
256K x 8 Static RAM

Features

- Temperature Ranges
 - Industrial: -40°C to 85°C
- · Low voltage range:
 - 2.7-3.6V
- · Ultra-low active power
- · Low standby power
- Easy memory expansion with $\overline{\text{CS}_1}/\text{CS}_2$ and $\overline{\text{OE}}$ features
- · TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- CMOS for optimum speed/power
- Offered in standard non-lead-free 36-ball FBGA package

Functional Description

The CY62138VN is a high-performance CMOS static RAM organized as 256K words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power-down feature that reduces power consumption by 99% when addresses are not toggling. The device can be put into standby mode when deselected (CS1 HIGH or CS2 LOW). Writing to the device is accomplished by taking Chip Enable One (\overline{CS}_1) and Write Enable (\overline{WE}) inputs LOW and Chip Enable Two (CS₂) HIGH. Data on the eight I/O pins (I/O_0) through I/O_7 is then written into the location specified on the address pins (A₀ through A₁₇). Reading from the device is accomplished by taking Chip Enable One (CS1) and Output Enable (\overline{OE}) LOW while forcing Write Enable (\overline{WE}) and Chip Enable Two (CS2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins. The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (\overline{CS}_1 HIGH or CS_2 LOW), the outputs are disabled (OE HIGH), or during a write operation (CS₁ LOW, CS₂ HIGH, and WE LOW).

Product Portfolio

						Power Dis	sipation (In	dustrial)
		V_{CC} Range			Operat	ing (I _{cc})	St	andby (I _{SB2})
Product	V _{CC(min)}	V _{CC(typ)} ^[1]	V _{CC(max)}	Speed	Typ. ^[1]	Maximum	T yp. ^[1]	Maximum
CY62138VN	2.7V	3.0V	3.6V	70 ns	7 mA	15 mA	1 μΑ	15 μΑ

Note:

^{1.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied55°C to +125°C Supply Voltage to Ground Potential -0.5V to +4.6V DC Voltage Applied to Outputs in High-Z State $^{[2]}$ –0.5V to $\rm V_{CC}$ + 0.5V

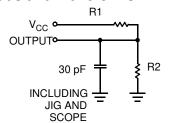
DC Input Voltage ^[2]	0.5V to V _{CC} + 0.5V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

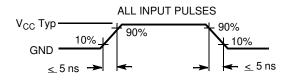
Operating Range

Device	Range	Ambient Temperature	v _{cc}
CY62138VN	Industrial	-40°C to +85°C	2.7V to 3.6V

Electrical Characteristics Over the Operating Range

					CY62138V	N	
Parameter	Description	Test Condit	Min.	Typ. [1]	Max.	Unit	
V _{OH}	Output HIGH Voltage	I _{OH} = -1.0 mA	V _{CC} = 2.7V	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$			0.4	V
V _{IH}	Input HIGH Voltage		$V_{CC} = 3.6V$	2.2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage		$V_{CC} = 2.7V$	-0.5		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$	$GND \le V_1 \le V_{CC}$		±1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled	– 1	+1	+1	μΑ	
I _{CC}	V _{CC} Operating Supply Current	$I_{OUT} = 0$ mA, $f = f_{MAX} = 1/t_{RC}$, CMOS Levels	V _{CC} = 3.6V		7	15	mA
		I _{OUT} = 0 mA, f = 1 MHz, CMOS Levels			1	2	mA
I _{SB1}	Automatic CE Power-down Current— CMOS Inputs	$\label{eq:control_control} \begin{split} \overline{CE} & \geq V_{CC} - 0.3V, \\ V_{IN} & \geq V_{CC} - 0.3V \text{ or } \\ V_{IN} & \leq 0.3V, f = f_{MAX} \end{split}$	V _{CC} = 3.6V			100	μА
I _{SB2}	Automatic CE Power-down Current— CMOS Inputs		V _{CC} = 3.6V		1	15	μА


Capacitance^[3]

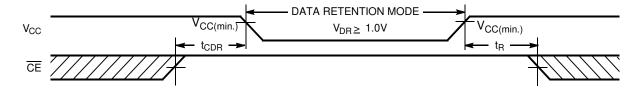

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

^{2.} V_{IL}(min) = -2.0V for pulse durations less than 20 ns.
3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to:

THÉVENIN EQUIVALENT



Parameters	Value	Unit
R1	1105	Ohms
R2	1550	Ohms
R _{TH}	645	Ohms
V_{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

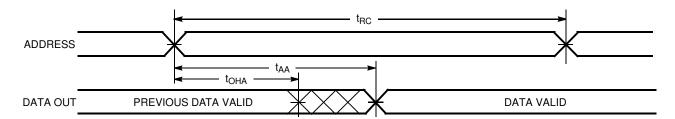
Parameter	Description	Conditions ^[4]	Min.	Typ . ^[1]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1.0		3.6	V
ICCDR	Data Retention Current	$\label{eq:control_control} \begin{split} \frac{V_{CC} = 1.0V}{CE} &\geq V_{CC} - 0.3V, \\ V_{IN} &\geq V_{CC} - 0.3V \text{ or } \\ V_{IN} &\leq 0.3V \\ \text{No input may exceed} \\ V_{CC} + 0.3V \end{split}$		0.1	5	μА
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		0			ns
t _R	Operation Recovery Time		100			ms

Data Retention Waveform^[5]

Notes:

- 4. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified $\frac{|\Omega_L/I_{OH}|}{|\Omega_L/I_{OH}|}$ and 30-pF load capacitance.

 5. CE is the combination of both \overline{CS}_1 and CS_2 .



Switching Characteristics Over the Operating Range^[4]

		CY62		
Parameter	Description	Min.	Max.	Unit
Read Cycle		•		
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low-Z ^[6]	5		ns
t _{HZOE}	OE HIGH to High-Z ^[6, 7]		25	ns
t _{LZCE}	CE LOW to Low-Z ^[6]	10		ns
t _{HZCE}	CE HIGH to High-Z ^[6, 7]		25	ns
t _{PU}	CE LOW to Power-up	0		ns
t _{PD}	CE HIGH to Power-down		70	ns
Write Cycle ^[8, 9]				
t _{wc}	Write Cycle Time	70		ns
t _{SCE}	CE LOW to Write End	60		ns
t _{AW}	Address Set-up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-up to Write Start	0		ns
t _{PWE}	WE Pulse Width	50		ns
t _{SD}	Data Set-up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High-Z ^[6, 7]		25	ns
t _{LZWE}	WE HIGH to Low-Z ^[6]	10		ns

Switching Waveforms

Read Cycle No. 1^[10, 11]

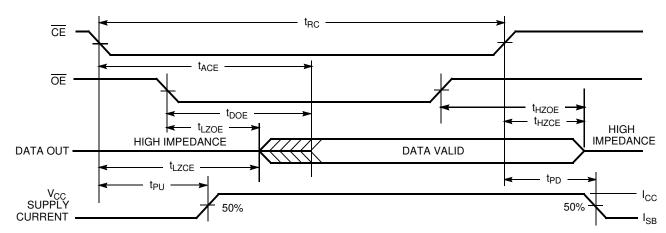
- Notes:

 6. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.

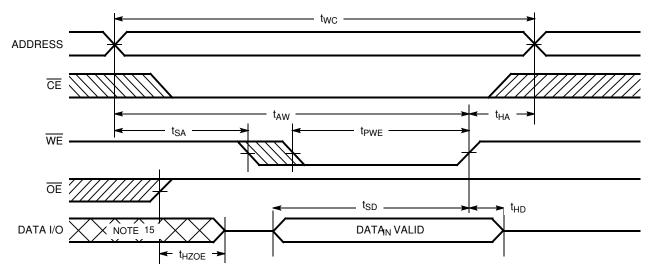
 7. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in (b) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.

 8. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

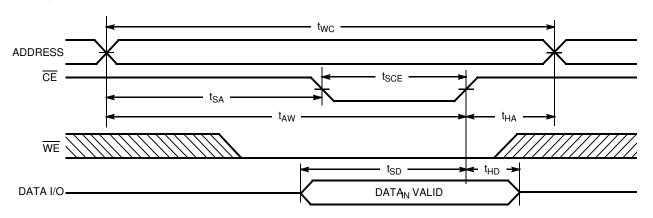
 9. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.


 10. Device is continuously selected. OE, CE = V_{IL}.

 11. WE is HIGH for read cycle.



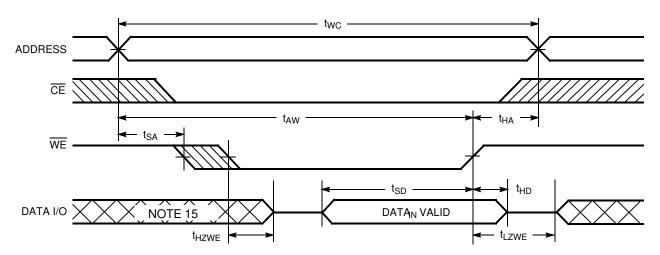
Switching Waveforms (continued)


Read Cycle No. 2 $^{[5.,\ 11,\ 12]}$

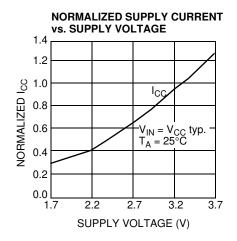
Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) $^{[5,\ 8,\ 13,\ 14]}$

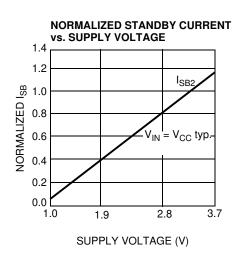
Write Cycle No. 2 ($\overline{\text{CE}}$ Controlled) $^{[5,\ 8,\ 13,\ 14]}$

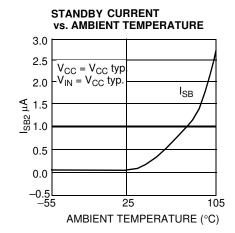
- 12. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

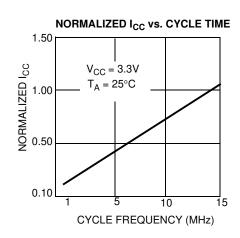

 13. Data I/O is high impedance if $\overline{\text{OE}} = \text{V}_{\text{IH}}$.

 14. If $\overline{\text{CE}}$ goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
- 15. During this period, the I/Os are in output state and input signals should not be applied.




Switching Waveforms (continued)

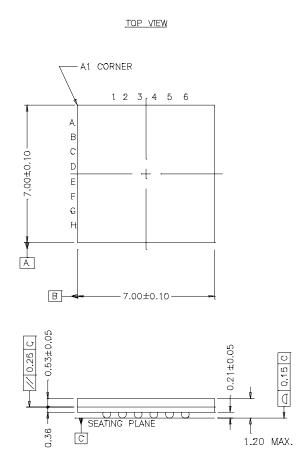

Write Cycle No. 3 (WE Controlled, OE LOW)[5, 9, 14]

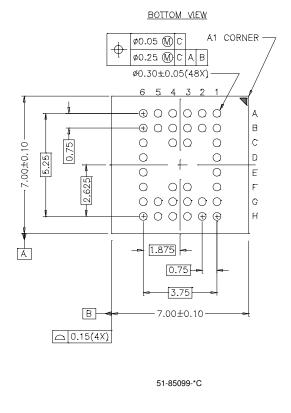


Typical DC and AC Characteristics

Truth Table

CS ₁	CS ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
Х	L	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	Data Out	Read	Active (I _{CC})
L	Н	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High-Z	Deselect, Output Disabled	Active (I _{CC})


Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
70	CY62138VNLL-70BAI	51-85099	36-ball (7.0 mm × 7.0 mm × 1.2 mm) FBGA	Industrial

Please contact your local Cypress sales representative for availability of other parts

Package Diagram

36-Ball FBGA (7 x 7 x 1.2 mm) (51-85099)

More Battery Life is a trademark, and MoBL is a registered trademark, of Cypress Semiconductor. All products and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY62138VN MoBL® 256K x 8 Static RAM Document Number: 001-06513						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	426504	See ECN	NXR	New Data Sheet		