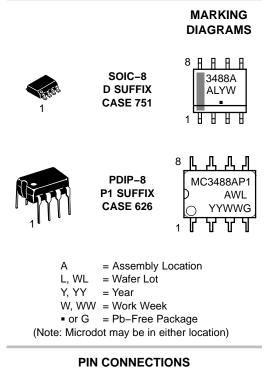
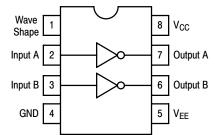
MC3488A

Dual EIA-423/EIA-232D Line Driver

The MC3488A dual is single–ended line driver has been designed to satisfy the requirements of EIA standards EIA–423 and EIA–232D, as well as CCITT X.26, X.28 and Federal Standard FIDS1030. It is suitable for use where signal wave shaping is desired and the output load resistance is greater than 450 Ω . Output slew rates are adjustable from 1.0 μ s to 100 μ s by a single external resistor. Output level and slew rate are insensitive to power supply variations. Input undershoot diodes limit transients below ground and output current limiting is provided in both output states.

The MC3488A has a standard 1.5 V input logic threshold for TTL or NMOS compatibility.


Features


- PNP Buffered Inputs to Minimize Input Loading
- Short Circuit Protection
- Adjustable Slew Rate Limiting
- MC3488A Equivalent to 9636A
- Output Levels and Slew Rates are Insensitive to Power Supply Voltages
- No External Blocking Diode Required for V_{EE} Supply
- Second Source µA9636A
- Pb–Free Packages are Available

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

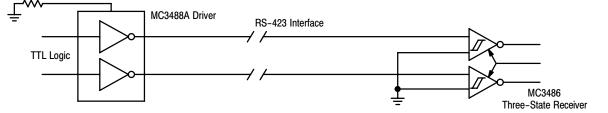


Figure 1. Simplified Application

Wave Shape Control

MAXIMUM RATINGS (Note 1)

Rating		Symbol	Value	Unit
Power Supply Voltages		V _{CC} V _{EE}	+ 15 - 15	V
Output Current	Source Sink	I _{O +} I _{O -}	+ 150 - 150	mA
Operating Ambient Temperature		T _A	0 to + 70	°C
Junction Temperature Range		TJ	150	°C
Storage Temperature Range		T _{stg}	– 65 to + 150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Devices should not be operated at these values. The "Electrical Characteristics" provide conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	V _{CC} V _{EE}	10.8 - 13.2	12 - 12	13.2 - 10.8	V
Operating Temperature Range	T _A	0	25	70	°C
Wave Shaping Resistor	R _{WS}	10	-	1000	kΩ

TARGET ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply over recommended operating conditions)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage – Low Logic State	V _{IL}	-	-	0.8	V
Input Voltage – High Logic State	V _{IH}	2.0	-	-	V
Input Current – Low Logic State (V _{IL} = 0.4 V)	IIL	- 80	-	-	μA
Input Current – High Logic State $(V_{IH} = 2.4 V)$ $(V_{IH} = 5.5 V)$	I _{IH1} I _{IH2}			10 100	μΑ
Input Clamp Diode Voltage (I _{IK} = - 15 mA)	V _{IK}	- 1.5	-	-	V
$\begin{array}{l} \mbox{Output Voltage} - \mbox{Low Logic State} \\ (R_L = \infty), \mbox{EIA} - 423 \\ (R_L = 3.0 \ \mbox{k}\Omega), \mbox{EIA} - 232D \\ (R_L = 450 \ \mbox{\Omega}), \mbox{EIA} - 423 \end{array}$	V _{OL}	- 6.0 - 6.0 - 6.0	_ _ _	- 5.0 - 5.0 - 4.0	V
Output Voltage – High Logic State $(R_L = \infty)$, EIA-423 $(R_L = 3.0 \text{ k}\Omega)$, EIA-232D $(R_L = 450 \Omega)$, EIA-423	V _{OH}	5.0 5.0 4.0	_ _ _	6.0 6.0 6.0	V
Output Resistance (R _L \ge 450 Ω)	R _O	-	25	50	Ω
	I _{OSH} I _{OSL}	– 150 + 15		- 15 + 150	mA
Output Leakage Current (Note 3) (V _{CC} = V _{EE} = 0 V, $-6.0 V \le V_0 \le 6.0 V$)	I _{ox}	- 100	-	100	μA
Power Supply Currents (R_W = 100 kΩ, R_L = ∞, V_{IL} \leqslant V_{in} \leqslant V_{IH})	I _{CC} I _{EE}	_ _ 18	-	+ 18 -	mA

One output shorted at a time.
No V_{EE} diode required.

MC3488A

TRANSITION TIMES (Unless otherwise noted, C_L = 30 pF, f = 1.0 kHz, V_{CC} = – V_{EE} = 12.0 V ± 10%, T_A = 25°C, R_L = 450 Ω . Transition times measured 10% to 90% and 90% to 10%)

Characteristic		Symbol	Min	Тур	Max	Unit
Transition Time, Low-to-High State Output	$\begin{array}{l} ({\sf R}_{\sf W}=10\;{\sf k}\Omega)\\ ({\sf R}_{\sf W}=100\;{\sf k}\Omega)\\ ({\sf R}_{\sf W}=500\;{\sf k}\Omega)\\ ({\sf R}_{\sf W}=1000\;{\sf k}\Omega) \end{array}$	t _{TLH}	0.8 8.0 40 80		1.4 14 70 140	μS
Transition Time, High-to-Low State Output	$\begin{array}{l} ({\sf R}_{\sf W}=10\;{\sf k}\Omega)\\ ({\sf R}_{\sf W}=100\;{\sf k}\Omega)\\ ({\sf R}_{\sf W}=500\;{\sf k}\Omega)\\ ({\sf R}_{\sf W}=1000\;{\sf k}\Omega) \end{array}$	t _{THL}	0.8 8.0 40 80		1.4 14 70 140	μs

ORDERING INFORMATION

Device	Operating Temperature Range	Package	Shipping [†]
MC3488AD		SOIC-8	98 Units / Rail
MC3488ADG		SOIC-8 (Pb-Free)	98 Units / Rail
MC3488ADR2		SOIC-8	1000 / Tape & Reel
MC3488ADR2G	$T_A = 0 \text{ to } +70^{\circ}\text{C}$	SOIC-8 (Pb-Free)	1000 / Tape & Reel
MC3488AP1		PDIP-8	50 Units / Rail
MC3488AP1G		PDIP-8 (Pb-Free)	50 Units / Rail

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

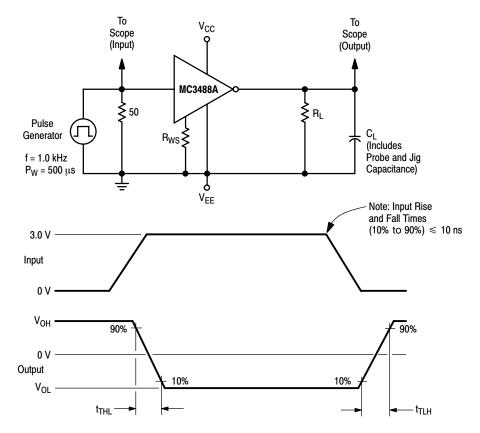


Figure 2. Test Circuit and Waveforms for Transition Times

MC3488A

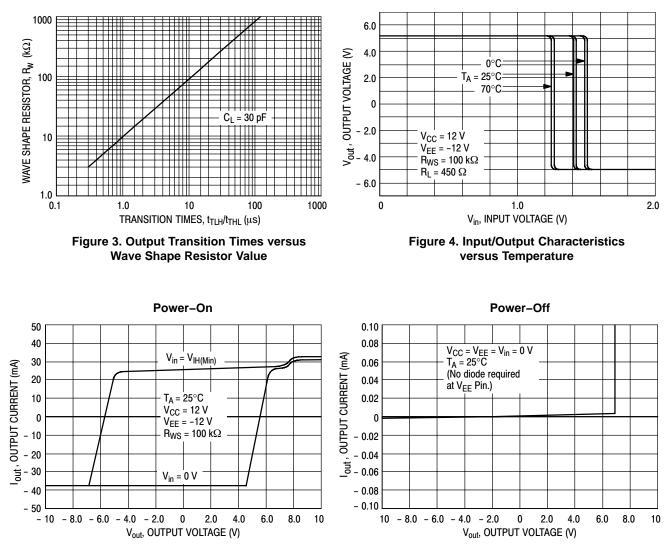
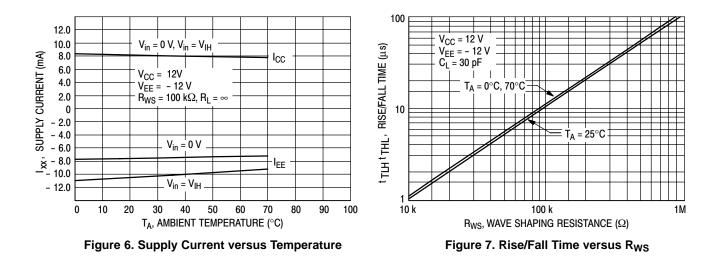
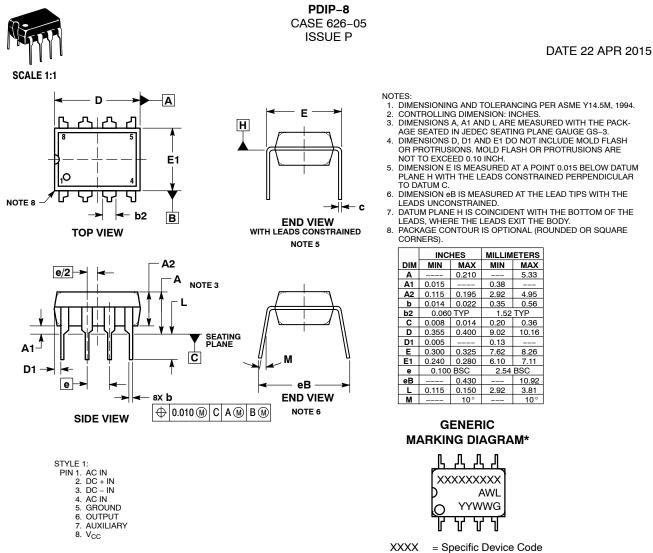
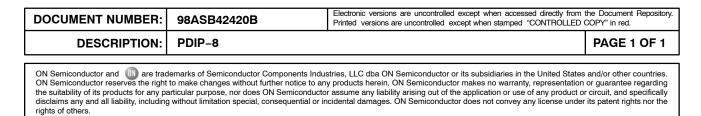
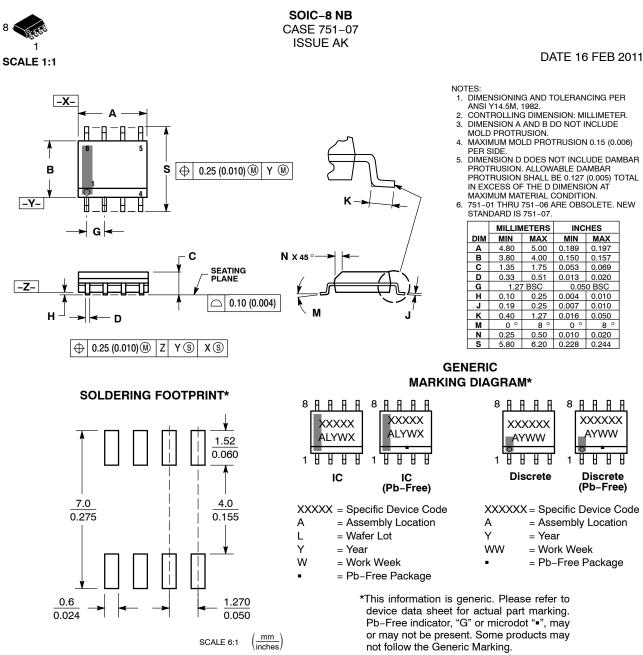




Figure 5. Output Current versus Output Voltage




A = Assembly Location

- WL = Wafer Lot
- YY = Year
- WW = Work Week
- G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

onsemí

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2			
the right to make changes without furth purpose, nor does onsemi assume ar	onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.					

SOIC-8 NB CASE 751-07 ISSUE AK

STYLE 1: PIN 1. EMITTER COLLECTOR 2. 3. COLLECTOR 4. EMITTER 5. EMITTER BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT IOUT 6. IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. COLLECTOR, #2 4 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3 P-SOURCE P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE ANODE 2. SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. 8. CATHODE STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 COMMON ANODE/GND 5. 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4 SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

7.

8. GATE 1

SOURCE 1/DRAIN 2

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. DRAIN, #2 4. 5. GATE, #2 SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. З. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3 ANODE 1 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 MIRROR 1 8. STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. 8. LINE 1 OUT STYLE 27: PIN 1. ILIMIT 2 OVI 0 З. UVLO 4. INPUT+ 5. 6. SOURCE SOURCE SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: ANODE PIN 1. ANODE 2. ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE #2 З. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6 DRAIN DRAIN 7. 8. DRAIN STYLE 16 EMITTER, DIE #1 PIN 1. 2. BASE, DIE #1 EMITTER DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. COLLECTOR/ANODE 8. STYLE 28: 11. SW_TO_GND 2. DASIC OFF PIN 1. DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

7.

8

COLLECTOR, #1

COLLECTOR, #1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales