Registers
	3.14.4.1 Both
	Table 3-44: New Registers for Both Devices

	3.14.5 New Instructions
	3.14.5.1 Both
	Table 3-45: New Instructions for Both Devices

	3.14.6 Assembly Language
	3.14.6.1 Both
	Example 3-55:

	3.14.7 C Language
	3.14.7.1 Both
	Example 3-56:
	Figure A-1: Low Pin Count Board Schematic

	A.1 Useful MPLAB® X Shortcuts
	A.2 Finding Register Names
	A.3 PIC MCU Assembly Coding Practices:
	Example A-1:

	Worldwide Sales

