General Description

The MAX16063 is a 1% accurate, adjustable, quad window voltage detector in a small thin QFN package. This device is designed to provide a higher level of system reliability by monitoring multiple supply voltages and providing a fault signal when any of the voltages exceed their overvoltage thresholds or fall below their undervoltage thresholds.

The MAX16063 offers user-adjustable voltage thresholds that allow voltages to be monitored down to 0.4V. This allows the upper and lower trip thresholds of each window detector to be set externally with the use of three external resistors.

Each monitored threshold has an independent opendrain output for signaling a fault condition. The outputs can be wire-ORed together to provide a single fault output. The open-drain outputs are internally pulled up with a 30µA current, but can be externally driven to other voltage levels for interfacing to other logic levels.

Features include a margin input to disable the outputs during margin testing or any other time after power-up operations. Also featured is a reset output that deasserts after a reset timeout period after all voltages are within their threshold specifications. The reset timeout is internally set to 140ms (min), but can be externally adjusted to other reset timeouts using an external capacitor. In addition, the MAX16063 offers a manual reset input.

This device is offered in a 4mm x 4mm thin QFN package and is fully specified from -40°C to +125°C.

Storage Equipment

Networking/Telecommunications Equipment

Multivoltage ASICs

Servers

Automotive

Features

- ♦ **Monitor Four Undervoltage/Overvoltage Conditions**
- ♦ **1% Accuracy Over Temperature**
- ♦ **User-Adjustable Voltage Thresholds (Down to 0.4V)**
- ♦ **Open-Drain Outputs with Internal Pullups Reduce the Number of External Components**
- ♦ **Manual Reset Input**
- ♦ **Margin Enable Input**
- ♦ **Fixed or Adjustable** RESET **Timeout**
- ♦ **Guaranteed to Remain Asserted Down to VCC = 1V**
- ♦ **Fully Specified from -40**°**C to +125**°**C**
- ♦ **Small, 4mm x 4mm Thin QFN Package**

Ordering Information

+Denotes a lead-free package.

*EP = Exposed pad.

For tape-and-reel, add a "T" after the "+." Tape-and-reel are offered in 2.5k increments.

Typical Operating Circuit

Pin Configuration appears at end of data sheet.

MAXIM

__ Maxim Integrated Products ¹

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Vcc, OVOUT_UVOUT_RESET

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{CC} = 2.0V to 5.5V, T_A = -40°C to +125°C, unless otherwise specified. Typical values are at V_{CC} = 3.3V, T_A = +25°C.) (Note 1)

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = 2.0V to 5.5V, T_A = -40°C to +125°C, unless otherwise specified. Typical values are at V_{CC} = 3.3V, T_A = +25°C.) (Note 1)

Note 1: Devices are tested at $T_A = +25^{\circ}C$ and guaranteed by design for $T_A = T_{MIN}$ to T_{MAX} .

Note 2: The outputs are guaranteed to remain asserted down to V_{CC} = 1V.

Note 3: Measured with MR and MARGIN unconnected.

Note 4: The minimum and maximum specifications for this parameter are guaranteed by using the worse case of the SRT current and SRT threshold specifications.

Note 5: Amount of time required for logic to lock/unlock outputs from margin testing.

MAX16063 toc01

(V_{CC} = 3.3V, T_A = +25°C, unless otherwise noted.)

SUPPLY CURRENT vs. SUPPLY VOLTAGE

MARGIN AND MR UNCONNECTED

SUPPLY CURRENT vs. TEMPERATURE 65 MAX16063 toc02 MARGIN AND MR 60 UNCONNECTED \mathbb{R} SUPPLY CURRENT (µA) 55 SUPPLY CURRENT (µA) $V_{CC} = 5V$ 50 45 $V_{\text{CC}} = 2.5V$ $V_{CC} = 3.3V$ 40 35 30 -40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C)

Typical Operating Characteristics

TEMPERATURE (°C)

SUPPLY VOLTAGE (V)

2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.5 5.5

MAXIMUM TRANSIENT DURATION vs. INPUT OVERDRIVE

SUPPLY CURRENT (µA)

SUPPLY CURRENT (µA)

35

30

INPUT THRESHOLD

INPUT THRESHOLD

0.36 0.37 0.38 0.39 0.40 0.41

0.35

40

45

50 55

60

MAXM

MAXIM

1% Accurate, Low-Voltage, Quad Window Voltage Detector

Typical Operating Characteristics (continued)

(V_{CC} = 3.3V, T_A = +25°C, unless otherwise noted.)

UVIN_ TO UVOUT_ DELAY TIME

100µs/div

Pin Description

MAXIM

Pin Description (continued)

Figure 1. Functional Diagram

Detailed Description

The MAX16063 is an adjustable quad window voltage detector in a small thin QFN package. This device is designed to provide a higher level of system reliability by monitoring multiple supply voltages and providing a fault signal when any of the voltages exceeds its overvoltage threshold or falls below its undervoltage threshold.

This device offers user-adjustable thresholds that allow voltages to be monitored down to 0.4V. It allows the upper and lower trip thresholds of each window detector to be set externally with the use of three external resistors.

Each monitored threshold has an independent opendrain output for signaling a fault condition. The outputs can be wire-ORed together to provide a single fault output. The open-drain outputs are internally pulled up with a 30µA current, but can be externally driven to other voltage levels for interfacing to other logic levels.

The MAX16063 features a margin input to disable the outputs during margin testing or any other time after power-up operations and a reset output that deasserts after a reset timeout period after all voltages are within their threshold specification. The reset timeout is internally set to 140ms (min), but can be externally adjusted to other reset timeouts using an external capacitor. In addition, a manual reset input is offered.

Applications Information

Voltage Monitoring

The MAX16063 features undervoltage and overvoltage comparators for window detection (see Figure 2). UVOUT_/OVOUT_ deassert high when the monitored voltage is within the "selected window." When the monitored voltage falls below the lower limit of the window (VTRIPLOW), UVOUT_ asserts low; or if the monitored voltage exceeds the upper limit (VTRIPHIGH), OVOUT asserts low. The application in Figure 2 shows the MAX16063 enabling the DC-DC converter when the monitored voltage is in the selected window.

Figure 2. MAX16063 Monitor Circuit

The resistor values R1, R2, and R3 can be calculated as shown:

$$
V_{TRIPLOW} = V_{TH} \left(\frac{R_{TOTAL}}{R2 + R3} \right)
$$

$$
V_{TRIPHIGH} = V_{TH} \left(\frac{R_{TOTAL}}{R3} \right)
$$

where $R_{\text{TOTAL}} = R1 + R2 + R3$.

Use the following steps to determine the values for R1, R2, and R3:

1) Choose a value for RTOTAL, the sum of R1, R2, and R3. Because the MAX16063 has very low input bias current (2nA typ), RTOTAL can be up to $2M\Omega$. Large-value resistors help minimize power consumption. Lower-value resistors can be used to maintain overall accuracy.

Use the following formulas to calculate the error:

$$
E_{UV} (\%) = \frac{\lg \left(R1 + \frac{R1 R3}{R2 + R3} \right)}{V_{TRIPLOW}} \times 100
$$

$$
E_{OV} (\%) = \frac{\lg (R2 + (2 \times R1))}{V_{TRIPHIGH}} \times 100
$$

where E_{UV} and E_{OV} are the undervoltage and overvoltage error (in %), respectively.

2) Calculate R3 based on RTOTAL and the desired upper trip point:

$$
R3 = \frac{V_{TH} \times R_{TOTAL}}{V_{TRIPHIGH}}
$$

3) Calculate R2 based on RTOTAL, R3, and the desired lower trip point:

$$
R2 = \frac{V_{TH} \times R_{TOTAL}}{V_{TRIPLOW}} - R3
$$

4) Calculate R1 based on RTOTAL, R3, and R2:

$$
R1 = R_{\text{TOTAL}} - R2 - R3
$$

Overvoltage Shutdown

The MAX16063 is ideal for overvoltage-shutdown applications. Figure 3 shows a typical circuit for this application using a pass p-channel MOSFET. The MAX16063 is

VSUPPLY R1 V_{CC} UVIN_ LOAD **MAXIM** R2 R3* MAX16063 **IIVOUT** GND *OPTIONAL. VALUES OF 10kΩ AND ABOVE ARE RECOMMENDED.

Figure 3. Overvoltage Shutdown Circuit (with External Pass MOSFET)

powered directly from the system voltage supply. Select R1 and R2 to set the trip voltage. When the supply voltage remains below the selected threshold, a low logic level on UVOUT_ turns on the p-channel MOSFET. In the case of an overvoltage event, UVOUT_ goes high turning off the MOSFET, and shuts down the power to the load.

Figure 4 shows a similar application using a fuse and a silicon-controlled rectifier (SCR). An overvoltage event turns on the SCR and shorts the supply to ground. The surge of current through the short circuit blows the fuse and terminates the current to the load. Select R3 so that the gate of the SCR is properly biased when UVOUT_ goes high.

Unused Inputs

Any unused UVIN_ inputs must be connected to V_{CC}, and any unused OVIN_ inputs must be connected to GND.

UVOUT_/OVOUT_ Outputs

UVOUT_ and OVOUT_ outputs assert low when UVIN_ and OVIN, respectively, drop below or exceed their specified thresholds. The undervoltage/overvoltage outputs are open-drain with a $(30\mu A)$ internal pullup to V_{CC} . For many applications, no external pullup resistor is required to interface with other logic devices. An external pullup resistor to any voltage up to 5.5V overdrives the internal pullup if interfacing to different logic supply voltages. Internal circuitry prevents reverse current flow from the external pullup voltage to V_{CC} (Figure 5). When choosing the external pullup resistor, the resistance value should be large enough to ensure that the output can sink the necessary current during a logic-low condition and small enough to be able to overdrive the internal pullup current and meet output high specifications (V_{OH}). Resistor values of 50k Ω to 200k Ω can generally be used.

Figure 4. Overvoltage Shutdown Circuit (with SCR Fuse)

RESET Output

RESET asserts low when the voltage on any of the UVIN_ inputs falls below its respective threshold, the voltage on any of the OVIN_ inputs goes above its respective threshold, or MR is asserted. RESET remains asserted for the reset timeout period after all monitored UVIN_ inputs exceed their respective thresholds, all OVIN_ inputs fall below their respective thresholds, and MR is deasserted (see Figure 6). This open-drain output has a 30µA internal pullup.

Reset Timeout Capacitor

The reset timeout period can be adjusted to accommodate a variety of microprocessor (µP) applications. Adjust the reset timeout period (t_{RP}) by connecting a capacitor (CSRT) between SRT and GND. Calculate the reset timeout capacitor as follows:

Connect SRT to V_{CC} for a factory-programmed reset timeout of 140ms (min).

Manual Reset Input (MR)

Many μ P-based products require manual reset capability, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic-low on MR asserts RESET low. RESET remains asserted while MR is low, and during the reset timeout period (140ms min) after \overline{MR} returns high. The \overline{MR} input has an internal 20k Ω pullup resistor to V_{CC}, so it can be left open if it is not used. MR can be driven with TTL or CMOS-logic levels, or with open-drain/collector outputs. Connect a normally open momentary switch from MR to GND to create a manual reset function; external debounce circuitry is not required. If \overline{MR} is driven from long cables or if the device is used in a noisy environment, connecting a 0.1μ F capacitor from \overline{MR} to GND provides additional noise immunity.

Figure 5. Interfacing to a Different Logic Supply Voltage

Figure 6. Output Timing Diagram

Margin Output Disable (MARGIN)

MARGIN allows system-level testing while power supplies are adjusted from their nominal voltages. Drive MARGIN low to deassert all outputs (UVOUT_, OVOUT_, and RESET) regardless of the voltage at any monitored input. The state of each output does not change while $\overline{\text{MARGIN}}$ = GND. While $\overline{\text{MARGIN}}$ is low, the IC continues to monitor all voltages. When MARGIN is deasserted, the outputs go to their monitored states after a short propagation delay. The MARGIN input is internally pulled up to V_{CC}. Leave unconnected or connect to V_{CC} if unused.

Undervoltage Lockout (UVLO)

The MAX16063 features a V_{CC} undervoltage lockout (UVLO) that preserves a reset status even if VCC falls as low as 1V. The undervoltage lockout circuitry monitors the voltage at V_{CC}. If V_{CC} falls below the UVLO falling threshold (typically 1.735V), RESET is asserted and all

detector outputs are asserted low. This eliminates an incorrect $\overline{\text{REST}}$ or detector output state as V_{CC} drops below the normal V_{CC} operational voltage range of 1.98V to 5.5V.

During power-up as V_{CC} rises above 1V, RESET is asserted and all detector outputs are asserted low until V_{CC} exceeds the UVLO threshold. As V_{CC} exceeds the UVLO threshold, all inputs are monitored and the correct output state appears at all the outputs. This also ensures that RESET and all detector outputs are in the correct state once V_{CC} reaches the normal V_{CC} operational range.

Power-Supply Bypassing

In noisy applications, bypass V_{CC} to ground with a 0.1µF capacitor as close to the device as possible. In addition, the additional capacitor improves transient immunity. For fast-rising V_{CC} transients, additional capacitance may be required.

Pin Configuration

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information, go to **www.maxim-ic.com/packages**.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

© 2008 Maxim Integrated Products **is a registered trademark of Maxim Integrated Products**, Inc.