

Click here to ask an associate for production status of specific part numbers.

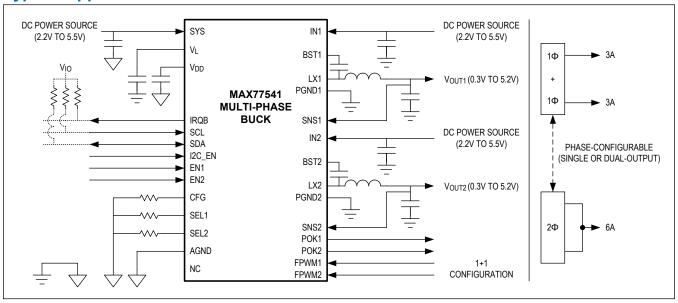
MAX77541

5.5V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

General Description

The MAX77541 is a high-efficiency step-down converter with two 3A switching phases for single-cell Li+ battery and $5V_{DC}$ systems. It uses an adaptive COT (constant on-time) current-mode control architecture and the two 3A switching phases can be configured as either one (2Φ , 6A) or two (1Φ , 3A each) outputs. The output voltages are preset with resistors and are further adjustable through an I²C compatible interface. With 91% peak efficiency, low quiescent current, and compact solution size, the MAX77541 is ideal for battery powered, space-constraint equipment.

Programmable switching frequency, frequency tracking, and spread-spectrum allow easier system optimization for noise-sensitive applications. Dedicated EN, POK, and FP-WM pins provide options for direct hardware control, while more programmable options such as soft-start/stop and ramp-up/down slew-rates are available through I²C. An array of built-in protections ensures safe operation under abnormal operating conditions.


Applications

- Single-Cell Li+ and 5V_{DC} Systems
- Gaming Consoles and VR/AR Headsets
- Microprocessors, FPGAs, DSPs, and ASICs
- Network Switches and Routers

Benefits and Features

- 2.2V to 5.5V Input Voltage Range
- 0.3V to 5.2V Output Voltage Range
- Two 3A Bucks (1Φ) or One 6A Buck (2Φ)
- ±0.5% V_{OUT} Accuracy (Default V_{OUT} at 25°C)
- 91% Peak Efficiency (3.8V_{IN}, 1.1V_{OUT}, 1.6MHz)
- Auto SKIP/PWM Transition and Low-Power Mode
- Drop-Out Operation with 98% of Max. Duty Cycle
- Programmable Soft-Start/Soft-Stop and Ramp-up/ Ramp-down Slew-rates
- Prebiased Startup and Active Output Discharge
- Programmable Inductor Peak Current Limits for Solution Size Optimization
- 0.5/1.0/1.6MHz Nominal Switching Frequency
- Spread-Spectrum Modulation for EMI Reduction
- Internal/External Frequency Tracking
- Default V_{OUT} and Phase Configuration Setting by R_{SEL1} and R_{SEL2}
- I²C Slave ADDR, ILIM, and F_{SW} Preset by R_{CFG}
- Dedicated ENx, POKx and FPWMx for each Buck
- UVLO, Thermal Shutdown, and Short-circuit Protection
- High-Speed I²C Serial I/F
- Available in 30-WLP (2.51mm x 2.31mm x 0.7mm) and 24-FC2QFN (3mm x 3mm) Packages
- Less than 55mm² Total Solution Size with 2520 Inductors

Typical Applications Circuit

Ordering Information appears at end of data sheet.

19-101174; Rev 1; 5/22

TABLE OF CONTENTS

General Description	
Applications	
Benefits and Features	
Typical Applications Circuit	
Absolute Maximum Ratings	6
Recommended Operating Conditions	6
Package Information	6
30 WLP	6
24 FC2QFN	
Electrical Characteristics—Top-Level	9
Electrical Characteristics—Dual-Phase Configurable Buck Converter	
Electrical Characteristics—ADC	13
Electrical Characteristics—I ² C Serial Interface	14
Typical Operating Characteristics	16
Bump Configuration	22
30 WLP	22
24 FC2QFN	23
Bump Descriptions	23
Detailed Description—Top-Level	26
Dedicated Internal Supplies	26
Device Configuration (CFG)	26
Output Enable Control	27
Undervoltage Lock-Out (UVLO)	27
Thermal Warnings and Thermal Shutdown (T _{SHDN})	27
Interrupt (IRQB) and Mask	28
Register Reset Condition	29
FC2QFN Default Options	29
Detailed Description—Dual-Phase Configurable Buck Converter	29
Buck Converter Control Scheme	29
Buck Operating Modes	30
SKIP Mode	31
Low-Power SKIP (LP-SKIP) Mode	31
Forced-PWM (FPWM) Mode	32
Dropout Mode	32
Switching Frequency	
Phase Configuration	
Default Output Voltage Selection (SELx)	33
Output Voltage Setting	
Soft-Start and Soft-Stop	

TABLE OF CONTENTS (CONTINUED)

•	•
Dynamic Output Voltage Scaling	
Output Voltage Active Discharge	
Bootstrap Refresh	
Frequency Tracking (FTRAK)	
Spread-Spectrum Modulation	
Pseudo-Random Pattern	
Triangular Pattern	
Inductor Current Limits	40
Power-OK (POK)	40
Fault Protection	
Detailed Description—ADC	43
ADC Enable and Measurement Options	43
SYS Voltage Measurement	
Output Voltage Measurement	43
Junction Temperature Measurement	
Detailed Description—I ² C Serial Interface	44
Slave Address	
Register Map	
MAX77541 WLP Package	
Register Details	
Applications Information—Dual-Phase Configurable Buck Converter	
Inductor Selection	
Input Capacitor Selection	
Output Capacitor Selection	
General PCB Layout Guidelines	62
Typical Application Circuits	
1+1 Phase Configuration—WLP	
Dual-Phase Configuration—WLP	
1+1 Phase Configuration—FC2QFN	67
Dual-Phase Configuration—FC2QFN	68
Ordering Information	68
Revision History	69

LIST OF FIGURES

Figure 1. Thermal Warnings and Thermal Shutdown	28
Figure 2. Functional Block Diagram	30
Figure 3. Buck Operating Modes	31
Figure 4. Frequency Tracking	37
Figure 5. Pseudo-Random Modulator Engine	38
Figure 6. 4-Bit Pseudo-Random Modulation Signal Example	39
Figure 7. Triangular Modulator Engine	39
Figure 8. 4-Bit Triangular Modulation Signal Example	40
Figure 9. Fault Protection State Diagram	42
Figure 10. ADC Block Diagram	43
Figure 11. PCB Layout Example—WLP	63
Figure 12. PCB Layout Example—FC2QFN	64

LIST OF TABLES

Table 1. V _{DD} and I ² C Enable Truth Table	26
Table 2. Device Configuration	26
Table 3. Phase Configuration Selection	33
Table 4. Buck Output Voltage Sensing Assignment	33
Table 5. Default V _{OUT1} Selection	33
Table 6. Default V _{OUT2} Selection	34
Table 7. Buck Output Voltage Range	35
Table 8. Mx_FSREN Effect On Buck Behavior	36
Table 9. Bootstrap Refresh Interval Selection	37
Table 10. Mx_FTRAK Enable Truth Table	37
Table 11. Recommended Inductors	61
Table 12. Recommended Minimum Effective Output Capacitance	61

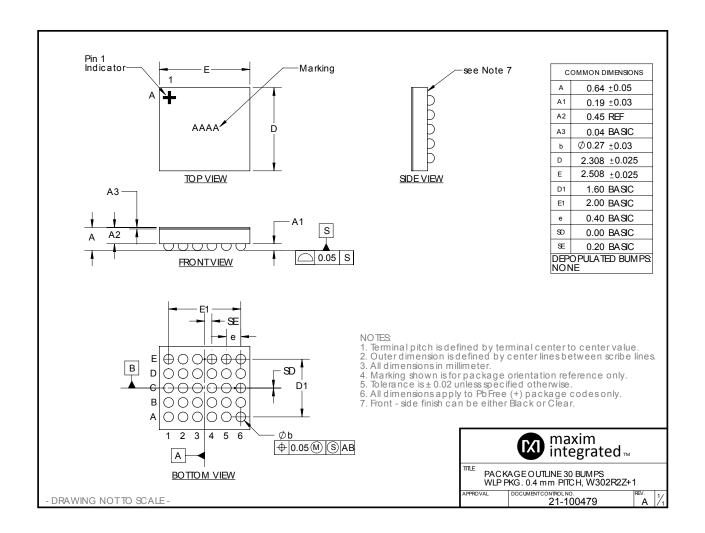
Absolute Maximum Ratings

SYS to AGND0.3V to +6.0V	SNS1, SNS2 to AGND0.3V to +6.0V
V _{DD} to AGND0.3V to +2.2V	FPWM1, FPWM2 to AGND0.3V to +6.0V
V _L to PGND0.3V to +2.2V	POK1, POK2 to AGND0.3V to +6.0V
I2C_EN, EN1, EN2 to AGND	SCL, SDA, IRQB to AGND0.3V to +6.0V
IN1 to PGND10.3V to +6.0V	CFG, SEL1, SEL2 to AGND0.3V to MIN(V _{DD} + 0.3, +2.2)V
IN2 to PGND20.3V to +6.0V	PGND1, PGND2 to AGND0.3V to +0.3V
LX1 to PGND10.3V to +6.0V	Continuous Power Dissipation (JESD51-7, T _A = +70°C)
LX1 to PGND1 (less than 10ns) (V _{IN} - 11.94)V to +11.94V	30 WLP (Derate 20.25mW/°C above +70°C)1620mW
LX2 to PGND20.3V to +6.0V	24 FC2QFN (Derate 27.29mW/°C above +70°C)2183mW
LX2 to PGND2 (less than 10ns) (V _{IN} - 11.94)V to +11.94V	Junction Temperature+150°C
BST1 to LX10.3V to +2.2V	Storage Temperature Range65°C to +150°C
BST2 to LX20.3V to +2.2V	Soldering Temperature (reflow)+260°C

Note 1: LXx has internal clamp diodes to its corresponding PGNDx and INx. Applications that forward bias these diodes should take care not to exceed the IC's package power dissipation limits.

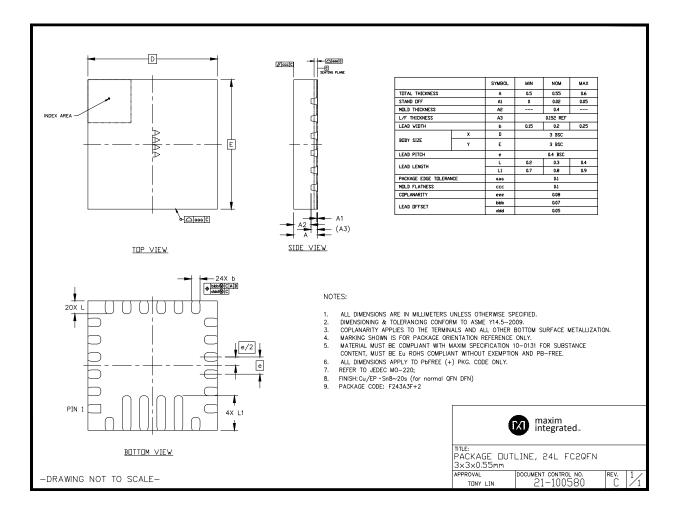
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions


PARAMETER	SYMBOL	CONDITION	TYPICAL RANGE	UNIT
Input Voltage Range	V _{IN}		2.2 to 5.5	٧
Output Current Range	l _{OUT}	For continuous operation at 3A, the junction temperature (T _J) is limited to +105°C; if the junction temperature is higher than +105°C, the expected lifetime at 3A continuous operation is derated	0 to 3	А
Junction Temperature Range	TJ		-40 to +125	°C

Note: These limits are not guaranteed.

Package Information


30 WLP

Package Code	W302R2Z+1
Outline Number	<u>21-100479</u>
Land Pattern Number	Refer to Application Note 1891
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	49.38°C/W

24 FC2QFN

Package Code	F243A3F+2
Outline Number	<u>21-100580</u>
Land Pattern Number	<u>90-100211</u>
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	36.64°C/W

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics—Top-Level

 $(V_{SYS} = V_{IN1} = V_{IN2} = 3.8V, V_{OUT1} = 0.65V, V_{OUT2} = 1.1V, Single-phase Configuration (1<math>\Phi$ + 1 Φ), $V_{I2C_EN} = 1.8V, T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted, Note 2.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
INPUT VOLTAGE AND S	UPPLY CURRE	NT					
SYS Voltage Range	V _{SYS}			2.2		5.5	V
SYS Undervoltage	V _{UVLO_R}	V _{SYS} rising		2.1	2.2	2.3	V
Lockout (UVLO)	V _{UVLO_F}	V _{SYS} falling		1.9	2.0	2.1]
Power-On Reset (POR) Threshold (Note 7)	V _{POR}	V _{SYS} falling			1.7		V
Shutdown Supply Current (Note 3)	I _{SHDN}	V _{I2C_EN} = V _{ENx} =	T _J = -40°C to +85°C		1.5	7.5	μA
Current (Note 3)		OV	T _J = +125°C			35	
Standby Supply Current	I _{STBY}	EN_FTMON = 0, all Bucks are disabled	T _J = -40°C to +85°C		25	50	μΑ
(Note 3, Note 8)		bucks are disabled	T _J = +125°C			105	
Quiescent Supply		V _{OUT} >	Only one Buck phase is enabled		215	300	
Current in LP-SKIP Mode (Note 3, Note 8)	IQ_LP-SKIP	V _{OUT} (TARGET), no load	Both Buck phases are enabled		325	400	- μΑ
Quiescent Supply		V _{OUT} >		250	330		
Current in SKIP Mode (Note 3)	I _{Q_SKIP}	V _{OUT(TARGET)} , No Load	IQ_SKIP VOUT(TARGET), NO Load Both Buck phases are enabled		390	500	- μA
INTERNAL BIAS SUPPL	Y			1			
V _L Regulator Voltage	VL	(Note 4)			1.8		V
V _{DD} Regulator Voltage	V _{DD}	(Note 4)			1.8		V
V _{DD} Undervoltage Lock out (UVLO)	V _{DD_UVLO_F}	(Note 4)			1.55		V
THERMAL PROTECTION	Ī						
Thermal Warning 1 (Note 8)	T _{J120}	T _J Rising, 15°C hysto	eresis		+120		°C
Thermal Warning 2 (Note 8)	T _{J140}	T _J Rising, 15°C hysto	eresis		+140		°C
Thermal Shutdown (T _{SHDN})	T _{SHDN}	T _J Rising, 15°C hysto	eresis (Note 8)		+165		°C
LOGIC INPUT AND OUT	PUT						
FPWMx Input Logic High Threshold	V _{IH_FPWM}			1.44			V
FPWMx Input Logic Low Threshold	V _{IL_FPWM}					0.54	V
I2C_EN, ENx Input Logic High Threshold	V _{IH_EN}			1.1			V
I2C_EN, ENx Input Logic Low Threshold	V _{IL_EN}					0.4	V
IRQB Output Logic Low Threshold (Note 8)	V _{OL_IRQB}	Sinking 2mA				0.4	V

Electrical Characteristics—Top-Level (continued)

 $(V_{SYS} = V_{IN1} = V_{IN2} = 3.8V, V_{OUT1} = 0.65V, V_{OUT2} = 1.1V, Single-phase Configuration (1<math>\Phi$ + 1 Φ), $V_{I2C_EN} = 1.8V, T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted, Note 2.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POKx Output Logic Low Threshold	V _{OL_POK}	Sinking 2mA				0.4	V
I2C_EN, ENx Leakage	l	V _{SYS} = 5.5V, V _{ENx}	T _J = +25°C		±0.1		
Current	ILKG_EN	1 201	T _J = +85°C		±0.5		μA
IRQB Leakage Current (Note 8)	I _{LKG_IRQB}	IRQB set to Hi-Z (i.e pending), V _{IRQB} = 0		-1		+1	μA
POKx Leakage Current	I _{LKG_POK}	POKx = High (Hi-Z), V _{POKx} = 5.5V, T _J = +85°C				1	μA

Note 2: The MAX77541 is tested under pulsed load conditions such that $T_J \approx T_A$. Limits are 100% tested at $T_A = +25^{\circ}C$. Limits over the operating temperature range ($T_J = -40^{\circ}C$ to $+125^{\circ}C$) are guaranteed by design and characterization using statistical process control methods. Note that the maximum ambient temperature consistent with this specification is determined by specific operating conditions, board layout, rated package thermal impedance, and other environmental factors.

Note 3: Supply Current = $I_{SYS} + I_{IN1} + I_{IN2}$

Note 4: See the <u>Dedicated Internal Supplies</u> section.

Electrical Characteristics—Dual-Phase Configurable Buck Converter

 $(V_{SYS} = V_{IN1} = V_{IN2} = 3.8V, Single-phase Configuration (1\Phi+1\Phi), V_{OUT1} = 0.65V, V_{OUT2} = 1.1V, V_{I2C_EN} = 1.8V, T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted, limits are 100% production tested at $T_A = +25^{\circ}C$. Note 2.)

PARAMETER	SYMBOL	CONE	DITIONS	MIN	TYP	MAX	UNITS
INPUT SUPPLY							
Input Voltage Range	V _{INx}			2.2		5.5	V
DC OUTPUT VOLTAGE	AND ACCURAC	Y					
		Low-range (Mx_RN	G[1:0] = 0x0)	0.3		1.2	
Output Voltage Range	Output Voltage Range V _{OUT RNG}	Mid-range (Mx_RN0	G[1:0] = 0x1)	1		2.4	V
		High-range (Mx_RN	IG[1:0] = 0x2)	2		5.2	
Line Regulation			1Φ, FPWM mode, V_{INX} = 2.2V to 5.5V, V_{OUT} = default, I_{OUT} = 0A			+0.1	%/V
Load Regulation		1Ф, FPWM mode, I ₀	1Ф, FPWM mode, I _{OUT} = 0A to 3A (Note 7)		0.1		%/A
			V _{OUT} < 0.5V	-2.5		+2.5	%
		1Φ, FPWM mode, V _{INx} = 2.2V to 5.5V, I _{OUT} = 0A	0.5V ≤ V _{OUT} ≤ 1.0V	-1.5		+1.5	
DC Output Voltage Accuracy	V _{OUT_ACC}		1.0V < V _{OUT} ≤ 5.2V	-2.0		+2.0	
			V _{OUT} = factory default, T _J = +25°C	-0.5		+0.5	
POWER STAGE							
		Mx_ILIM[1:0] = 0x0		1.6	2.2	2.8	
High-Side MOSFET	gh-Side MOSFET	Mx_ILIM[1:0] = 0x1		2.8	3.4	4.0] ,
Peak Current Limit IPLIM	Mx_ILIM[1:0] = 0x2		3.4	4.0	4.6	- A	
		Mx_ILIM[1:0] = 0x3		4.0	4.0 4.6	5.2	1

Electrical Characteristics—Dual-Phase Configurable Buck Converter (continued)

 $(V_{SYS} = V_{IN1} = V_{IN2} = 3.8V$, Single-phase Configuration (1 Φ +1 Φ), $V_{OUT1} = 0.65V$, $V_{OUT2} = 1.1V$, $V_{I2C_EN} = 1.8V$, $T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted, limits are 100% production tested at $T_A = +25^{\circ}C$. Note 2.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
Low-Side MOSFET Valley Current Limit	I _{VLIM}	Tracks I _{PLIM}			I _{PLIM} - 1		А	
Low-Side MOSFET Negative Current Limit	I _{NLIM}	FPWM mode		-3.9	-3.0	-2.4	А	
Low-Side MOSFET Zero-Crossing Current Threshold	lzx	SKIP or LP-SKIP mo	ode		150		mA	
High-Side MOSFET On- Resistance	R _{ON_HS}	1Ф, I _{LXx} = 190mA			16	32	mΩ	
Low-Side MOSFET On- Resistance	R _{ON_LS}	1Ф, I _{LXx} = -190mA			10	20	mΩ	
Nominal Switching Fsw	FPWM mode, no	Mx_FREQ[1:0] = 0x0		0.5				
	load, no external clock, T _J = +25°C	Mx_FREQ[1:0] = 0x1		1		MHz		
		Mx_FREQ[1:0] = 0x2		1.6				
Maximum Duty Cycle	D _{MAX}	Drop-out region (V _{OUT} falls below its regulation target)		97	98		%	
R _{AD7}		1Φ, Buck output disabled, active discharge enabled (Mx_ADIS7 = 1), resistance from corresponding SNS _X to PGNDx (Note 8)			7			
Resistance	R _{AD100}	1Ф, Buck output disa discharge enabled (I resistance from corr PGNDx	Mx_ADIS100 = 1),		100		Ω	
		1Ф, V _{LXx} = 0V and	T _J = +25°C		0.1	1		
LX Leakage Current	I _{LKG_LX}	5.5V	T _J = -40°C to +85°C		1		μA	
SLEW-RATE AND TIMIN	G							
		SSTRT_SR[2:0] = 0	SSTRT_SR[2:0] = 0x0		0.15			
		SSTRT_SR[2:0] = 0x1 SSTRT_SR[2:0] = 0x2 SSTRT_SR[2:0] = 0x3 SSTRT_SR[2:0] = 0x4			0.625			
Soft-Start Slew-Rate (Note 6)					1.25			
	ΔV _{OUT} /Δt				2.5		mV/μs	
	24001/20				5		ΙΠν/μ3	
		SSTRT_SR[2:0] = 0	x5		10]	
		SSTRT_SR[2:0] = 0x6			20]	
		SSTRT_SR[2:0] = 0	x7		40			

Electrical Characteristics—Dual-Phase Configurable Buck Converter (continued)

 $(V_{SYS} = V_{IN1} = V_{IN2} = 3.8V$, Single-phase Configuration (1 Φ +1 Φ), $V_{OUT1} = 0.65V$, $V_{OUT2} = 1.1V$, $V_{I2C_EN} = 1.8V$, $T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted, limits are 100% production tested at $T_A = +25^{\circ}C$. Note 2.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
		SSTOP_SR[2:0] = 02	x0		-0.15		
		SSTOP_SR[2:0] = 0:	x1		-0.625		
		SSTOP_SR[2:0] = 0x2			-1.25		1
Soft-Stop Slew-Rate		SSTOP_SR[2:0] = 0:	x3		-2.5		1
(Note 6)	ΔV _{OUT} /Δt	SSTOP_SR[2:0] = 0:	x4		-5		mV/µs
		SSTOP_SR[2:0] = 0:	x5		-10		
		SSTOP_SR[2:0] = 0:	x6		-20		
		SSTOP_SR[2:0] = 0:	x7		-40		
		Mx_RU_SR[2:0] = 0x	x0		0.15		
		Mx_RU_SR[2:0] = 0x	x1		0.625		
		Mx_RU_SR[2:0] = 0x	x2		1.25		
Ramp-Up Slew-Rate		Mx_RU_SR[2:0] = 0x	x3		2.5		j .,,
(Note 6, Note 8)	ΔV _{OUT} /Δt	Mx_RU_SR[2:0] = 0x	x4		5		mV/µs
		Mx_RU_SR[2:0] = 0x5			10		
		Mx_RU_SR[2:0] = 0x6		20			
		Mx_RU_SR[2:0] = 0x7		40			
		Mx_RD_SR[2:0] = 0x0		-0.15			
		Mx_RD_SR[2:0] = 0x1		-0.625			
		Mx_RD_SR[2:0] = 0x2		-1.25			
Ramp-Down Slew-Rate		Mx_RD_SR[2:0] = 0x3		-2.5		m\//	
(Note 6, Note 8)	ΔV _{OUT} /Δt	Mx_RD_SR[2:0] = 0x4			-5		- mV/μs
		Mx_RD_SR[2:0] = 0x5		-10		1	
		Mx_RD_SR[2:0] = 0	x6		-20		
		Mx_RD_SR[2:0] = 0x	x7		-40		
Slew-Rate Accuracy		REFDAC Slew-rate a	accuracy	-5		+5	%
Turn-On Delay	t _{DLY}	Delay from rising edge of ENx signal to V _{OUTx} ramping start-off	V _{DD} is pre-enabled		90	140	μs
Turn-on Delay	t _{DLY}	Delay from rising edge of ENx signal to V _{OUTx} ramping start-off	V _{DD} is not pre- enabled		530	640	μs
FREQUENCY TRACKING	3						
External Frequency Tracking Lockable Range (Note 6)	F _{FTRAK}		Expressed as a percentage of the nominal frequency set by Mx_FREQ[1:0]			105	%

Electrical Characteristics—Dual-Phase Configurable Buck Converter (continued)

 $(V_{SYS} = V_{IN1} = V_{IN2} = 3.8V, Single-phase\ Configuration\ (1\Phi+1\Phi),\ V_{OUT1} = 0.65V,\ V_{OUT2} = 1.1V,\ V_{I2C_EN} = 1.8V,\ T_A = T_J = -40^{\circ}C\ to +125^{\circ}C,\ typical\ values\ are\ at\ T_A = T_J = +25^{\circ}C.\ Note\ 2.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SPREAD-SPECTRUM (N	ote 8)					
		Mx_SS_FREQ[1:0] = 0x0		1		
Modulation Frequency	_	Mx_SS_FREQ[1:0] = 0x1		3		kHz
(Note 6)	Fss_mod	Mx_SS_FREQ[1:0] = 0x2		5		- KHZ
		Mx_SS_FREQ[1:0] = 0x3		7		
		Mx_SS_ENV[1:0] = 0x1		±8		
Modulation Envelope	ΔF _{SS}	Mx_SS_ENV[1:0] = 0x2	±12		%	
		Mx_SS_ENV[1:0] = 0x3	±16			
POWER-OK AND SHOR	T-CIRCUIT PRO	TECTION				
Power-OK Rising Threshold	V _{POK_R}	Expressed as a percentage of V _{OUT}	77	82	87	%
Power-OK Falling Threshold	V _{POK_F}	Expressed as a percentage of V _{OUT}	73	78	83	%
		POK_TO[1:0] = 0x1		1		
Power-OK Fault Time- out (Note 6)	t _{POK_TO}	POK_TO[1:0] = 0x2		5		ms
out (11010 0)	_	POK_TO[1:0] = 0x3	10		1	
Short-Circuit Detection Threshold	V _{SCP}	V _{OUT} falling, expressed as a percentage of target V _{OUT}		20		%

- Note 5: Switching frequency is not set by a clock oscillator. F_{SW} varies depending on input voltage, output voltage, load, and spread-spectrum settings.
- Note 6: Guaranteed by design. Production tested through scan.
- Note 7: Not production tested. Design guidance only.
- Note 8: Not applicable to FC2QFN package.

Electrical Characteristics—ADC

 $(V_{SYS} = 3.8V, V_{I2C_EN} = 1.8V, T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted, limits are 100% production tested at $T_A = +25^{\circ}C$. Note 2.)

PARAMETER	SYMBOL	COND	CONDITIONS		TYP	MAX	UNITS	
READBACK ACCURACY (NOTE 7)								
SYS Input Voltage	V _{SYS_ADC}	3.0V ≤ V _{SYS} ≤ 5.5V	T _J = -40°C to +85°C		3		%	
Readback Accuracy	0.00		T _J = +125°C		5			
Output Voltage	V	T _J = -40°C to +85°C			3		- %	
Readback Accuracy	V _{OUT_ADC}	T _J = +125°C			5		70	
Junction Temperature Readback Accuracy	T _{J_ADC}	T _J = +85°C to +125°C			5		%	
TIMING (NOTE 6)								
Clock Frequency	f _{ADC}			1			MHz	
ADC Startup Time		One of Buck outputs	is enabled		11			
	tadc_su	All Buck outputs are	disabled		13		μs	

Electrical Characteristics—ADC (continued)

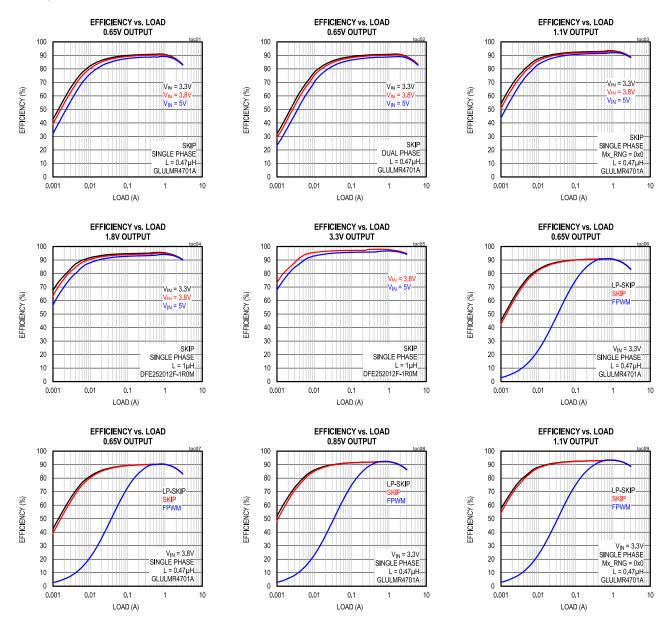
 $(V_{SYS} = 3.8V, V_{I2C_EN} = 1.8V, T_A = T_J = -40^{\circ}C$ to $+125^{\circ}C$, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted, limits are 100% production tested at $T_A = +25^{\circ}C$. Note 2.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ADC Sampling Time	town	Per channel	V _{SYS} , V _{OUTx}		9		μs
	^t SAMPLE	rei chaillei	TJ		1		ms
Conversion Time	tCONV	Per channel			9		μs
Sampling Interval for Averaging Mode	t _{INT_AVG}	Sampling interval for the same channel in averaging mode			5		ms
Sampling Interval for Continuous Measurement	tINT_CONT	Sampling interval for the same channel during continuous measurement operation			1		s

Electrical Characteristics—I²C Serial Interface

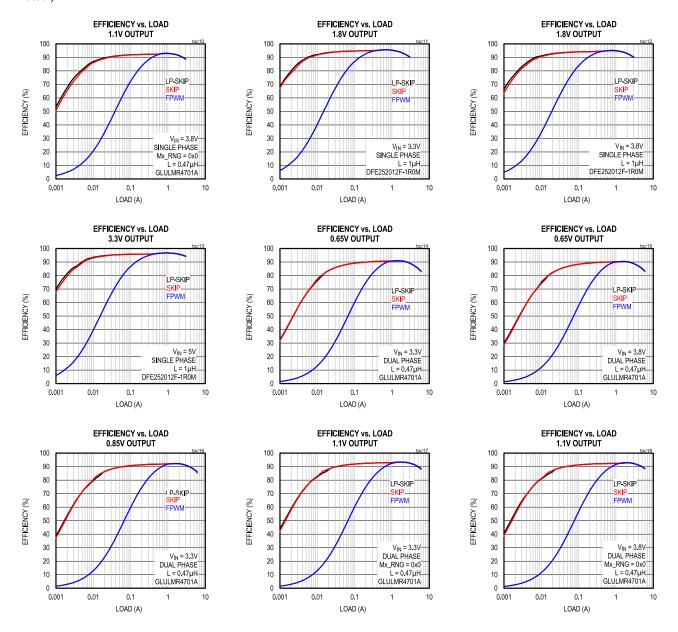
 $(V_{SYS} = 3.8V, V_{I2C_EN} = 1.8V, T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted, limits are 100% production tested at $T_A = +25^{\circ}C$. Note 2.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS			
I/O STAGE (Note 8)									
SCL, SDA Input Logic Low Threshold	V _{IL}				0.54	V			
SCL, SDA Input Logic High Threshold	V _{IH}		1.44			V			
SCL, SDA Input Hysteresis	V _{HYS}			0.3		V			
SDA Output Logic Low Threshold	V _{OL_SDA}	Sinking 20mA			0.4	V			
SCL, SDA Input Leakage Current	l _{LKG}	V _{SCL} = V _{SDA} = 0V or 5.5V	-10		+10	μA			
SCL, SDA Pin Capacitance		(Note 7)		10		pF			
STANDARD, FAST, AND	FAST MODE P	LUS TIMING (Note 8)				•			
Clock Frequency	f _{SCL}				1	MHz			
Hold Time (REPEATED) START Condition	^t HD;STA		260			ns			
SCL LOW Period	t _{LOW}		500			ns			
SCL HIGH Period	tHIGH		260			ns			
Setup Time REPEATED START Condition	tsu;sta		260			ns			
Data Hold Time	t _{HD;DAT}		0			μs			
Data Setup Time	t _{SU;DAT}		50			ns			
Setup Time for STOP Condition	tsu;sто		260			ns			
Bus Free Time between STOP and START Condition	t _{BUF}		0.5			μs			
Input Filter Suppressed Spike Pulse Width	t _{SP}	(Note 7)		50		ns			

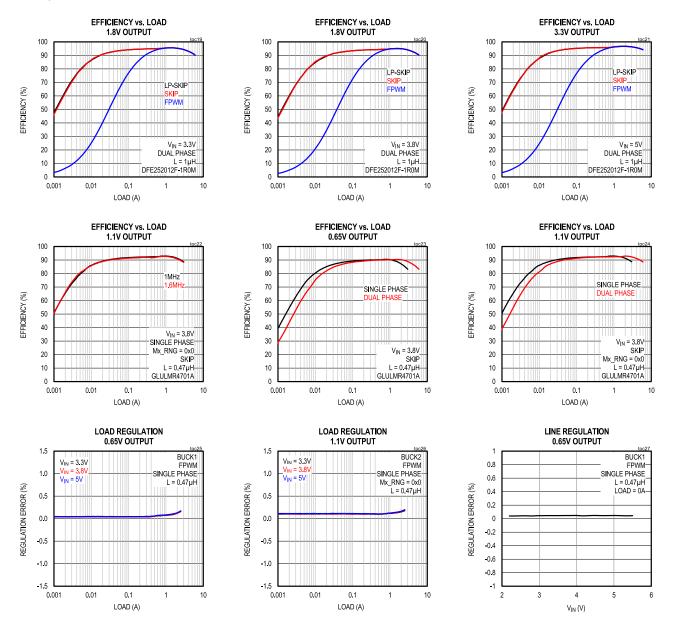

Electrical Characteristics—I²C Serial Interface (continued)

 $(V_{SYS} = 3.8V, V_{I2C_EN} = 1.8V, T_A = T_J = -40^{\circ}C$ to +125°C, typical values are at $T_A = T_J = +25^{\circ}C$, unless otherwise noted, limits are 100% production tested at $T_A = +25^{\circ}C$. Note 2.)

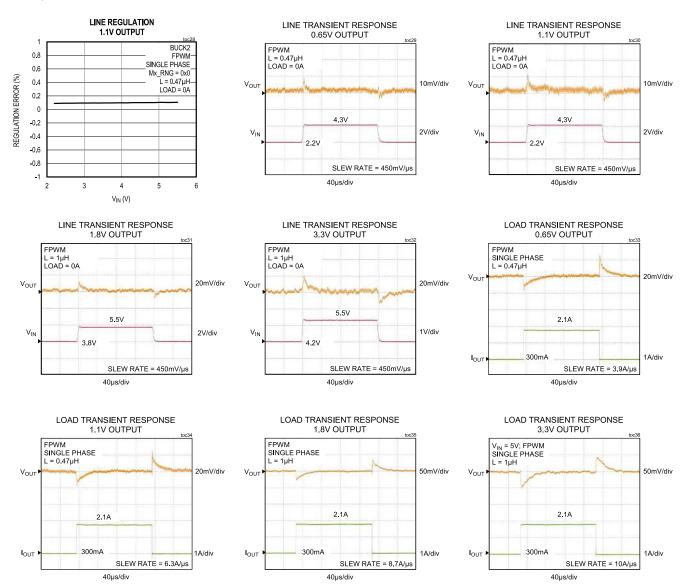
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS				
HIGH-SPEED MODE TIM	HIGH-SPEED MODE TIMING (Note 8)									
Clock Frequency	f _{SCL}	High-speed mode			3.4	MHz				
Setup Time REPEATED START Condition	tsu;sta		160			ns				
Hold Time (REPEATED) START Condition	t _{HD;STA}		160			ns				
SCL LOW Period	t_{LOW}		160			ns				
SCL HIGH Period	^t HIGH		60			ns				
Data Setup Time	tsu;dat		10			ns				
Data Hold Time	t _{HD;DAT}		0			μs				
Setup Time for STOP Condition	tsu;sto		160			ns				
Input Filter Suppressed Spike Pulse Width	t _{SP}	(Note 7)		10		ns				


Typical Operating Characteristics

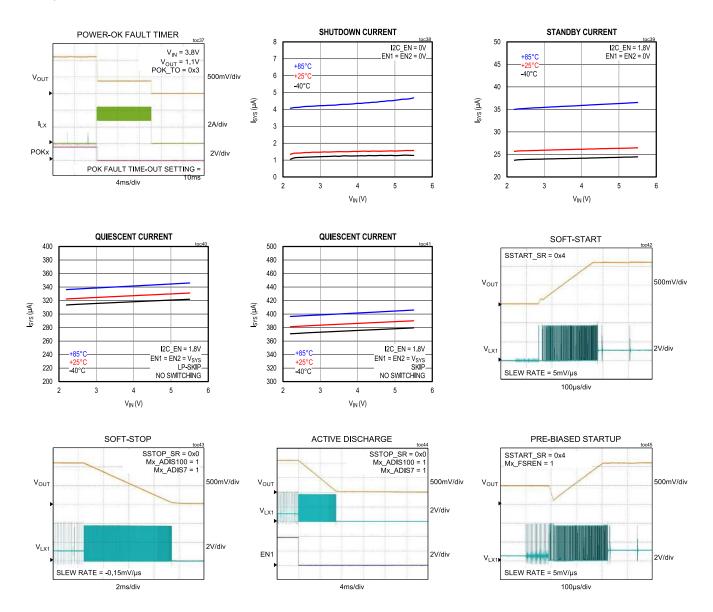
 $(V_{IN} = 3.8V, V_{OUT} = 0.65V, L = 0.47 \mu H (Alps GLULMR4701A), Skip Mode, Single Phase, F_{SW} = 1 MHz, T_A = +25 °C, unless otherwise noted.)$


Typical Operating Characteristics (continued)

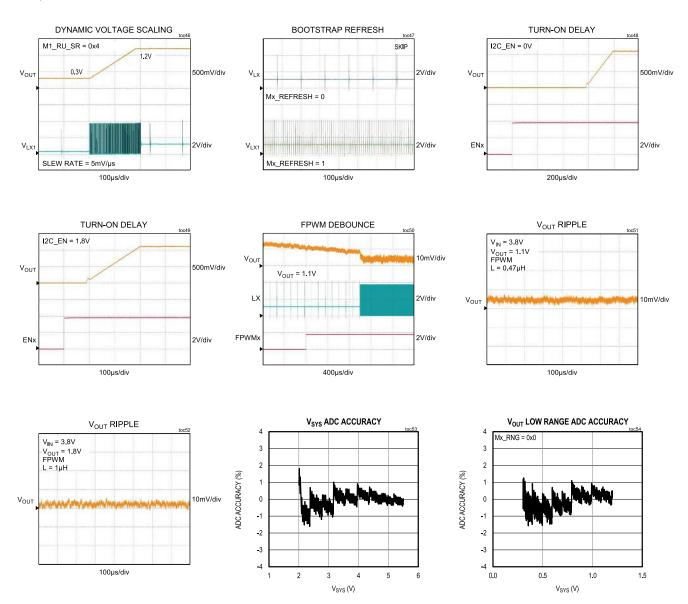
 $(V_{IN} = 3.8V, V_{OUT} = 0.65V, L = 0.47 \mu H (Alps GLULMR4701A), Skip Mode, Single Phase, F_{SW} = 1 MHz, T_A = +25 °C, unless otherwise noted.)$


Typical Operating Characteristics (continued)

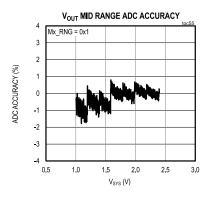
 $(V_{IN} = 3.8V, V_{OUT} = 0.65V, L = 0.47 \mu H (Alps GLULMR4701A), Skip Mode, Single Phase, F_{SW} = 1 MHz, T_A = +25 °C, unless otherwise noted.)$

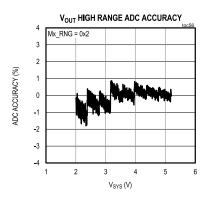

Typical Operating Characteristics (continued)

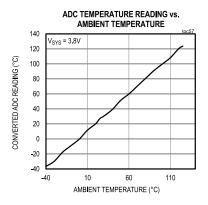
 $(V_{IN} = 3.8V, V_{OUT} = 0.65V, L = 0.47 \mu H (Alps GLULMR4701A), Skip Mode, Single Phase, F_{SW} = 1 MHz, T_A = +25 °C, unless otherwise noted.)$


Typical Operating Characteristics (continued)

 $(V_{IN} = 3.8V, V_{OUT} = 0.65V, L = 0.47\mu H (Alps GLULMR4701A), Skip Mode, Single Phase, F_{SW} = 1MHz, T_A = +25^{\circ}C, unless otherwise noted.)$

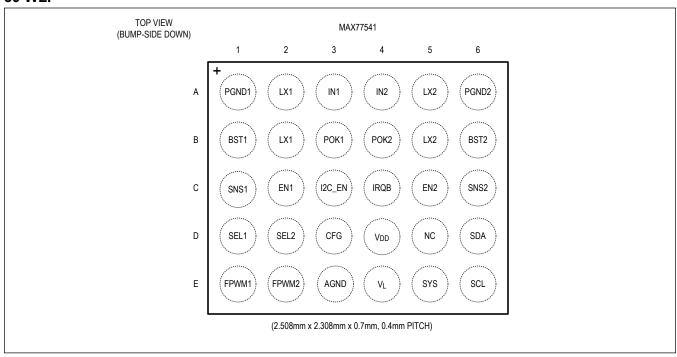

Typical Operating Characteristics (continued)

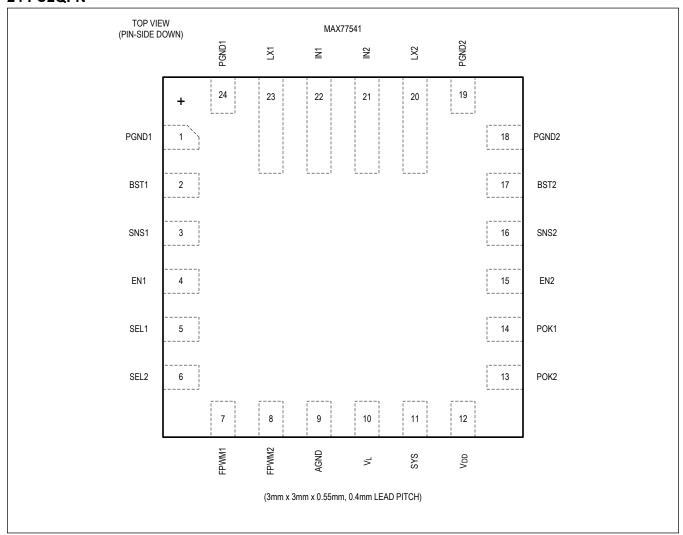

 $(V_{IN} = 3.8V, V_{OUT} = 0.65V, L = 0.47\mu H (Alps GLULMR4701A), Skip Mode, Single Phase, F_{SW} = 1MHz, T_A = +25°C, unless otherwise noted.)$



Typical Operating Characteristics (continued)

 $(V_{IN}$ = 3.8V, V_{OUT} = 0.65V, L = 0.47 μ H (Alps GLULMR4701A), Skip Mode, Single Phase, F_{SW} = 1MHz, T_A = +25 $^{\circ}$ C, unless otherwise noted.)





Bump Configuration

30 WLP

24 FC2QFN

Bump Descriptions

			,	
PIN 30 WLP 24 FC2QFN		NAME	FUNCTION	TYPE
		NAIVIE	FUNCTION	ITPE
BUCK SWITC	HING PHASE			
B1	B1 2 BST1 Phase1 High-Side MOSFET Driver Supply. Connect a 0.1µF ceramic capacitor between BST1 and LX1.			Power Input
В6	17	BST2	Phase2 High-Side MOSFET Driver Supply. Connect a 0.1µF ceramic capacitor between BST2 and LX2.	Power Input
A3	22	IN1	Phase1 Input. Bypass to PGND1 with a 10µF ceramic capacitor.	Power Input
A4	21	IN2	Phase2 Input. Bypass to PGND2 with a 10µF ceramic capacitor.	Power Input
A2, B2	23	LX1	Phase1 Switching Node	Power Output
A5, B5	20	LX2	Phase2 Switching Node	Power Output

Bump Descriptions (continued)

PIN				
30 WLP	24 FC2QFN	NAME	FUNCTION	TYPE
A1	1, 24	PGND1	Phase1 Power Ground	Power Ground
A6	18, 19	PGND2	Phase2 Power Ground	Power Ground
C1	3	SNS1	Phase1 Output Voltage Sensing Input. Connect to the output at the point-of-load.	Analog Input
C6	16	SNS2	Phase2 Output Voltage Sensing Input. Connect to the output at the point-of-load. Connect to AGND or leave unconnected (floating) when the phase configuration is set for 2Φ operation.	Analog Input
INTERNAL B	IAS SUPPLY	•		
E3	9	AGND	Analog (Quiet) Ground	Ground
D5	_	NC	No Connection	
E5	11	SYS	System Power Input (Supply to Internal V_L and V_{DD} Linear Regulator). Bypass to AGND with a 2.2 μ F ceramic capacitor.	Power Input
D4	12	V _{DD}	Internal Bias Supply Output. Powered from SYS. Bypass to AGND with a $1\mu F$ ceramic capacitor. Do not load this pin externally.	Power Output
E4	10	VL	Internal Gate Driver Supply Output. Powered from SYS. Bypass V_L to PGND with a $2.2\mu F$ ceramic capacitor. Do not load this pin externally.	Power Output
CONTROL A	ND SERIAL INTE	RFACE		
D3	_	CFG	Device Configuration Selection Input. Connect a selection resistor (R _{CFG}) between CFG and AGND to configure I ² C slave address, current limits, and switching frequency. Default settings may be over-written through I ² C. See the <i>Device Configuration (CFG)</i> section for more information. In the FC2QFN package option, the CFG pin is left unconnected inside the package.	Analog Input
C2	4	EN1	Buck1 Enable Input (Active-High)	Digital Input
C5	15	EN2	Buck2 Enable Input (Active-High). Connect to AGND for 2Ф operation.	Digital Input
E1	7	FPWM1	Buck1 Forced-PWM Mode Control (Active-High) and External Frequency Tracking Input. Provide an external clock to enable FPWM mode with external frequency stabilization. Connect to AGND if unused. See the <i>Frequency Tracking (FTRAK)</i> section for more information.	Digital Input
E2	8	FPWM2	Buck2 Forced-PWM Mode Control (Active-High) and External Frequency Tracking Input. Provide an external clock to enable FPWM mode with external frequency stabilization. Connect to AGND if unused. See the Frequency Tracking (FTRAK) section for more information.	Digital Input
C3	_	I2C_EN	I 2 C Enable Input (Active-High). Enables I 2 C interface and V $_L$ and V $_D$ D regulators. See the <u>Dedicated Internal Supplies</u> section for more information.	Digital Input
C4	_	IRQB	Interrupt Output (Open-drain, Active Low), This pin requires an external pullup resistor.	Digital Output

Bump Descriptions (continued)

P	PIN		PIN		FUNCTION	TYPE
30 WLP	24 FC2QFN	NAIVIE	FUNCTION	ITPE		
В3	14	POK1	Buck1 Power-OK Output (Open-drain). An external pullup resistor ($10k\Omega$ to $100k\Omega$) is required. Leave this pin unconnected if unused.	Digital Output		
B4	13	POK2	Buck2 Power-OK Output (Open-Drain). An external pullup resistor $(10k\Omega$ to $100k\Omega$) is required. Leave this pin unconnected if unused. This pin is pulled low internally when the phase configuration is set for 2Φ operation.	Digital Output		
E6	_	SCL	I ² C Serial Interface Clock. Connect to ground if not used.	Digital Input		
D6	_	SDA	I ² C Serial Interface Data. Connect to ground if not used.	Digital I/O		
D1	5	SEL1	Buck1 Default V _{OUT} Selection Input. Connect a selection resistor (R _{SEL1}) between SEL1 and AGND to configure the default V _{OUT1} and V _{OUT1} range. Default settings can be overwritten through I ² C. See the <u>Default Output Voltage Selection (SELx)</u> section for more information.	Analog Input		
D2	6	SEL2	Buck2 Default V _{OUT} Selection Input. Connect a selection resistor (R _{SEL2}) between SEL2 and AGND to configure the default target V _{OUT2} and V _{OUT2} range. Default settings can be overwritten through I ² C. When R _{SEL2} \leq 95.3 Ω , Buck2 becomes a slave phase of a dual-phase converter. See the <u>Default Output Voltage Selection (SELx)</u> section for more information.	Analog Input		

Detailed Description—Top-Level

Dedicated Internal Supplies

The MAX77541 has dedicated internal supplies which are the V_L and the V_{DD} . The V_L provides power to gate drivers for switching MOSFETs, while the V_{DD} provides power for internal logic and control. Those two 1.8V regulators are powered from the SYS input.

When either the I2C_EN or the ENx pin is pulled high, the MAX77541 enables bias circuitry as well as the V_L and the V_{DD} supplies. As soon as the V_{DD} supply becomes stable, the MAX77541 reads the R_{CFG} and the R_{SELx} values to configure the device. While both the V_{SYS} and the V_{DD} are valid, I²C serial communication is activated. Enabling I²C by pulling the I2C_EN pin high allows the host processor to modify configuration settings before activating the Buck outputs.

Table 1. V_{DD} and I²C Enable Truth Table

I2C_EN (PIN)	EN1 OR EN2 (PIN)	V _{DD} and I ² C SERIAL INTERFACE
Low	Low	Disabled
X	High	Enabled
High	X	Enabled

Device Configuration (CFG)

The MAX77541 supports user-selectable device configurations with a 1% tolerance (or better) resistor. The MAX77541 evaluates the resistances between the CFG and the AGND whenever the V_{DD} regulator first turns on (exits shutdown by either the I2C_EN or the ENx pin). The decoded value of the R_{CFG} is latched until the next time the device exits shutdown mode. The CFG_LATCH[4:0] status bits reflect the latched decoded value of the R_{CFG} . See the <u>Register Map</u> for more details.

<u>Table 2</u> decodes the default selection options for I²C slave address, current limits, and switching frequency. Once latched, the Mx_ILIM[1:0] and the Mx_FREQ[1:0] bits reflect the selected options. The decoded values for R_{CFG} ≥ 75k Ω are programmable at the factory.

Table 2. Device Configuration

R _{CFG} (Ω)	I ² C SLAVE ADDRESS (7-BIT ADDR)	M1_ILIM (A) (1Φ/2Φ)	M2_ILIM (A)	Mx_FREQ (MHz)
≤ 95.3	7'h60 (110 0000)	2.2/3.4	2.2	1.0
200	7'h61 (110 0001)	2.2/3.4	2.2	1.0
309	7'h62 (110 0010)	2.2/3.4	2.2	1.0
422	7'h63 (110 0011)	2.2/3.4	2.2	1.0
536	7'h60 (110 0000)	2.2/3.4	2.2	1.6
649	7'h61 (110 0001)	2.2/3.4	2.2	1.6
768	7'h62 (110 0010)	2.2/3.4	2.2	1.6
909	7'h63 (110 0011)	2.2/3.4	2.2	1.6
1.05k	7'h60 (110 0000)	4.0/4.6	2.2	1.0
1.21k	7'h61 (110 0001)	4.0/4.6	2.2	1.0
1.40k	7'h62 (110 0010)	4.0/4.6	2.2	1.0
1.62k	7'h63 (110 0011)	4.0/4.6	2.2	1.0
1.87k	7'h60 (110 0000)	4.0/4.6	2.2	1.6
2.15k	7'h61 (110 0001)	4.0/4.6	2.2	1.6
2.49k	7'h62 (110 0010)	4.0/4.6	2.2	1.6
2.87k	7'h63 (110 0011)	4.0/4.6	2.2	1.6
3.74k	7'h60 (110 0000)	4.0/4.6	4.0	0.5

Table 2. Device Configuration (continued)

R _{CFG} (Ω)	I ² C SLAVE ADDRESS (7-BIT ADDR)	M1_ILIM (A) (1Φ/2Φ)	M2_ILIM (A)	Mx_FREQ (MHz)	
8.06k	7'h61 (110 0001)	4.0/4.6	4.0	0.5	
12.4k	7'h62 (110 0010)	4.0/4.6	4.0	0.5	
16.9k	7'h63 (110 0011)	4.0/4.6	4.0	0.5	
21.5k	7'h60 (110 0000)	4.0/4.6	4.0	1.0	
26.1k	7'h61 (110 0001)	4.0/4.6	4.0	1.0	
30.9k	7'h62 (110 0010)	4.0/4.6	4.0	1.0	
36.5k	7'h63 (110 0011)	4.0/4.6	4.0	1.0	
42.2k	7'h60 (110 0000)	4.0/4.6	4.0	1.6	
48.7k	7'h61 (110 0001)	4.0/4.6	4.0	1.6	
56.2k	7'h62 (110 0010)	4.0/4.6	4.0	1.6	
64.9k	7'h63 (110 0011)	4.0/4.6	4.0	1.6	
75.0k	7'h60 (110 0000)				
86.6k	7'h61 (110 0001)	Factory Option			
100k	7'h62 (110 0010)				
≥115k	7'h63 (110 0011)				

Output Enable Control

The MAX77541 has dedicated logic input pins (EN1 and EN2) for enabling individual Buck outputs. When the ENx is pulled above the V_{IH} (or tied to SYS), the corresponding Buck output is enabled. In case the MAX77541 exits shutdown mode by the ENx, it takes about 320 μ s (typ.) to turn on the internal bias circuitry and evaluate the R_{CFG} and the R_{SELx} before propagating the Buck enable signals. To prevent chatter, the ENx pins must be driven either high or low.

The Buck outputs can also be turned on by setting the Mx_EN bits to 1 through the I^2C serial interface. The logical interaction between the enable pins (ENx) and their corresponding I^2C enable bits (Mx_EN) is 'OR'. The serial interface is active whenever the V_{DD} regulator is enabled (See <u>Table 1</u>).

Undervoltage Lock-Out (UVLO)

When the V_{SYS} voltage falls below the V_{UVLO_F} (typ. 2.0V), the MAX77541 disables all individual Buck outputs immediately and resets all Buck configuration registers. See the <u>Fault Protection</u> section for more information.

A UVLO event forces the device to a dormant state until the V_{SYS} voltage rises above the UVLO rising threshold (typ. 2.2V). The UVLO falling threshold is programmable through I^2C , but it must be set lower than the UVLO rising threshold to avoid unexpected behaviors. If the V_{SYS} voltage drops down to the POR threshold (typ 1.7V), the V_{DD} supply turns off (all the registers are reset) and the MAX77541 enters shutdown state.

Thermal Warnings and Thermal Shutdown (T_{SHDN})

The MAX77541 has thermal warning to monitor whether the junction temperature rises above $+120^{\circ}$ C and $+140^{\circ}$ C. As shown in <u>Figure 1</u>, the device enters thermal shutdown (T_{SHDN}) if the junction temperature exceeds the T_{SHDN} (approximately $+165^{\circ}$ C typ). A T_{SHDN} event disables all individual Buck outputs immediately and resets all Buck configuration registers. See the <u>Fault Protection</u> section for more information. Thermal monitoring is active whenever any of the following conditions are true:

- One of the Buck outputs is enabled
- Force thermal protection enable bit is set (EN_FTMON = 1)
- Thermal protection is enabled (for any reason) and detects T_J ≥ 120°C (In this case, thermal monitoring remains active until T_J ≤ 105°C)

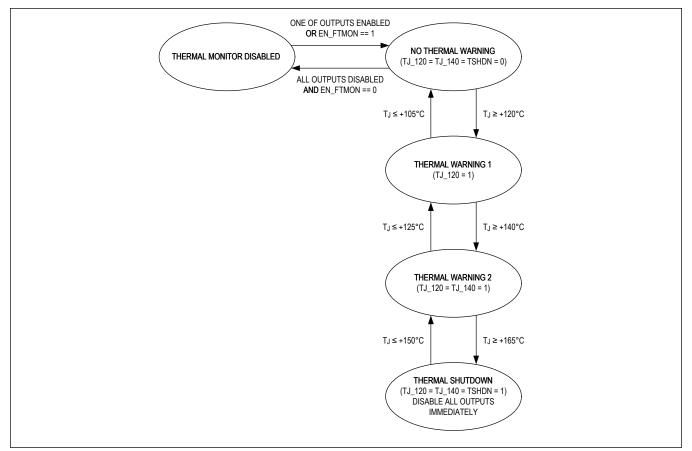


Figure 1. Thermal Warnings and Thermal Shutdown

Interrupt (IRQB) and Mask

The IRQB is an active-low, open-drain output that indicates to the host processor that the status on the MAX77541 has changed. The IRQB is the logical "NOR" of all unmasked interrupt bits. See the <u>Register Map</u> for a full list of available status and interrupt bits.

The IRQB output asserts (goes low) anytime an unmasked interrupt bit is triggered. The host processor reads the interrupt source register (ADDR 0x00) and the interrupt registers that are indicated by the interrupt source register to check the cause of the interrupt event. Note that the interrupt source register is cleared when the corresponding interrupt register group is read by the host processor.

All the interrupt events are edge-triggered. Therefore, the same interrupt is not generated repeatedly even though the interrupt condition persists.

Each interrupt register can be read at once and all interrupt bits are "Clear-On-Read" bits. The IRQB output de-asserts (goes high) when all interrupt bits have been cleared. If an interrupt is captured during the read sequence, the IRQB output is held low. When the IRQB output is pulled low by an unmasked interrupt event, the IRQB output stays low until the interrupt bit is cleared by the reading operation of the host processor or the corresponding interrupt mask bit is set to 1 (masked). All interrupts (except UVLO_I) are masked by default. Masked interrupt bits do not cause the IRQB pin to assert.

The MAX77541 has two interrupt mask modes. With MASK_MODE = 0 (default), an interrupt bit is set for an interrupt event regardless of the corresponding mask bit, however the interrupt event does not propagate to the interrupt source register when masked. When the MASK_MODE is set to 1, it prevents the interrupt register bit from asserting for the corresponding interrupt event (gated at the interrupt bit).

Register Reset Condition

All registers are reset to the POR default values specified in the register map section when the MAX77541 enters shutdown mode (I2C_EN = ENx = Low) or the V_{SYS} supply drops below its POR threshold (typ. 1.7V). Whenever the I2C_EN or the ENx pin is pulled high, the MAX77541 updates the default register values of the Mx_VOUT[7:0], the Mx_RNG[1:0], the Mx_ILIM[1:0], and the Mx_FREQ[1:0] bits based on R_{CFG} and R_{SELx} detection, and the updated default values are latched until both the I2C_EN and the ENx pins are pulled low or a POR event occurs.

FC2QFN Default Options

The FC2QFN package has a reduced set of features due to the the lack of SDA and SCL pins for I²C communication and the ALT_IN pin. The default register settings cannot be changed. The following is a list of features not available in the FC2QFN package:

- The alternative low-voltage input feature is not available.
- Output enable control can only be performed using the hardware ENx pins.
- Thermal warnings are not accessible.
- Interrupt pin and registers are not accessible.
- Low-power SKIP mode is not available (the FPWMx pins can be used to toggle between SKIP and FPWM modes).
- Only V_{OUTx} options available through the R_{SELx} pins can be programmed.
- Configuring F_{SW} and Mx_ILIM through the CFG pin is unavailable.
- F_{SW} is default to 1MHz.
- Mx ILIM is default to 4.0A.
- Dynamic output voltage scaling is not available.
- The 7Ω active discharge resistor is disabled.
- Spread spectrum modulation cannot be enabled.

Detailed Description—Dual-Phase Configurable Buck Converter

The MAX77541 is a high-efficiency, phase-configurable Buck converter with two 3A phases (Φ). Two output voltage sensing inputs allow up to two regulated outputs. Each Buck converter operates on an input supply between 2.2V and 5.5V. The output voltages are preset using the SELx inputs and further configurable with an I²C serial interface between 0.3V and 5.2V in 5mV, 10mV, or 20mV steps depending on the Mx_RNG[1:0] registers. See the <u>Output Voltage Setting</u> section.

Each switching phase supports 3A and dual-phase (2Φ) configuration supports up to 6A. The phase configuration is user-programmable by tying the SEL2 pin to the AGND on the PCB. See the *Phase Configuration* section.

Buck Converter Control Scheme

The MAX77541 uses Maxim's proprietary adaptive COT (constant on-time) current-mode control scheme. The adaptive COT control provides fast response to load transients, inherent compensation to input voltage variation, and stable performance at low duty cycles. As shown in Figure 2, Buck1 is referenced in the following explanation.

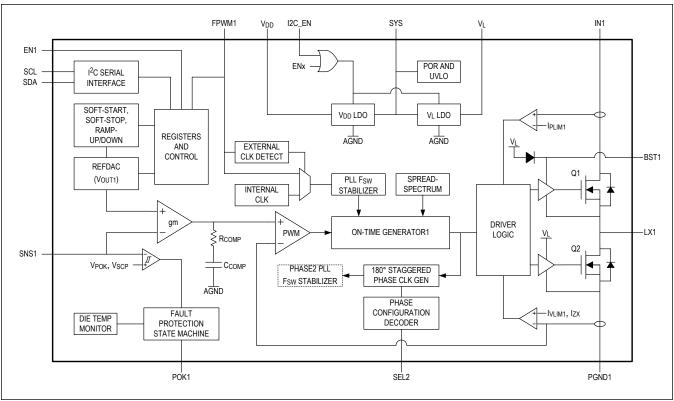


Figure 2. Functional Block Diagram

An on-time (MOSFET Q1 is on) is controlled by an on-time generator circuit and this circuit calculates an on-time based on the input voltage (V_{IN1}), the output voltage (V_{OUT1}), and the target switching frequency (F_{SW1}). An off-time (MOSFET Q2 is on) begins when the on-time ends. During the dead-time, the inductor current conducts through the intrinsic body diode. A PWM comparator regulates the V_{OUT1} by modulating off-time. The positive input of the PWM comparator is a voltage proportional to the actual output voltage error. The negative input is a voltage proportional to the inductor current sensed through the MOSFET Q2. The PWM comparator begins an on-time when the error voltage becomes higher than the current-sense signal. The off-time automatically begins again when the calculated on-time expires. A phase-locked loop (PLL) stabilizes the switching frequency and controls phase spacing. The PLL stabilizes Phase2 (LX2) 180° apart from Phase1 when the output is configured for the dual-phase (2Φ) operation. In dual-phase configuration, both the master and the slave phases are activated and always switch in sequence during steady-state operation. The phases do not add or shed.

Buck Operating Modes

The Buck converters have three operating modes shown in Figure 3 and transitions between the modes are determined by operating conditions and mode control settings. The operating mode setting can be changed any time while I^2C communication is available. Toggling between SKIP and FPWM modes is also controlled by the FPWMx pins. Pulling the FPWMx pin high to operate the corresponding Buck in forced-PWM mode. When the FPWMx pin is held low, the operating mode is controlled by the Mx_LPM and the Mx_FPWM bits.

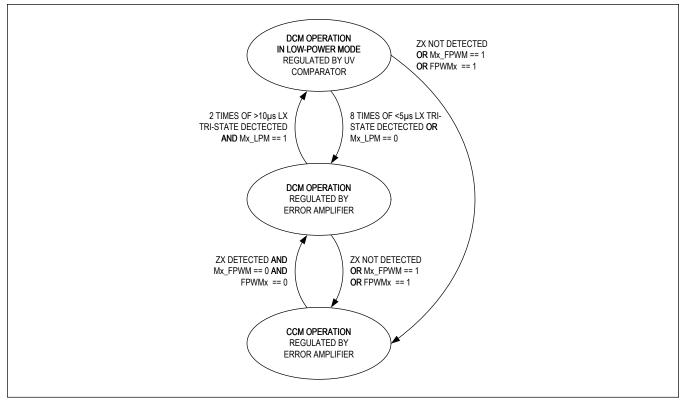


Figure 3. Buck Operating Modes

Detail mode control settings are described below:

SKIP Mode

In SKIP mode (Mx_LPM == Mx_FPWM == FPWMx == 0), the Buck converter operates either in DCM (Discontinuous Conduction Mode) or CCM (Continuous Conduction Mode) depending on loading. If the averaged output current is lower than a half of inductor peak-to-peak ripple current under light load condition, the low-side MOSFET turns off as soon as the inductor current drops to near zero ampere (zero-crossing). Then, the switching node (LX) remains in tri-state (Hi-Z) until the next on-time is triggered. In this way, the Buck prevents a negative inductor current which results in improving light-load efficiency by reducing the total number of switching cycles needed to regulate the output voltage.

When no zero-crossing (ZX) is detected (under heavier load), the Buck controller goes into CCM where the averaged output current is greater than a half of inductor ripple current. In both DCM and CCM, the output voltage is regulated by an error amplifier. In case the on-time determined by a given operating condition in high output voltage range (Mx_RNG[1:0] = 0x2) is not long enough, the on-time automatically extends until the inductor current reaches 660mA to ensure enough off-time to detect the ZX reliably.

Low-Power SKIP (LP-SKIP) Mode

Low-power SKIP mode (Mx_LPM == 1 **AND** Mx_FPWM == FPWMx == 0) is similar to SKIP mode becasue a negative inductor current is not allowed in LP-SKIP mode as well. When the averaged output current is decreased further down (>10µs of LX tri-state is detected two times consecutively) in SKIP mode, the Buck converter enters LP-SKIP mode when Low Power mode is enabled. In LP-SKIP mode, the error amplifier and other internal blocks are deactivated to reduce IQ consumption. Instead of the error amplifier, a low-power comparator monitors the output voltage in LP-SKIP mode.

The Buck enters DCM operation in SKIP mode when the duration of LX tri-state is shorter than 4μ s for eight times in a row or LP-SKIP mode is disabled (Mx_LPM = 0). If zero-crossing is not detected (e.g., sudden load transient) or FPWM mode is enabled (Mx_FPWM = 1 **OR** FPWMx = 1), the Buck enters CCM operation directly from LP-SKIP mode.

Forced-PWM (FPWM) Mode

Forced-PWM mode (Mx_FPWM == 1 **OR** FPWMx == 1) ensures a continuous inductor current under all load conditions. In FPWM mode, a negative inductor current through the low-side MOSFET is allowed but the maximum current is limited to I_{NLIM} (typ -3A). When the Buck converters enter/exit FPWM mode by the FPWMx inputs, there is 1ms of delay in mode transition due to 1ms of debounce timer on the FPWMx inputs. In case a valid external frequency is detected on the FPWMx input, the corresponding Buck enters FPWM mode regardless of its operating mode settings. See the <u>Frequency Tracking (FTRAK)</u> section for more information.

Dropout Mode

The MAX77541 architecture allows the Buck converter to operate even when the input voltage approaches the target output voltage. When the headroom between the input and the output voltages reduces during operation, the Buck controller tries to maintain the output voltage regulation by increasing the duty cycle. In case the Buck is not able to regulate the target output voltage with the maximum duty cycle (typ 98%), it automatically extends the on-time by skipping the off-times (drop-out mode). In drop-out mode, the low-side MOSFET turns on occasionally in order to refresh the bootstrap circuit for driving the high-side MOSFET. See the *Bootstrap Refresh* section for more information.

Switching Frequency

The MAX77541 has three nominal switching frequency options (0.5MHz, 1.0MHz, and 1.6MHz) to optimize the efficiency, the transient response, the noise performance, and the solution size. The default switching frequency of the Bucks are set by the CFG input (see <u>Table 2</u>) and the switching frequencies of individual Bucks are also selectable with the Mx_FREQ[1:0] bits.

At any given time, the switching frequency (F_{SW}) of the adaptive on-time Buck converter is not fixed and is heavily influenced by the instantaneous load current. More on-time pulses in a given time (higher F_{SW}) are observed as the output current increases, while fewer on-times in a given time (lower F_{SW}) are observed when the output current decreases. A valid external frequency at the FPWMx input or enabling the internal frequency tracking feature ($Mx_FTRAK = 1$) stabilizes the switching frequency of the corresponding Buck in steady-state operation. See the Frequency Tracking (FTRAK) section for more information.

In case the on-time calculated by the given operating condition is less than the minimum on-time (typ 60ns), the Buck controller regulates the output voltage by increasing the off-time. As a result, the actual switching frequency becomes slower than its nominal frequency setting. For example, the calculated duty cycle for $5.5V_{\text{IN}}$ and $0.5V_{\text{OUT}}$ is about 9.1%, which gives less than 60ns of on-time at 1.6MHz of nominal switching frequency. It means that the actual switching frequency under this condition is slower than 1.6MHz, so a 1MHz or slower nominal switching frequency setting is recommended.

Phase Configuration

The MAX77541 has two 3A switching phases configurable to either two single-phase Bucks or one dual-phase Buck. As shown in <u>Table 3</u>, the Buck is configured as single-output dual-phase (2Φ) when the SEL2 is shorted to the AGND. In dual-phase (2Φ) configuration, logic I/O pins and control registers for Buck2 are deactivated so that register settings of the master phase (M1) dictate the operation of the slave phase as well.

Table 3. Phase Configuration Selection

R _{SEL1} (Ω)	R _{SEL2} (Ω)	PHASE (Φ) CONFIGURATION	NUMBER OF OUTPUTS
Any	≤ 95.3	2Ф	1
Any	≥ 200	1Φ + 1Φ	2

Also, the output voltage sensing of the Buck converter is assigned based on the phase configuration setting. In dual-phase configuration, the Buck controller regulates the output voltage using the SNS1 pin only (the SNS2 pin is unused). Table 4 shows how to configure the output voltage sensing pins for each phase configuration.

Table 4. Buck Output Voltage Sensing Assignment

PHASE (Φ) CONFIGURATION	PHASE ASSIGNED	BUCK NAMING CONVENTION	V _{OUT} SENSING INPUT
2Ф (1 Output)	Phase1 (M1) Phase2 (S)	Buck1 (V _{OUT1})	SNS1
1Φ + 1Φ	Phase1 (M1)	Buck1 (V _{OUT1})	SNS1
(2 Outputs)	Phase2 (M2)	Buck2 (V _{OUT2})	SNS2
(Mx): Master Phase (S): Slave Phase			

Default Output Voltage Selection (SELx)

The MAX77541 supports user-selectable default voltages of individual Buck outputs with 1% tolerance (or better) resistors. The MAX77541 evaluates the resistances between the SELx and the AGND whenever the V_{DD} regulator first turns on (exits shutdown by either the I2C_EN or the ENx). The decoded values of the R_{SELx} are latched until the next time the device exits shutdown mode. The SELx_LATCH[4:0] status bits reflect the latched decoded values of the R_{SELx} . See the R_{SELx} for more details.

The resistance between the SEL1 and the AGND (R_{SEL1}) configures the default voltage of Buck1, while the R_{SEL2} between the SEL2 and the AGND configures Buck2 default voltage. If the SEL2 pin is tied to the AGND on the PCB ($R_{SEL2} \le 95.3\Omega$), the Buck is configured as a single-output dual-phase (2Φ) converter. When the dual-phase operation is selected, the decoded resistance on the SEL1 (R_{SEL1}) sets the default output voltage (V_{OUT1}). Table 5 and Table 6 decode the default selection options for the V_{OUT1} and the V_{OUT2} respectively. Once latched, the Mx_VOUT[7:0] and the Mx_RNG[1:0] bits reflect the selected options. The decoded values for $R_{SELx} \ge 115 k\Omega$ are programmable at the factory.

Table 5. Default VOLIT1 Selection

R _{SEL1} (Ω)	TARGET V _{OUT1} (V)	V _{OUT1} RANGE
≤ 95.3	0.300	Low
200	0.400	Low
309	0.500	Low
422	0.550	Low
536	0.600	Low
649	0.650	Low
768	0.675	Low
909	0.700	Low
1.05k	0.720	Low

Table 5. Default V_{OUT1} Selection (continued)

R _{SEL1} (Ω)	TARGET V _{OUT1} (V)	V _{OUT1} RANGE
1.21k	0.750	Low
1.40k	0.800	Low
1.62k	0.820	Low
1.87k	0.850	Low
2.15k	0.900	Low
2.49k	0.950	Low
2.87k	1.000	Low
3.74k	1.050	Low
8.06k	1.100	Low
12.4k	1.150	Low
16.9k	1.200	Low
21.5k	1.25	Mid
26.1k	1.35	Mid
30.9k	1.40	Mid
36.5k	1.50	Mid
42.2k	1.80	Mid
48.7k	2.00	Mid
56.2k	2.50	High
64.9k	2.80	High
75.0k	3.30	High
86.6k	3.40	High
100k	3.80	High
≥ 115k	Factory Option	

Table 6. Default V_{OUT2} Selection

R _{SEL2} (Ω)	TARGET V _{OUT2} (V)	V _{OUT2} RANGE
≤ 95.3	N/A (2Φ Operation)	
200	0.500	Low
309	0.550	Low
422	0.600	Low
536	0.650	Low
649	0.700	Low
768	0.720	Low
909	0.750	Low
1.05k	0.800	Low
1.21k	0.820	Low
1.40k	0.850	Low
1.62k	0.900	Low
1.87k	0.950	Low
2.15k	1.000	Low
2.49k	1.050	Low
2.87k	1.100	Low

Table 6. Default V_{OUT2} Selection (continued)

R _{SEL2} (Ω)	TARGET V _{OUT2} (V)	V _{OUT2} RANGE
3.74k	1.150	Low
8.06k	1.200	Low
12.4k	1.25	Mid
16.9k	1.35	Mid
21.5k	1.40	Mid
26.1k	1.50	Mid
30.9k	1.80	Mid
36.5k	2.00	Mid
42.2k	2.50	High
48.7k	2.80	High
56.2k	3.00	High
64.9k	3.30	High
75.0k	3.40	High
86.6k	3.80	High
100k	4.30	High
≥ 115k	Factory Option	

Output Voltage Setting

The output voltages (V_{OUTx}) are adjustable between 0.3V and 5.2V in 5mV, 10mV, or 20mV steps depending on the Mx_RNG[1:0] bits as shown in <u>Table 7</u>. Note that the Mx_RNG[1:0] bits must not be changed while the corresponding Buck is enabled.

In each output voltage range, the lowest code (0x00) of the Mx_VOUT[7:0] bits represents the minimum output voltage and the target output voltage is increased by one LSB step as the code increases. The maximum programmable output voltage is digitally limited to the maximum output voltage in each range even if the code increases beyond that point. The default values of the Mx_VOUT[7:0] and the Mx_RNG[1:0] bits are set by the corresponding RSELx values. See the Default Output Voltage Selection (SELx) section for more information.

For output voltages that have overlapping ranges (e.g., 1V), select the desired range by trading off the load transient response and the required effective output capacitance. Using the 1V output example: use low-range for a slightly better load transient response, or mid-range for a slightly worse transient response but with less effective output capacitance requirement. See the <u>Output Capacitor Selection</u> for more information on the required effective output capacitance for the different output voltage ranges.

Table 7. Buck Output Voltage Range

Mx_RNG[1:0]	V _{OUT} PROGRAMMING RANGE	STEP PER LSB
0x0 (Low-range)	0.3V to 1.2V	5mV
0x1 (Mid-range)	1.0V to 2.4V	10mV
0x2 (High-range)	2.0V to 5.2V	20mV

Soft-Start and Soft-Stop

The Bucks always soft-start whenever they are enabled (regardless of the ENx or I^2C command) or when recovering from a fault condition. When the individual Buck is disabled by the ENx or I^2C command, the Buck always initiates soft-stop. If a POK fault time-out or a SCP event occurs to a Buck output, only the corresponding Buck stops switching immediately (LX node becomes Hi-Z) without affecting the operation of the other Buck. In case an UVLO or a T_{SHDN} fault happens, all Buck outputs stop switching immediately.

The Bucks have internal ramps that control the slew-rate of output voltage changes during soft-start and soft-stop.

The soft-start and the soft-stop slew-rates are set individually by the SSTRT_SR[2:0] and the SSTOP_SR[2:0] bits respectively, and they are global settings for all Buck phases. During soft-start and soft-stop, the Buck automatically enters FPWM mode regardless of operating mode settings when the Mx_FSREN bit is set to 1 (default). To support "prebiased" startup (startup without discharging preexisting voltage at the output), the Mx_FSREN and the Mx_ADIS100 bits need to be set to 0 before the Buck is enabled.

The SSTRT_SR[2:0] and the SSTOP_SR[2:0] bits set the slew-rates of a voltage reference to an error amplifier. When the fastest slew-rate option is selected, the actual output voltage slew-rate might be slower than the target setting due to limited sourcing and the sinking current capabilities of Bucks under given circuit parameters and operating conditions. See Table 8 for more information.

Dynamic Output Voltage Scaling

Whenever a new target value is written in the Mx_VOUT[7:0] bits through I^2C while the corresponding Buck is enabled, the output voltage starts to change. The output voltage ramps up (or down) at a positive (or negative) slew-rate set by the corresponding Mx_RU_SR[2:0] (or Mx_RD_SR[2:0]) bits. When the Mx_FSREN bit is set, the corresponding Buck enters FPWM mode automatically (regardless of the Mx_FPWM bit) during the output voltage ramp-down (or soft-stop). In FPWM mode, the Buck can sink current from the C_{OUTx} to the PGNDx through the low-side MOSFET which allows the V_{OUTx} to track the negative rate set by the Mx_RD_SR[2:0] bits.

Table 8. Mx FSREN Effect On Buck Behavior

OPERATING MODE	Mx_FSREN	BUCK BEHAVIOR IN STEADY STATE	BUCK BEHAVIOR DURING DVS
SKIP or LP-SKIP	0	Source Only	Source Only
	1	Source Only	Source or Sink
FPWM	Х	Source or Sink	Source or Sink
Note : Buck outputs (V _{OUTx}) with current sinking capability can follow negative ramp rates set by the Mx_RD_SR[2:0] or the SSTOP_SR[2:0].			

If the negative inductor current reaches the I_{NLIM} (typ -3A), the low-side MOSFET is turned off immediately and the Buck initiates a new on-time (high-side MOSFET turn-on). Thus, the maximum slew-rate during output voltage ramp-down (or soft-stop) is limited if an effective output capacitance is very high for the selected ramp-down (or soft-stop) slew-rate. The maximum output voltage slew-rate is calculated by following formula, $dV_C/dt = i_C/C$.

Output Voltage Active Discharge

Each Buck converter integrates a 100Ω active discharge resistor between the LXx and the PGNDx for discharging the output capacitor when the Buck output is disabled. For faster output voltage discharge at the end of soft-stop, a 7Ω active discharge function is added between the SNSx and the PGNDx. Those two active discharge resistors are individually enabled by setting the Mx_ADIS100 and the Mx_ADIS7 bits respectively. If both the Mx_ADIS100 and the Mx_ADIS7 are set to 1, the 7Ω active discharge is first activated for 1ms right after soft-stop is completed, and then the 100Ω active discharge is enabled until the next time the Buck is enabled. In shutdown mode (I2C_EN = EN1 = EN2 = 0), the 100Ω active discharge of each Buck phase is enabled by default.

Note that the 7Ω active discharge function of the corresponding output must be disabled (Mx_ADIS7 = 0) to avoid excessive power dissipation when the falling slew-rate control feature is disabled (Mx_FSREN = 0).

Bootstrap Refresh

When the Buck is in drop-out operation or in SKIP (or LP-SKIP) mode under extremely light load condition, the low-side MOSFET does not turn on for a long period of time. In this case, the Buck controller occasionally turns on the low-side MOSFET for about 100ns (typ) in order to charge a bootstrap circuit for driving the high-side MOSFET. The bootstrap refresh interval is set to 128µs by default. The bootstrap refresh interval can be reduced to 10µs when the Mx_REFRESH bit is set to '1'. The bootstrap refresh interval selection is shown in Table 9.

Table 9. Bootstrap Refresh Interval Selection

Mx_REFRESH	REFRESH INTERVAL
0	128µs
1	10µs

The bootstrap refresh is also required when the Buck converter starts switching. As a part of the startup procedure, the Buck controller forces refresh pulses 16 times with an interval of 3µs.

Frequency Tracking (FTRAK)

The MAX77541 supports the frequency tracking feature. When a valid external clock is detected on the FPWMx input (triggers the EXT_FREQ_DET_I interrupt if unmasked), the corresponding Buck converter enters FPWM mode regardless of its operating mode setting and tracks the external frequency by modulating on-times. Buck1 attempts to track the beginning of on-times to the falling edges of the external clock on the FPWM1 input, while Buck2 attempts to track the beginning of on-times to the rising edges of the external clock on the FPWM2 input. The external frequency detection is deactivated when all Buck outputs are disabled.

Table 10. Mx FTRAK Enable Truth Table

EXT_FREQ_DET	Mx_FTRAK	PLL	BUCK OPERATING MODE	NOTE
0	0	Disabled	Depends on Buck Mode Setting	No Tracking
0	1	Enabled	Depends on Buck Mode Setting	Internal Freq. Tracking
1	0	Enabled	FPWM	External Freq. Tracking
1	1	Enabled	FPWM	External Freq. Tracking

As shown in <u>Table 10</u>, the Bucks can also track an internal clock. When the FTRAK function is enabled (Mx_FTRAK = 1), the corresponding Buck tracks the internal PLL frequency (set by the Mx_FREQ[1:0] bits) if no valid external clock is applied. In case a valid external clock is detected while the corresponding Buck is tracking the internal PLL, it switches to the external clock tracking. The frequency window for both external and internal tracking is about ±5% of the nominal switching frequency. The frequency tracking operation is valid whenever one of Buck converters is enabled regardless of the I2C_EN pin status. The FPWM1 and the FPWM2 must be driven either low or high to prevent chattering or false tracking.

Figure 4. Frequency Tracking

Note that the frequency tracking feature is deactivated if the on-time determined by the operating condition is less than 60ns.

Spread-Spectrum Modulation

The Bucks are capable of dithering its switching frequency for noise-sensitive applications. Spread-spectrum function of each Buck is individually enabled by setting the Mx_SS_ENV[1:0] bits. The spread-spectrum function is activated only in CCM (Continuous Conduction Mode) and it is automatically deactivated when the Bucks enter DCM (Discontinuous Conduction Mode). The spread-spectrum modulation pattern is programmable either in pseudo-random or triangular patterns by the Mx_SS_PAT[1:0] bits. Spread-spectrum modulation is characterized by modulation envelope and modulation frequency:

- The modulation envelope (ΔF_{SS}) determines the maximum difference between the modulated switching frequency and the nominal switching frequency. The modulation envelope is programmable (±8%, ±12%, or ±16%) with the Mx SS ENV[1:0] bits and it controls how wide the switching frequency dithers
- The modulation frequency (F_{SS_MOD}) determines how often the switching frequency changes from one value to another. The modulation frequency is also programmable (1kHz, 3kHz, 5kHz or 7kHz) with the Mx_SS_FREQ[1:0] bits and it controls how fast the switching frequency dithers

Pseudo-Random Pattern

The pseudo-random engine uses a 4-bit linear feedback shift register (LFSR) to create a pseudo-random value as shown in <u>Figure 5</u>. The LFSR value is converted to an analog signal and then amplified before being added to the output of the on-time generator circuit. The pseudo-random value shortens or lengthens the on-time. This causes the Buck controller to increase or decrease the switching frequency to maintain voltage regulation. Each Buck has its own pseudo-random pattern generator.

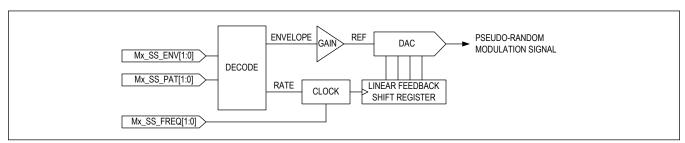


Figure 5. Pseudo-Random Modulator Engine

The modulation envelope and frequency are programmable with the Mx_SS_ENV[1:0] and the Mx_FREQ[1:0] bits. The F_{SS_MOD} sets the frequency at which the LFSR wraps back to the seed value. The clock rate of the LFSR is the F_{LFSR} . This is the frequency at which one pseudo-random value changes to another. An example is shown in Figure 6.

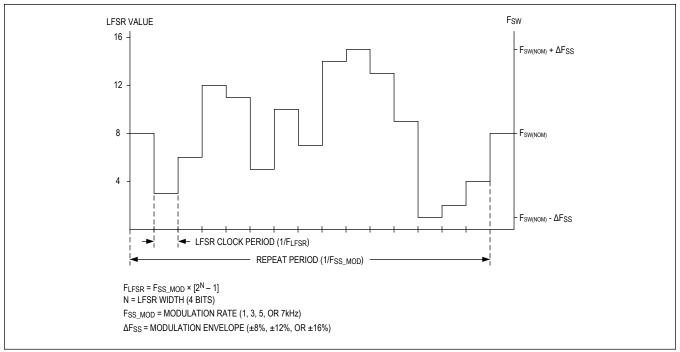


Figure 6. 4-Bit Pseudo-Random Modulation Signal Example

Triangular Pattern

The triangular engine uses a 4-bit up/down synchronous counter to create a stepped triangle pattern as shown in <u>Figure 7</u>. The counter value is converted to an analog signal and then amplified before being added to the output of the on-time generator circuit. The counter value progressively shortens and lengthens the on-time. This causes the Buck controller to progressively increase and decrease the switching frequency to maintain voltage regulation. Each Buck has its own triangular pattern generator.

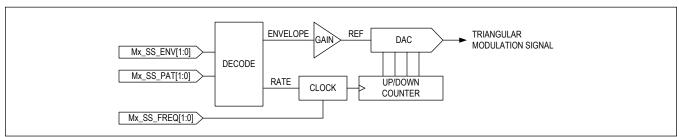


Figure 7. Triangular Modulator Engine

The modulation envelope and frequency are programmable with the Mx_SS_ENV[1:0] and the Mx_FREQ[1:0] bits. The F_{SS_MOD} sets the frequency at which the counter returns to the same value. The clock rate of the counter is the F_{COUNT}. This is the frequency at which the frequency changes from one value to another. An example is shown in Figure 8.

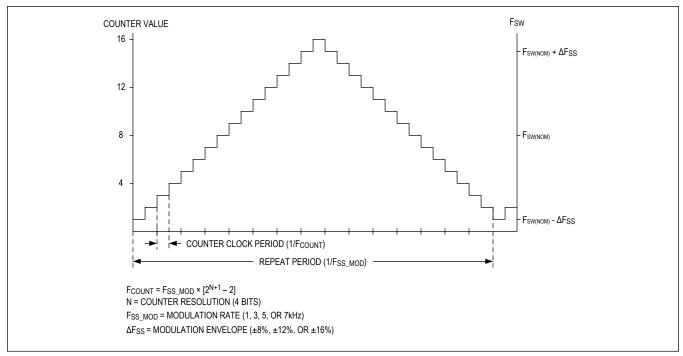


Figure 8. 4-Bit Triangular Modulation Signal Example

Inductor Current Limits

The MAX77541 has a cycle-by-cycle current limit feature that prevents the inductor current in each phase from increasing beyond the I_{PLIM} . If an on-time is ended by the peak current limit, the Buck prevents a new on-time from starting until the inductor current falls below the valley current limit (I_{VLIM}) which is typically set 1A less than the I_{PLIM} . This prevents the inductor current from increasing uncontrollably due to the overloaded output. In case the on-time determined by the given operating condition is less than 130ns (typ), the next on-time pulse is not triggered until the inductor current hits the I_{VLIM} . Each Buck has four PLIM thresholds which are individually set with the I_{XLIM} bits. See the <u>Register Map</u> for more details. The programmable PLIM thresholds allow an optimal circuit protection and inductor selections for the given operating conditions and load requirements.

Power-OK (POK)

The MAX77541 features the Power-OK (POK) comparators to monitor the quality of each Buck output. The Mx_POK status bits continuously reflect the status of these monitors. The Mx_POK bit goes high if the corresponding Buck output voltage rises above the V_{POK_R} (typ 82% of the V_{OUT} target) when soft-start is completed. When the corresponding Buck output falls below the \overline{V}_{POK_R} (typ 78% of the V_{OUT} target), the Mx_POK bit goes low. When unmasked, the Mx_POKFLT_I interrupt sets whenever the Mx_POK status bit changes from 1 to 0. The Mx_POKFLT_I bits are individually maskable. See the *Register Map* for more details.

The quality of Buck outputs can be directly monitored using the POKx pins. The POKx is an active-high, open-drain output that requires an external pullup resistor (typ $10k\Omega$ to $100k\Omega$).

Fault Protection

The MAX77541 has a fault protection scheme designed to protect itself from abnormal conditions. Each individual Buck has its own fault state machine (shown in <u>Figure 9</u>) which is independently triggered by a short-circuit protection (SCP), a thermal shutdown (T_{SHDN}), and/or an undervoltage lockout (UVLO) event. The operation of the state machine is summarized as follows:

- If the V_{SYS} falls below the V_{UVLO_F} (typ. 2.0V), then all individual Buck outputs are disabled immediately (the UVLO_I interrupt asserts) and all Buck configuration registers are reset to their default values (enters BUCKx OUTPUT OFF state)
- If one of the enabled Buck outputs falls below the V_{POK_F} (typ 78% of regulation target), then the Mx_POKFLT_I
 asserts
- If one of the enabled Buck outputs stays below the V_{POK_R} (typ 82% of regulation target) for longer than t_{POK_TO}, then only the corresponding output is disabled immediately and its Buck configuration registers are reset to their default values
- If one of enabled Buck outputs falls below the V_{SCP} (typ 20% of regulation target), then only the corresponding output
 is disabled immediately (the Mx_SCFLT_I interrupt asserts) and its Buck configuration registers are reset to their
 default values
- If the junction temperature exceeds the T_{SHDN} (typ 165°C), then all individual Buck outputs are disabled immediately (the TSHDN I interrupt asserts) and all Buck configuration registers are reset to their default values
- POK and SCP monitoring is not active (masked) during soft-start and soft-stop

When a POK time-out, SCP, and/or T_{SHDN} fault occurs, the corresponding Buck enters either the LATCH-OFF or WAIT state from the RESET state, depending on the AUTO_RSTRT bit setting.

- If AUTO RSTRT = 0,
 - · The output of individual Buck is forced disabled in LATCH-OFF state
 - When ENx == Mx_EN == 0 AND T_J ≤ +150°C, the individual Buck exits LATCH-OFF state and enters BUCKx OUTPUT OFF state
- If AUTO_RSTRT = 1,
 - After 500ms of forced-disable in WAIT state, the individual Buck automatically exits WAIT state and enters BUCKx OUTPUT OFF state, if the junction temperature falls below +150°C (T_{SHDN} = 0)
 - If the enable logic of individual Buck is still valid when it enters BUCKx OUTPUT OFF state, the corresponding Buck initiates soft-start, as it goes into BUCKx OUTPUT ON state immediately

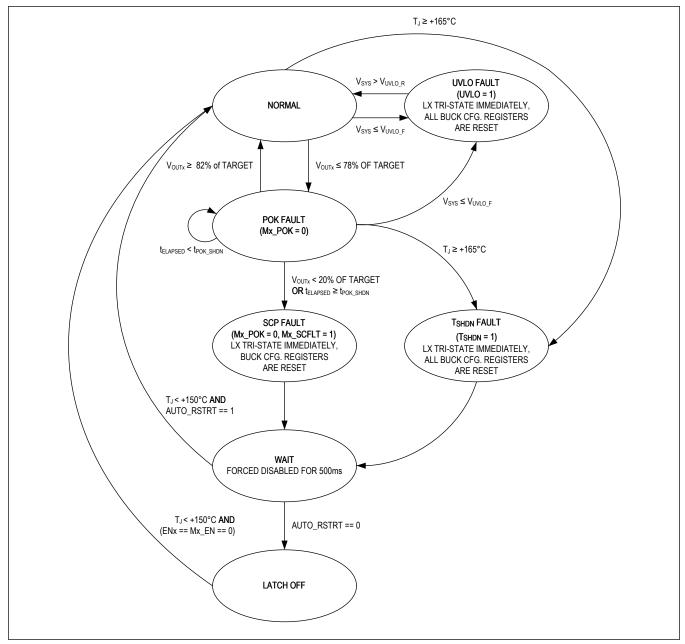


Figure 9. Fault Protection State Diagram

Detailed Description—ADC

The MAX77541 has an 8-bit Successive Approximation Register (SAR) ADC with four multiplexers for supporting the telemetry feature. The four multiplexers are assigned for the V_{SYS} voltage, the output voltage of each Buck converter, and the junction temperature. Each ADC channel is individually controlled through I^2C and has a set of interrupt and interrupt mask bits. When unmasked, the interrupt bit sets whenever the ADC data is ready to be read.

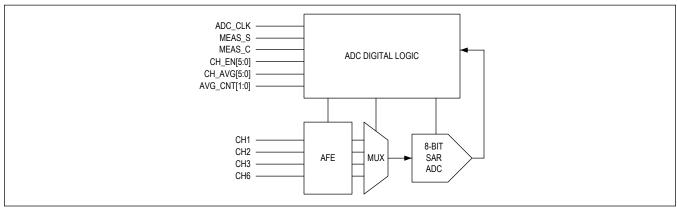


Figure 10. ADC Block Diagram

ADC Enable and Measurement Options

Each individual ADC channel is enabled by setting the CHx_EN bit. The ADC starts sampling the data about 20µs after the MEAS_S bit is set (single measurement). Once the sampling is completed, it takes about 10µs of conversion time to upload the the read-back data into its corresponding data register (ADC_DATAx). In case more than one channel is enabled, the ADC engine measures all enabled channels one by one and uploads the read-back data to the ADC_DATAx registers in turn. The AVG_CNT[1:0] bits set the number of readings (2, 4, 8, or 16 points) before the ADC uploads the averaged data into the ADC_DATAx registers.

The ADC also provides continuous reading options by setting the MEAS_C bit. When MEAS_C = 1, the ADC engine reads all enabled channels and upload the data onto the ADC_DATAx registers every second. While continuous measurement is enabled (MEAS_C = 1), the MEA_S bit is ignored.

When unmasked, an interrupt (ADC_CHx_I) is triggered whenever the new data is uploaded into the corresponding data register. This is to indicate to the host processor that the data is ready to be read.

SYS Voltage Measurement

The supply voltage at the SYS node (V_{SYS}) can be monitored using the ADC CH1. The measurement range is from 0V to 6.375V with 25mV of LSB. The sampling time for the input voltage measurement is about 10µs. See the <u>Register Map</u> for the conversion formula between the read-back code and the measured SYS voltage.

Output Voltage Measurement

The MAX77541 is also capable of measuring DC output voltage of each switching phase. Data codes in the ADC_DATA2 and the ADC_DATA3 registers represent the measured output voltages of Phase1 and Phase2 respectively. In dual-phase configuration, it is redundant to measure the output voltages of slave phase if the output voltage of master phase is already measured. The sampling time for the output voltage measurement is about 10µs. See the <u>Register Map</u> for the conversion formula between the read-back code and the measured output voltage.

Junction Temperature Measurement

The ADC CH6 is dedicated for measuring the junction temperature of the device. It takes about 1ms to complete sampling the junction temperature. This allows the host processor to optimize its power consumption for reliable operation. See the <u>Register Map</u> for the conversion formula between the read-back code and the measured junction temperature.

Detailed Description—I²C Serial Interface

The MAX77541 features a revision 3.0 I^2C -compatible, 2-wire serial interface consisting of a serial clock line (SCL) and a bidirectional serial data line (SDA). The MAX77541 is a slave-only device that relies on an external bus master to generate the SCL clock. The SCL clock rates from 0Hz to 3.4MHz are supported. As I^2C is an open-drain bus, the SCL and the SDA require external pullup resistors.

Slave Address

The device's I²C communication controller implements 7-bit slave addressing. An I²C bus master initiates communication with the slave by issuing a START condition followed by the slave address. The MAX77541 supports four slave addresses which are selected by R_{CFG} (See the *Device Configuration (CFG)* section). All slave addresses not mentioned in are not acknowledged. The device uses 8-bit registers with 8-bit register addressing. They support standard communication protocols:

- Writing to a single register
- Writing to multiple sequential registers with an automatically incrementing data pointer
- Reading from a single register
- Reading from multiple sequential registers with an automatically incrementing data pointer.

For additional information about I²C protocols, refer to the I²C specification.

Register Map

MAX77541 WLP Package

	1 WLP Package					1			
ADDRESS	NAME	MSB							LSB
GLOBAL C	ONFIGURATION 1								
0x00	INT_SRC[7:0]		RI	ESERVED[4	:0]		_	BUCK_I	TOPSYS _I
0x01	INT_SRC_MSK[7:0]		RESERVED[4:0]				_	BUCK_M	TOPSYS _M
0x02	TOPSYS_INT[7:0]	RESER	VED[1:0]	EXT_FR EQ_DET _I	RSVD_T OPSYS_ INT_4	UVLO_I	TSHDN_	TJ_140C _I	TJ_120C _I
0x03	TOPSYS_MSK[7:0]	RESER	VED[1:0]	EXT_FR EQ_DET _M	RSVD_T OPSYS_ MSK_4	UVLO_M	TSHDN_ M	TJ_140C _M	TJ_120C _M
0x04	TOPSYS_STAT[7:0]	RESER	VED[1:0]	EXT_FR EQ_DET	RSVD_T OPSYS_ STAT_4	UVLO	TSHDN	TJ_140C	TJ_120C
0x06	DEVICE_CFG1[7:0]	RE	SERVED[2	2:0]		SE	L1_LATCH[4:0]	
0x07	DEVICE_CFG2[7:0]	RE	SERVED[2	2:0]		SE	L2_LATCH[4:0]	
0x08	DEVICE_CFG3[7:0]	RE	SERVED[2	2:0]		CF	G_LATCH[4:0]	
0x09	TOPSYS_CFG[7:0]		RESERVED[3:0]			AUTO_R STRT	MASK_ MODE	RESERV ED	RSVD_T OPSYS_ CFG_0
0x0A	PROT_CFG[7:0]	RESER	VED[1:0]	ı	JVLO_F[2:0)]	EN_FTM ON	POK_	ΓO[1:0]
0x0B	EN_CTRL[7:0]	RESER	VED[1:0]	M2_LPM	M1_LPM	RESER'	VED[1:0]	M2_EN	M1_EN
GLOBAL C	ONFIGURATION 2	•				,		•	
0x11	GLB_CFG1[7:0]	RESER	VED[1:0]	SS	STOP_SR[2	:0]	S	STRT_SR[2	:0]
BUCK1 CO	NFIGURATION	•							
0x20	BUCK_INT[7:0]	RESER	VED[1:0]	M2_SCF LT_I	M1_SCF LT_I	RESERVED[1:0]		M2_POK FLT_I	M1_POK FLT_I
0x21	BUCK_MSK[7:0]	RESER	VED[1:0]	M2_SCF LT_M	M1_SCF LT_M	RESER	VED[1:0]	M2_POK FLT_M	M1_POK FLT_M
0x22	BUCK_STAT[7:0]	RESER\	VED[1:0]	M2_SCF LT	M1_SCF LT	RESER	VED[1:0]	M2_POK	M1_POK
0x23	M1_VOUT[7:0]				M1_VC	UT[7:0]			
0x25	M1_CFG1[7:0]	M1_RI	NG[1:0]	М	1_RD_SR[2	:0]	M	1_RU_SR[2	:0]
0x26	M1_CFG2[7:0]	M1_SS_	ENV[1:0]	M1_SS_F	FREQ[1:0]	M1_SSM	_PAT[1:0]	M1_FSR EN	M1_FPW M
0x27	M1_CFG3[7:0]	M1_ADI M1_ADI M1_REF M1_FTR M1_F				M1_FR	EQ[1:0]	M1_IL	IM[1:0]
BUCK2 CO	NFIGURATION								
0x33	M2_VOUT[7:0]				M2_VC	UT[7:0]			
0x35	M2_CFG1[7:0]	M2_RI	NG[1:0]	M:	2_RD_SR[2	RD_SR[2:0] M2_			:0]
0x36	M2_CFG2[7:0]	M2_SS_	ENV[1:0]	M2_SS_F	FREQ[1:0]	M2_SSM	_PAT[1:0]	M2_FSR EN	M2_FPW M

ADDRESS	NAME	MSB							LSB	
0x37	M2_CFG3[7:0]	M2_ADI S100	M2_ADI S7	M2_REF RESH	M2_FTR AK	M2_FREQ[1:0] M		M2_IL	M2_ILIM[1:0]	
ADC CONF	IGURATION									
0x70	ADC_INT[7:0]	_	ı	ADC_CH 6_I	_	_	ADC_CH 3_I	ADC_CH 2_I	ADC_CH 1_I	
0x71	ADC_MSK[7:0]	_	_	ADC_CH 6_M	_	_	ADC_CH 3_M	ADC_CH 2_M	ADC_CH 1_M	
0x72	ADC_DATA_CH1[7:0]				ADC_DA	TA1[7:0]				
0x73	ADC_DATA_CH2[7:0]				ADC_DA	TA2[7:0]				
0x74	ADC_DATA_CH3[7:0]				ADC_DA	TA3[7:0]				
0x77	ADC_DATA_CH6[7:0]				ADC_DA	TA6[7:0]				
0x7A	ADC_CFG1[7:0]	-	-	CH6_EN	_	-	CH3_EN	CH2_EN	CH1_EN	
0x7B	ADC_CFG2[7:0]	_ CH6_AV _ CH3_AV CH2_AV CH1_A						CH1_AV G		
0x7C	ADC_CFG3[7:0]	RESER\	/ED[1:0]	_	_	AVG_C	NT[1:0]	MEAS_C	MEAS_S	

Register Details

INT_SRC (0x00)

BIT	7	6	5	4	3	2	1	0
Field		F	_	BUCK_I	TOPSYS_I			
Reset			0x0	_	0x0	0x0		
Access Type			Read Only			_	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
RESERVED	7:3	Reserved. Returns '0'	
BUCK_I	1	Buck Interrupt Source	0x0 = Interrupt event in Buck has not been detected 0x1 = Interrupt event in Buck has been detected
TOPSYS_I	0	Top-Level Interrupt Source	0x0 = Interrupt event in TOPSYS has not been detected 0x1 = Interrupt event in TOPSYS has been detected

INT_SRC_MSK (0x01)

BIT	7	6	5	4	3	2	1	0
Field		F	_	BUCK_M	TOPSYS_M			
Reset			0x1F	_	0x1	0x0		
Access Type			Write, Read			_	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
RESERVED	7:3	Reserved. Returns 1	
BUCK_M	1	Buck Interrupt Source Mask	0x0 = Enable BUCK_I 0x1 = Mask BUCK_I

BITFIELD	BITS	DESCRIPTION	DECODE
TOPSYS_M	0	Top-Level Interrupt Source Mask	0x0 = Enable TOPSYS_I 0x1 = Mask TOPSYS_I

TOPSYS_INT (0x02)

BIT	7	6	5	4	3	2	1	0
Field	RESERVED[1:0]		EXT_FREQ _DET_I	RSVD_TOP SYS_INT_4	UVLO_I	TSHDN_I	TJ_140C_I	TJ_120C_I
Reset	0x0		0x0	0x0	0x0	0x0	0x0	0x0
Access Type	Read Clears All		Read Clears All	Read Clears All	Read Clears All	Read Clears All	Read Clears All	Read Clears All

BITFIELD	BITS	DESCRIPTION	DECODE
RESERVED	7:6	Reserved. Returns '0'	
EXT_FREQ_ DET_I	5	External Clock Frequency Detection interrupt	0x0 = Valid external frequency has not been detected at one of FPWMx inputs 0x1 = Valid external frequency has been detected at one of FPWMx inputs
RSVD_TOPS YS_INT_4	4	Reserved. Returns 0	
UVLO_I	3	SYS Under-voltage Lock-out Interrupt	0x0 = Input voltage (V _{SYS}) has not dropped below UVLO threshold 0x1 = Input voltage (V _{SYS}) has dropped below UVLO threshold
TSHDN_I	2	Thermal Shutdown Interrupt	$0x0$ = Junction temperature has not risen above T_{SHDN} threshold (T_{J} < +165°C) $0x1$ = Junction temperature has risen above T_{SHDN} threshold (T_{J} ≥ +165°C)
TJ_140C_I	1	Thermal Warning2 Interrupt	0x0 = Junction temperature has not risen above +140°C 0x1 = Junction temperature has risen above +140°C
TJ_120C_I	0	Thermal Warning1 Interrupt	0x0 = Junction temperature has not risen above +120°C 0x1 = Junction temperature has risen above +120°C

TOPSYS_MSK (0x03)

BIT	7	6	5	4	3	2	1	0
Field	RESERVED[1:0]		EXT_FREQ _DET_M	RSVD_TOP SYS_MSK_ 4	UVLO_M	TSHDN_M	TJ_140C_M	TJ_120C_M
Reset	0x3		0x1	0x1	0x0	0x1	0x1	0x1
Access Type	Write, Read		Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
RESERVED	7:6	Reserved. Returns 1	
EXT_FREQ_ DET_M	5	External Clock Frequency Detection Interrupt Mask	0x0 = Enable EXT_FREQ_DET_I 0x1 = Mask EXT_FREQ_DET_I

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD_TOPS YS_MSK_4	4	Reserved. Returns 1	
UVLO_M	3	SYS Undervoltage Lock-Out Interrupt Mask	0x0 = Enable UVLO_I 0x1 = Mask UVLO_I
TSHDN_M	2	Thermal Shutdown Interrupt Mask	0x0 = Enable TSHDN_I 0x1 = Mask TSHDN_I
TJ_140C_M	1	Thermal Warning2 Interrupt Mask	0x0 = Enable TJ_140C_I 0x1 = Mask TJ_140C_I
TJ_120C_M	0	Thermal Warning1 Interrupt Mask	0x0 = Enable TJ_120C_I 0x1 = Mask TJ_120C_I

TOPSYS STAT (0x04)

BIT	7	6	5	4	3	2	1	0
Field	RESERVED[1:0]		EXT_FREQ _DET	RSVD_TOP SYS_STAT _4	UVLO	TSHDN	TJ_140C	TJ_120C
Reset	0x0		0x0	0x0	0x0	0x0	0x0	0x0
Access Type	Read	Only	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
RESERVED	7:6	Reserved. Returns 0	
EXT_FREQ_ DET	5	External Clock Frequency Detection Status	0x0 = Valid external frequency is not detected 0x1 = Valid external frequency is detected
RSVD_TOPS YS_STAT_4	4	Reserved. Returns 0	
UVLO	3	SYS Undervoltage Lock-Out Status	$0x0 = V_{SYS} \ge V_{UVLO_R}$ $0x1 = V_{SYS} \le V_{UVLO_F}$
TSHDN	2	Thermal Shutdown Status	0x0 = T _J ≤ 150°C 0x1 = T _J ≥ 165°C
TJ_140C	1	Thermal Warning2 Status	0x0 = T _J ≤ 125°C 0x1 = T _J ≥ 140°C
TJ_120C	0	Thermal Warning1 Status	0x0 = T _J ≤ 105°C 0x1 = T _J ≥ 120°C

DEVICE_CFG1 (0x06)

BIT	7	6	5	4	3	2	1	0	
Field	RESERVED[2:0]			SEL1_LATCH[4:0]					
Reset	0x0			0x0					
Access Type		Read Only				Read Only			

BITFIELD	BITS	DESCRIPTION		
RESERVED	7:5	Reserved. Returns 0		
SEL1_LATCH	4:0	SEL1 Latched Code		

DEVICE_CFG2 (0x07)

BIT	7	6	5	4	3	2	1	0	
Field	RESERVED[2:0]			SEL2_LATCH[4:0]					
Reset	0x0			0x0					
Access Type		Read Only				Read Only			

BITFIELD	BITS	DESCRIPTION		
RESERVED	7:5	Reserved. Returns 0		
SEL2_LATCH	4:0	SEL2 Latched Code		

DEVICE_CFG3 (0x08)

BIT	7	6	5	4	3	2	1	0		
Field	RESERVED[2:0]			CFG_LATCH[4:0]						
Reset	0x0			0x0						
Access Type		Read Only		Read Only						

BITFIELD	BITS	DESCRIPTION			
RESERVED	7:5	Reserved. Returns 0			
CFG_LATCH	4:0	CFG Latched Code			

TOPSYS CFG (0x09)

BIT	7	6	5	4	3	2	1	0
Field	RESERVED[3:0]				AUTO_RST RT	MASK_MO DE	RESERVED	RSVD_TOP SYS_CFG_ 0
Reset		0:	(0		0x0	0x0	0x0	0x0
Access Type		Write,	Read		Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
RESERVED	7:4	Reserved. Returns 0	
AUTO_RSTR T	3	Auto Restart from POK Fault-Off, SCP, and TSHDN	0x0 = Disable (Mx_EN bit and/or ENx signals need to be toggled to exit 'LATCH-OFF' state) 0x1 = Enable (Allow auto-restart after 500ms of forced OFF time)
MASK_MOD E	2	Interrupt Mask Mode Setting	0x0 = Interrupt signal is gated after the corresponding interrupt bit when masked 0x1 = Interrupt signal is gated before the corresponding interrupt bit when masked
RESERVED	1	Reserved. Returns '0'	
RSVD_TOPS YS_CFG_0	0	Reserved. Returns '0'	

PROT_CFG (0x0A)

BIT	7	6	5	4	3	2	1	0
Field	RESER\	/ED[1:0]		UVLO_F[2:0]		EN_FTMON	POK_TO[1:0]	
Reset	0x0		0x0			0x0	0:	k 0
Access Type	Write, Read		Write, Read			Write, Read	Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
RESERVED	7:6	Reserved. Returns 0	
UVLO_F	5:3	V _{SYS} UVLO Falling Threshold Note that UVLO falling threshold must be lower than UVLO rising threshold (typ 2.2V) set by an OTP.	0x0 = 2.00V 0x1 = 2.00V 0x2 = 2.00V 0x3 = 2.05V 0x4 = 2.10V 0x5 = 2.15V 0x6 = 2.20V 0x7 = 2.25V
EN_FTMON	2	Forced Junction Temperature Monitor	0x0 = Monitor junction temperature only when one or more outputs is/are enabled 0x1 = Monitor junction temperature even when all the outputs are disabled
POK_TO	1:0	Power-OK Fault Time-Out Setting	0x0 = Disable 0x1 = 1ms 0x2 = 5ms 0x3 = 10ms

EN_CTRL (0x0B)

BIT	7	6	5	4	3	2	1	0
Field	RESERVED[1:0]		M2_LPM	M1_LPM	RESERVED[1:0]		M2_EN	M1_EN
Reset	0x0		0x0	0x0	0x0		0x0	0x0
Access Type	Write, Read		Write, Read	Write, Read	Write,	Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
RESERVED	7:6	Reserved. Returns 0	
M2_LPM	5	Buck Master2 Low-Power Mode Control	0x0 = Disable 0x1 = Enable
M1_LPM	4	Buck Master1 Low-Power Mode Control	0x0 = Disable 0x1 = Enable
RESERVED	3:2	Reserved. Returns 0	
M2_EN	1	Buck Master2 Enable Control	0x0 = Disable 0x1 = Enable ('OR' Logic with EN2 Input)
M1_EN	0	Buck Master1 Enable Control	0x0 = Disable 0x1 = Enable ('OR' Logic with EN1 Input)

GLB_CFG1 (0x11)

BIT	7	6	5	4	3	2	1	0	
Field	RESER\	/ED[1:0]	5	SSTOP_SR[2:0]	SSTRT_SR[2:0]			
Reset	0x0		0x0				0x4		
Access Type	Write,	Read	Write, Read			Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
RESERVED	7:6	Reserved. Returns 0	
SSTOP_SR	5:3	Global Soft-Stop Slew-Rate Control	0x0 = -0.15mV/µs 0x1 = -0.625mV/µs 0x2 = -1.25mV/µs 0x3 = -2.5mV/µs 0x4 = -5.0mV/µs 0x5 = -10mV/µs 0x6 = -20mV/µs 0x7 = -40mV/µs
SSTRT_SR	2:0	Global Soft-Start Slew-Rate Control	0x0 = 0.15mV/µs 0x1 = 0.625mV/µs 0x2 = 1.25mV/µs 0x3 = 2.5mV/µs 0x4 = 5.0mV/µs 0x5 = 10mV/µs 0x6 = 20mV/µs 0x7 = 40mV/µs

BUCK_INT (0x20)

BIT	7	6	5	4	3	2	1	0
Field	RESERVED[1:0]		M2_SCFLT _I	M1_SCFLT _I	RESERVED[1:0]		M2_POKFL T_I	M1_POKFL T_I
Reset	0x0		0x0	0x0	0:	к0	0x0	0x0
Access Type	Read Clears All		Read Clears All	Read Clears All	Read C	lears All	Read Clears All	Read Clears All

BITFIELD	BITS	DESCRIPTION	DECODE
RESERVED	7:6	Reserved. Returns 0	
M2_SCFLT_I	5	Buck Master2 Short-Circuit Fault Interrupt	0x0 = Buck Master2 Short-circuit Fault has not been detected 0x1 = Buck Master2 Short-circuit Fault has been detected
M1_SCFLT_I	4	Buck Master1 Short-Circuit Fault Interrupt	0x0 = Buck Master1 Short-circuit Fault has not been detected 0x1 = Buck Master1 Short-circuit Fault has been detected
RESERVED	3:2	Reserved. Returns 0	
M2_POKFLT	1	Buck Master2 Power-OK Fault Interrupt	0x0 = Buck Master2 Power-OK Fault has not been detected 0x1 = Buck Master2 Power-OK Fault has been detected

BITFIELD	BITS	DESCRIPTION	DECODE		
M1_POKFLT	0	Buck Master1 Power-OK Fault Interrupt	0x0 = Buck Master1 Power-OK Fault has not been detected 0x1 = Buck Master1 Power-OK Fault has been detected		

BUCK_MSK (0x21)

BIT	7	6	5	4	3	2	1	0
Field	RESERVED[1:0]		M2_SCFLT _M	M1_SCFLT _M	RESERVED[1:0]		M2_POKFL T_M	M1_POKFL T_M
Reset	0x3		0x1	0x1	0)	κ3	0x1	0x1
Access Type	Write, Read		Write, Read	Write, Read	Write,	Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
RESERVED	7:6	Reserved. Returns 1	
M2_SCFLT_ M	5	Buck Master2 Short-Circuit Fault Interrupt Mask	0x0 = Enable M2_SCFLT_I 0x1 = Mask M2_SCFLT_I
M1_SCFLT_ M	4	Buck Master1 Short-Circuit Fault Interrupt Mask	0x0 = Enable M1_SCFLT_I 0x1 = Mask M1_SCFLT_I
RESERVED	3:2	Reserved. Returns 1	
M2_POKFLT _M	1	Buck Master2 Power-OK Fault Interrupt Mask	0x0 = Enable M2_POKFLT_I 0x1 = Mask M2_POKFLT_I
M1_POKFLT _M	0	Buck Master1 Power-OK Fault Interrupt Mask	0x0 = Enable M1_POKFLT_I 0x1 = Mask M1_POKFLT_I

BUCK_STAT (0x22)

BIT	7	6	5	4	3	2	1	0
Field	RESERVED[1:0]		M2_SCFLT	M1_SCFLT	RESERVED[1:0]		M2_POK	M1_POK
Reset	0x0		0x0	0x0	0x0		0x0	0x0
Access Type	Read Only		Read Only	Read Only	Read	Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
RESERVED	7:6	Reserved. Returns 0	
M2_SCFLT	5	Buck Master2 Short-Circuit Fault Status	0x0 = Buck Master2 output voltage is higher than its SCP threshold, or Buck Master2 is disabled 0x1 = Buck Master2 output voltage is lower than its SCP threshold
M1_SCFLT	4	Buck Master1 Short-Circuit Fault Status	0x0 = Buck Master1 output voltage is higher than its SCP threshold, or Buck Master1 is disabled 0x1 = Buck Master1 output voltage is lower than its SCP threshold
RESERVED	3:2	Reserved. Returns 0	
M2_POK	1	Buck Master2 Power_OK Status	0x0 = Buck Master2 output voltage is lower than its POK threshold, or Buck Master2 is disabled 0x1 = Buck Master2 output voltage is higher than its POK threshold

BITFIELD	BITS	DESCRIPTION	DECODE
M1_POK	0	Buck Master1 Power-OK Status	0x0 = Buck Master1 output voltage is lower than its POK threshold, or Buck Master1 is disabled 0x1 = Buck Master1 output voltage is higher than its POK threshold

M1_VOUT (0x23)

BIT	7	6	5	4	3	2	1	0
Field		M1_VOUT[7:0]						
Reset	0x46							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
M1_VOUT	7:0	Buck Master1 Output Voltage Control Register	When M1_RNG = 0x0, 0x0 - 0xB3 = (0.3 + 0.005 * M1_VOUT)V, 0xB4 - 0xFF = 1.200V When M1_RNG = 0x1, 0x0 - 0x8B = (1.0 + 0.01 * M1_VOUT)V, 0x8C - 0xFF = 2.40V When M1_RNG = 0x2,
			0x0 - 0x9F = (2.0 + 0.02 * M1_VOUT)V, 0xA0 - 0xFF = 5.20V

M1_CFG1 (0x25)

BIT	7	6	5	4	3	2	1	0
Field	M1_RNG[1:0]		M1_RD_SR[2:0]			M1_RU_SR[2:0]		
Reset	0x0		0x0				0x4	
Access Type	Write, Read		Write, Read				Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
M1_RNG	7:6	Buck Master1 Output Voltage Range Setting, (Register setting must not be changed while the output is enabled)	0x0 = Low-range (0.3V to 1.2V, 5mV Step) 0x1 = Mid-range (1.0V to 2.4V, 10mV Step) 0x2 = High-range (2.0V to 5.2V, 20mV Step) 0x3 = Reserved
M1_RD_SR	5:3	Buck Master1 Ramp-down Slew-rate Setting	0x0 = -0.15mV/µs 0x1 = -0.625mV/µs 0x2 = -1.25mV/µs 0x3 = -2.5mV/µs 0x4 = -5.0mV/µs 0x5 = -10mV/µs 0x6 = -20mV/µs 0x7 = -40mV/µs

BITFIELD	BITS	DESCRIPTION	DECODE
M1_RU_SR	2:0	Buck Master1 Ramp-up Slew-rate Setting	0x0 = 0.15mV/µs 0x1 = 0.625mV/µs 0x2 = 1.25mV/µs 0x3 = 2.5mV/µs 0x4 = 5.0mV/µs 0x5 = 10mV/µs 0x6 = 20mV/µs 0x7 = 40mV/µs

M1_CFG2 (0x26)

BIT	7	6	5	4	3	2	1	0
Field	M1_SS_ENV[1:0]		M1_SS_FREQ[1:0]		M1_SSM_PAT[1:0]		M1_FSREN	M1_FPWM
Reset	0x0		0x0		0x0		0x1	0x0
Access Type	Write,	Read	Write, Read		Write, Read		Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
M1_SS_ENV	7:6	Buck Master1 Spread Spectrum Envelope Setting	0x0 = Disable 0x1 = ±8% 0x2 = ±12% 0x3 = ±16%
M1_SS_FRE Q	_ = = 5.4		0x1 = 3kHz 0x2 = 5kHz
M1_SSM_PA T	3:2	Buck Master1 Spread Spectrum Pattern Setting	0x0 = Triangular Pattern (0001b to 1111b) 0x1 = Pseudo-Random Polynomial (x ⁴ + x + 1) 0x2 = Pseudo-Random Polynomial (x ⁴ + x ³ + 1) 0x3 = Pseudo-Random Polynomial (Alternating "x ⁴ + x + 1" and "x ⁴ + x ³ + 1" every cycle)
M1_FSREN	1	Buck Master1 Falling Slew-rate Control	$ \begin{array}{l} 0x0 = \text{Disable (Buck does not sink current from} \\ C_{OUT} \text{ in SKIP or LP-SKIP mode)} \\ 0x1 = \text{Enable (Buck operates in FPWM mode to} \\ \text{sink current from } C_{OUT} \text{ when its } V_{OUT(TARGET)} \text{ is} \\ \text{lower than the actual } V_{OUT}) \\ \end{array} $
M1_FPWM	0	Buck Master1 Forced-PWM Control	0x0 = Disable (Automatic SKIP mode operation under light load condition) 0x1 = Enable ('OR' Logic with FPWM1 input)

M1_CFG3 (0x27)

BIT	7	6	5	4	3	2	1	0
Field	M1_ADIS10 0	M1_ADIS7	M1_REFRE SH	M1_FTRAK	M1_FR	EQ[1:0]	M1_IL	IM[1:0]
Reset	0x1	0x0	0x0	0x0	0x1		0:	(2
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read		Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
M1_ADIS100	7	Buck Master1 100Ω Active Discharge	0x0 = Disable 0x1 = Enable

BITFIELD	BITS	DESCRIPTION	DECODE
M1_ADIS7	6	Buck Master1 7Ω Active Discharge, Note that 7Ω active discharge must be disabled when falling slew-rate function of corresponding output is disabled (M1_FSREN = 0)	0x0 = Disable 0x1 = Enable (Active for 1ms after soft-stop is completed)
M1_REFRES H	5	Buck Master1 Bootstrap Refresh Interval Control	0x0 = 128μs 0x1 = 10μs
M1_FTRAK	4	Buck Master1 Internal Frequency Tracking Control	0x0 = Disable 0x1 = Enable
M1_FREQ	3:2	Buck Master1 Switching Frequency Setting	0x0 = 0.5MHz 0x1 = 1.0MHz 0x2 = 1.6MHz 0x3 = Reserved
M1_ILIM	1:0	Buck Master1 Peak Current Limit Setting	0x0 = 2.2A 0x1 = 3.4A 0x2 = 4.0A 0x3 = 4.6A

M2_VOUT (0x33)

BIT	7	6	5	4	3	2	1	0		
Field		M2_VOUT[7:0]								
Reset		0xA0								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
M2_VOUT	7:0	Buck Master2 Output Voltage Control Register	When M2_RNG = 0x0, 0x0 - 0xB3 = (0.3 + 0.005 * M2_VOUT)V, 0xB4 - 0xFF = 1.200V When M2_RNG = 0x1, 0x0 - 0x8B = (1.0 + 0.01 * M2_VOUT)V, 0x8C - 0xFF = 2.40V
			When M2_RNG = 0x2, 0x0 - 0x9F = (2.0 + 0.02 * M2_VOUT)V, 0xA0 - 0xFF = 5.20V

M2 CFG1 (0x35)

BIT	7	6	5	4	3	2	1	0	
Field	M2_RN	NG[1:0] M2_RD_SR[2:0]				M2_RU_SR[2:0]			
Reset	0>	k 0	0x0			0x4			
Access Type	Write,	Read	Write, Read			Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
M2_RNG	7:6	Buck Master2 Output Voltage Range Setting, (Register setting must not be changed while the output is enabled)	0x0 = Low-range (0.3V to 1.2V, 5mV Step) 0x1 = Mid-range (1.0V to 2.4V, 10mV Step) 0x2 = High-range (2.0V to 5.2V, 20mV Step) 0x3 = Reserved

BITFIELD	BITS	DESCRIPTION	DECODE
M2_RD_SR	5:3	Buck Master2 Ramp-down Slew-rate Setting	0x0 = -0.15mV/µs 0x1 = -0.625mV/µs 0x2 = -1.25mV/µs 0x3 = -2.5mV/µs 0x4 = -5.0mV/µs 0x5 = -10mV/µs 0x6 = -20mV/µs 0x7 = -40mV/µs
M2_RU_SR	2:0	Buck Master2 Ramp-up Slew-rate Setting	0x0 = 0.15mV/µs 0x1 = 0.625mV/µs 0x2 = 1.25mV/µs 0x3 = 2.5mV/µs 0x4 = 5.0mV/µs 0x5 = 10mV/µs 0x6 = 20mV/µs 0x7 = 40mV/µs

M2_CFG2 (0x36)

BIT	7	6	5	4	3	2	1	0
Field	M2_SS_ENV[1:0]		M2_SS_F	M2_SS_FREQ[1:0]		M2_SSM_PAT[1:0]		M2_FPWM
Reset	0x0		0x0		0x0		0x1	0x0
Access Type	Write,	/rite, Read Write, F		Read	Write,	Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
M2_SS_ENV	7:6	Buck Master2 Spread Spectrum Envelope Setting	0x0 = Disable 0x1 = ±8% 0x2 = ±12% 0x3 = ±16%
M2_SS_FRE Q	5:4	Buck Master2 Spread Spectrum Frequency Setting	0x0 = 1kHz 0x1 = 3kHz 0x2 = 5kHz 0x3 = 7kHz
M2_SSM_PA T	3:2	Buck Master2 Spread Spectrum Pattern Setting	0x0 = Triangular Pattern (0001b to 1111b) 0x1 = Pseudo-Random Polynomial (x ⁴ + x + 1) 0x2 = Pseudo-Random Polynomial (x ⁴ + x ³ + 1) 0x3 = Pseudo-Random Polynomial (Alternating "x ⁴ + x + 1" and "x ⁴ + x ³ + 1" every cycle)
M2_FSREN	1	Buck Master2 Falling Slew-rate Control	$ \begin{array}{l} 0\text{x0} = \text{Disable (Buck does not sink current from} \\ C_{OUT} \text{ in SKIP or LP-SKIP mode)} \\ 0\text{x1} = \text{Enable (Buck operates in FPWM mode to} \\ \text{sink current from } C_{OUT} \text{ when its } V_{OUT(TARGET)} \text{ is} \\ \text{lower than the actual } V_{OUT}) \\ \end{array} $
M2_FPWM	0	Buck Master2 Forced-PWM Control	0x0 = Disable (Automatic SKIP mode operation under light load condition) 0x1 = Enable ('OR' Logic with FPWM2 input)

M2_CFG3 (0x37)

BIT	7	6	5	4	3	2	1	0
Field	M2_ADIS10 0	M2_ADIS7	M2_REFRE SH	M2_FTRAK	M2_FREQ[1:0]		M2_ILIM[1:0]	
Reset	0x1	0x0	0x0	0x0	0x1		0>	(2
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read		Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
M2_ADIS100	7	Buck Master2 100Ω Active Discharge	0x0 = Disable 0x1 = Enable
M2_ADIS7	6	Buck Master2 7Ω Active Discharge, Note that 7Ω active discharge must be disabled when falling slew-rate function of corresponding output is disabled (M2_FSREN = 0)	0x0 = Disable 0x1 = Enable (Active for 1ms after soft-stop is completed)
M2_REFRES H	5	Buck Master2 Bootstrap Refresh Interval Control	0x0 = 128μs 0x1 = 10μs
M2_FTRAK	4	Buck Master2 Intrenal Frequency Tracking Control	0x0 = Disable 0x1 = Enable
M2_FREQ	3:2	Buck Master2 Switching Frequency Setting	0x0 = 0.5MHz 0x1 = 1.0MHz 0x2 = 1.6MHz 0x3 = Reserved
M2_ILIM	1:0	Buck Master2 Peak Current Limit Setting	0x0 = 2.2A 0x1 = 3.4A 0x2 = 4.0A 0x3 = 4.6A

ADC_INT (0x70)

BIT	7	6	5	4	3	2	1	0
Field	-	_	ADC_CH6_I	_	_	ADC_CH3_I	ADC_CH2_I	ADC_CH1_I
Reset	_	_	0x0	_	_	0x0	0x0	0x0
Access Type	ı	-	Read Clears All	ı	_	Read Clears All	Read Clears All	Read Clears All

BITFIELD	BITS	DESCRIPTION	DECODE		
ADC_CH6_I	5	ADC Channel6 Interrupt	0x0 = ADC Channel6 data has not updated 0x1 = ADC Channel6 data has updated		
ADC_CH3_I	2	ADC Channel3 Interrupt	0x0 = ADC Channel3 data has not updated 0x1 = ADC Channel3 data has updated		
ADC_CH2_I	1	ADC Channel2 Interrupt	0x0 = ADC Channel2 data has not updated 0x1 = ADC Channel2 data has updated		
ADC_CH1_I	0	ADC Channel1 Interrupt	0x0 = ADC Channel1 data has not updated 0x1 = ADC Channel1 data has updated		

ADC_MSK (0x71)

BIT	7	6	5	4	3	2	1	0
Field	_	_	ADC_CH6_ M	_	_	ADC_CH3_ M	ADC_CH2_ M	ADC_CH1_ M
Reset	_	_	0x1	-	_	0x1	0x1	0x1
Access Type	_	_	Write, Read	_	_	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
ADC_CH6_M	5	ADC Channel6 Interrupt Mask	0x0 = Enable ADC_CH6_I 0x1 = Mask ADC_CH6_I
ADC_CH3_M	2	ADC Channel3 Interrupt Mask	0x0 = Enable ADC_CH3_I 0x1 = Mask ADC_CH3_I
ADC_CH2_M	1	ADC Channel2 Interrupt Mask	0x0 = Enable ADC_CH2_I 0x1 = Mask ADC_CH2_I
ADC_CH1_M	0	ADC Channel1 Interrupt Mask	0x0 = Enable ADC_CH1_I 0x1 = Mask ADC_CH1_I

ADC_DATA_CH1 (0x72)

BIT	7	6	5	4	3	2	1	0		
Field		ADC_DATA1[7:0]								
Reset		0x0								
Access Type				Read	Only					

BITFIELD	BITS	DESCRIPTION	DECODE
ADC_DATA1	7:0	ADC CH1 (V _{SYS}) Data Readback	0x0 - 0xFF = (0.025 x ADC_DATA1)V

ADC_DATA_CH2 (0x73)

BIT	7	6	5	4	3	2	1	0		
Field		ADC_DATA2[7:0]								
Reset		0x0								
Access Type				Read	Only					

BITFIELD	BITS	DESCRIPTION	DECODE
ADC_DATA2	7:0	ADC CH2 (V _{OUT1}) Data Readback	When M1_RNG = 0x0, 0x0 - 0xFF = (0.00625 x ADC_DATA2)V When M1_RNG = 0x1, 0x0 - 0xFF = (0.0125 x ADC_DATA2)V When M1_RNG = 0x2, 0x0 - 0xFF = (0.025 x ADC_DATA2)V

ADC_DATA_CH3 (0x74)

BIT	7	6	5	4	3	2	1	0		
Field		ADC_DATA3[7:0]								
Reset		0x0								
Access Type				Read	Only					

BITFIELD	BITS	DESCRIPTION	DECODE
ADC_DATA3	7:0	ADC CH3 (V _{OUT2}) Data Readback	When M2_RNG = 0x0, 0x0 - 0xFF = (0.00625 x ADC_DATA3)V When M2_RNG = 0x1, 0x0 - 0xFF = (0.0125 x ADC_DATA3)V When M2_RNG = 0x2, 0x0 - 0xFF = (0.025 x ADC_DATA3)V

ADC_DATA_CH6 (0x77)

BIT	7	6	5	4	3	2	1	0		
Field		ADC_DATA6[7:0]								
Reset		0x0								
Access Type				Read	Only					

BITFIELD	BITS	DESCRIPTION	DECODE
ADC_DATA6	7:0	ADC CH6 (Junction Temperature) Data Readback	0x0 - 0xFF = (-273 + 1.725 * ADC_DATA6)°C

ADC_CFG1 (0x7A)

BIT	7	6	5	4	3	2	1	0
Field	_	_	CH6_EN	_	-	CH3_EN	CH2_EN	CH1_EN
Reset	_	_	0x0	_	_	0x0	0x0	0x0
Access Type	-	_	Write, Read	-	-	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
CH6_EN	5	ADC Channel6 Data Readback Control	0x0 = Disable 0x1 = Enable
CH3_EN	2	ADC Channel3 Data Readback Control	0x0 = Disable 0x1 = Enable
CH2_EN	1	ADC Channel2 Data Readback Control	0x0 = Disable 0x1 = Enable
CH1_EN	0	ADC Channel1 Data Readback Control	0x0 = Disable 0x1 = Enable

ADC_CFG2 (0x7B)

BIT	7	6	5	4	3	2	1	0
Field	_	_	CH6_AVG	_	_	CH3_AVG	CH2_AVG	CH1_AVG
Reset	_	_	0x0	_	_	0x0	0x0	0x0
Access Type	_	_	Write, Read	_	_	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
CH6_AVG	5	ADC Channel6 Data Averaging Control	0x0 = Disable 0x1 = Enable
CH3_AVG	2	ADC Channel3 Data Averaging Control	0x0 = Disable 0x1 = Enable
CH2_AVG	1	ADC Channel2 Data Averaging Control	0x0 = Disable 0x1 = Enable
CH1_AVG	0	ADC Channel1 Data Averaging Control	0x0 = Disable 0x1 = Enable

ADC_CFG3 (0x7C)

BIT	7	6	5	4	3	2	1	0
Field	RESER'	VED[1:0]	_	_	AVG_C	NT[1:0]	MEAS_C	MEAS_S
Reset	0x0		_	_	0x0		0x0	0x0
Access Type	Write,	Read	_	_	Write,	Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
RESERVED	7:6	Reserved. Returns 0	
AVG_CNT	3:2	ADC Averaging Count Setting	0x0 = 2-point 0x1 = 4-point 0x2 = 8-point 0x3 = 16-point
MEAS_C	1	ADC Continuous Measurement Control	0x0 = Disable 0x1 = Enable (Update ADC Readback every second)
MEAS_S	0	ADC Single Measurement Control	0x0 = Disable 0x1 = Enable (This bit is ignored when MEAS_C = 1)

Applications Information—Dual-Phase Configurable Buck Converter

Inductor Selection

An inductor with a saturation current that is greater than or equal to the peak current limit setting (I_{PLIM}) is recommended. The load current requirement (per phase) of the system is also a consideration when choosing the RMS current rating of the inductor. Inductors with lower saturation current and higher DCR ratings tend to be physically small, however higher values of DCR reduce the efficiency. To choose a suitable inductor for the given application, consider the trade-off between the size of the inductor versus the DCR value. It is recommended to choose an inductance such that the inductor's ripple current to the average current ratio is between 30% and 60%. Consider the output voltage range and switching frequency when choosing the inductance. In general, for 1MHz switching frequency, 0.47 μ H is suitable for low-range outputs and 1.0 μ H is suitable for mid-range outputs and high range outputs. For other switching frequencies, the inductance may need to be adjusted to account for the inductor current ripple. Lower switching frequencies require higher inductance values. Note that higher inductances slow down the maximum slew rate of the inductor current, and high duty cycles (V_{IN} close to V_{OUT}) coupled with large inductance can slow down the load transient response.

Table 11. Recommended Inductors

MANUFACTURER P/N	INDUCTANCE (µH)	TYPICAL DCR (mΩ)	TYPICAL I _{SAT} (A)	TYPICAL I _{TEMP} (A)	DIMENSION (L x W x H) (mm)
GLULMR4701A	0.47 ±20%	17	4.8	5.6	2.5 x 2.0 x 1.2
DFE252012F-R47M	0.47 ±20%	23	6.7	4.9	2.5 x 2.0 x 1.2
DFE252012F-1R0M	1.0 ±20%	40	4.7	3.3	2.5 x 2.0 x 1.2
HTEL25201B-R47MSR	0.47 ±20%	11.0	7.4	6.7	2.5 x 2.0 x 1.2
HTEL25201B-1R0MSR	1.0 ±20%	18.0	5.8	5.7	2.5 x 2.0 x 1.2
HTEP25201T-1R0MSR	1.0 ±20%	18.0	5.5	5.7	2.5 x 2.0 x 1.0

For the dual-phase configuration, each phase needs its own inductor with the same inductance value (do not short the LX nodes of two phases together on the PCB). See the <u>Phase Configuration</u> section for more information regarding different phase configurations.

Input Capacitor Selection

The input capacitor (C_{IN}) reduces the current peaks drawn from the battery or the input power source and reduces switching noise in the device. The impedance of the C_{IN} at the switching frequency should be kept very low. Ceramic capacitors with X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients. For most applications, a $10\mu F$ capacitor is sufficient.

Output Capacitor Selection

The output capacitor (C_{OUT}) is required to keep the output voltage ripple small and to ensure regulation loop stability. The C_{OUT} must have low impedance at the switching frequency. Ceramic capacitors with X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients. The recommended minimum effective output capacitance per phase is shown in Table 12.

Table 12. Recommended Minimum Effective Output Capacitance

V _{OUT} RANGE	SWITCHING FREQUENCY	MINIMUM EFFECTIVE C _{OUT} *
Low (0.3V to 1.2V)	1MHz	83µF
Mid (1.0V to 2.4V)	1MHz	52µF
High (2.0V to 5.2V)	1MHz	32µF

^{*}Required minimum $C_{OUT(EFF)}$ is inversely proportional to the switching frequency setting. For example, a Buck output using Mx_RNG = 0x0 and 1MHz switching frequency requires 42 μ F of minimum effective output capacitance. Changing the switching frequency to 1.6MHz decreases the effective output capacitance requirement to 52 μ F (= 83 μ F / 1.6).

The effective C_{OUT} is the actual capacitance value seen by the Buck output during operation. The nominal capacitance

MAX77541

5.5V_{IN}/6A, Dual-Phase High-Efficiency Buck Converter

 (C_{OUT}) needs to be selected carefully by considering the capacitor's initial tolerance, variation with temperature, and derating with DC bias. Refer to $\underline{Tutorial~5527}$ for more information. Larger values of the C_{OUT} (above the required minimum effective) improve load transient performance, but increase the input inrush currents during startup. The output filter capacitor must have low enough ESR to meet output ripple and load transient requirements. The output capacitance must be high enough to absorb the inductor energy while transitioning from full-load to no-load conditions. When using high-capacitance, low-ESR capacitors, the filter capacitor's ESR dominates the output voltage ripple in continuous conduction mode. Therefore, the size of the output capacitor depends on the maximum ESR required to meet the output voltage ripple specifications.

General PCB Layout Guidelines

- The power components should be placed first and then small analog control signals
- It is important to always have a ground layer next to the power stage layer because a solid ground layer provides
 uninterrupted ground return path between the input and the output caps during switch on-time (a solid plane minimizes
 inductance to the absolute minimum and is also a very good thermal conductor that can act as a heat sink)
- It is recommended to have thick copper for the external high current power layers to minimize the PCB conduction loss and thermal impedance
- The power stage loop that is made by the input capacitor (C_{IN}), the LX trace, the inductor (L), and the output capacitor (C_{OUT}) coming back to the PGNDx bumps should be minimized for EMC considerations
- The input capacitors (C_{IN}) should be located close to the input bumps of each phase
- Bypass capacitors for the V_L, the V_{DD}, and the BSTx pins should be placed as close as possible
- Analog ground (AGND) and power ground (PGND) bumps should be directly connected to the ground plane separately, in order to avoid common impedance ground
- It is recommended to avoid a direct connection between the SYS and its AGND traces to the nearest IN and the PGND traces
- The output voltage sensing trace should not intersect the power stage (the loop made by the input capacitor, the LX trace, the inductor, the output capacitor, and the PGND)
- It is important to have impedance matching between phases for stable operation in multi-phase configuration (the output PCB trace of each phase should be as symmetric as possible)
- For multi-phase configurations, the output voltage sensing bumps for the master phase should be connected to the middle point of the output phases

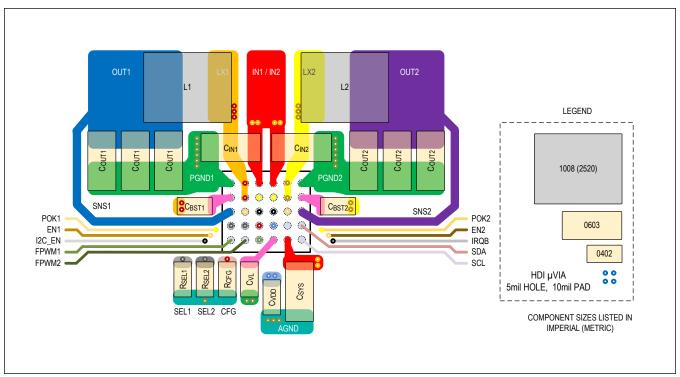


Figure 11. PCB Layout Example—WLP

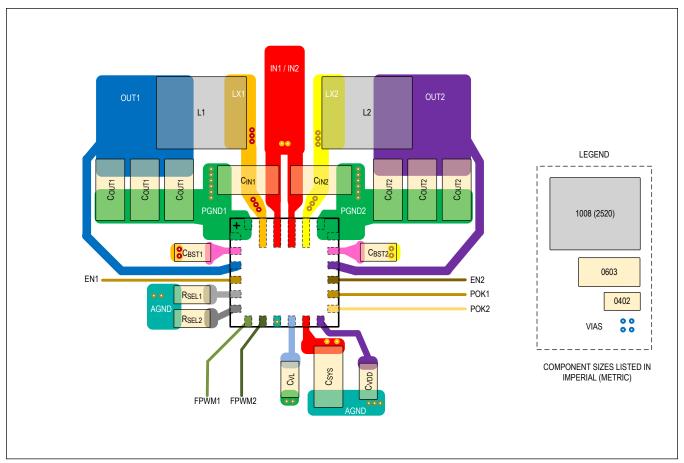
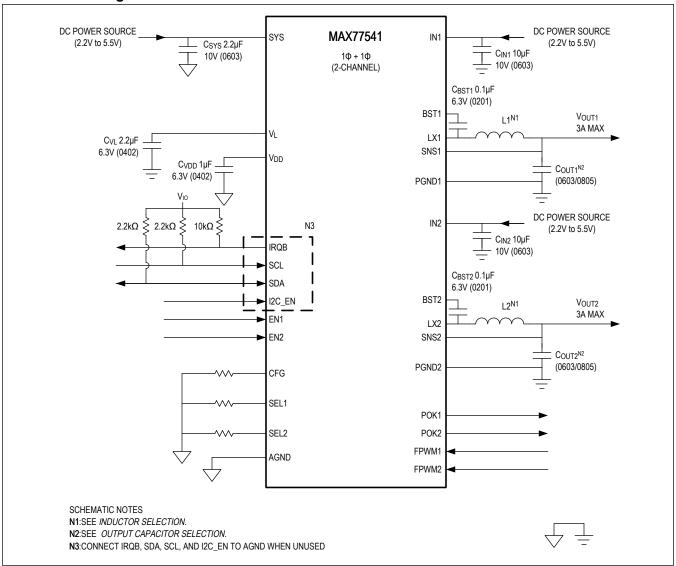
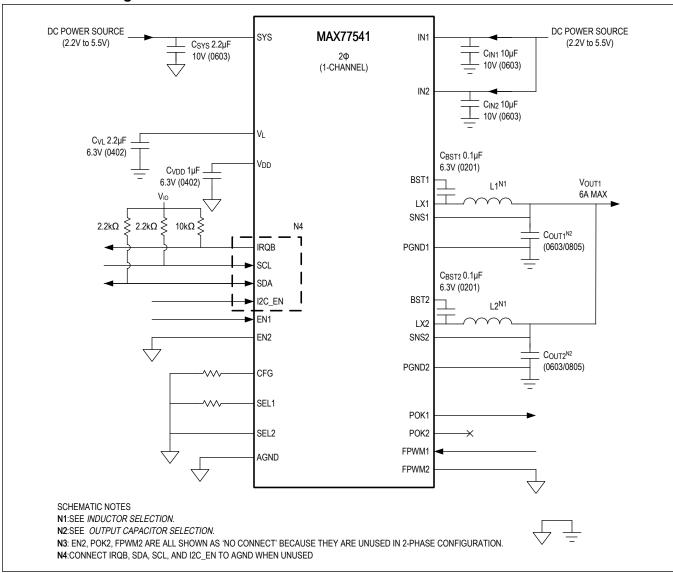
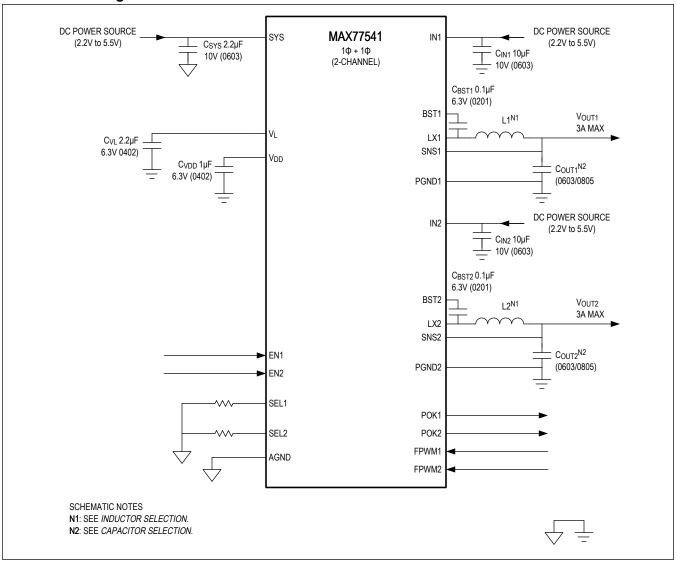



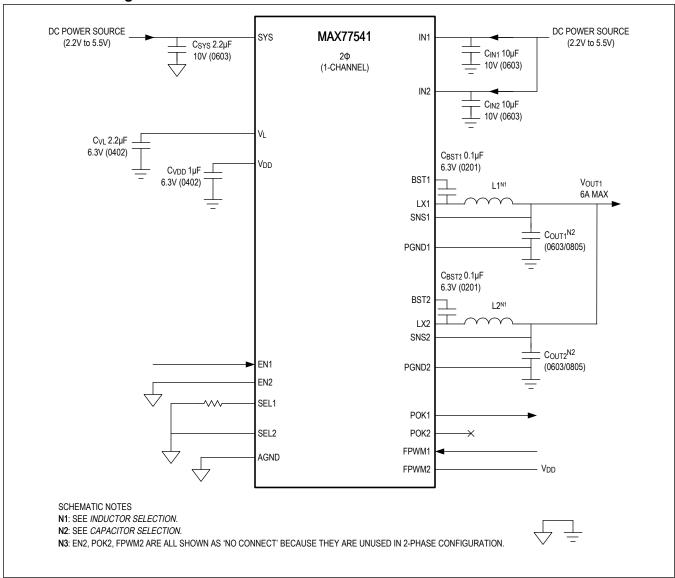
Figure 12. PCB Layout Example—FC2QFN


Typical Application Circuits

1+1 Phase Configuration—WLP


Typical Application Circuits (continued)

Dual-Phase Configuration—WLP


Typical Application Circuits (continued)

1+1 Phase Configuration—FC2QFN

Typical Application Circuits (continued)

Dual-Phase Configuration—FC2QFN

Ordering Information

PART NUMBER	FACTORY OPTION	PIN-PACKAGE
MAX77541AAWV+T	A	30 WLP
MAX77541AAFG+T	A	24 FC2QFN

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Analog Devices | 68 www.analog.com

T = Tape and reel.

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	
0	7/21	Initial release	_
1	5/22	Updated General Description, Absolute Maximum Ratings, Package Information, Electrical Characteristics—Top-Level, Electrical Characteristics—Dual-Phase Configurable Buck Converter, Electrical Characteristics—I ² C Serial Interface, Typical Operating Characteristics, Bump Configuration, Undervoltage Lock-Out (UVLO), Thermal Warnings and Thermal Shutdown (T _{SHDN}), Register Reset Condition, FC2QFN Default Options, Output Voltage Setting, Bootstrap Refresh, Spread-Spectrum Modulation, Register Map, Inductor Selection, General PCB Layout Guidelines, Typical Application Circuits, and Ordering Information	1, 6–15, 21, 23–25, 27, 29, 35, 37, 38, 45, 46, 47, 49, 54, 57, 61, 63–68