

Now

SN74LVC1G17-Q1

SCES663C - MARCH 2006 - REVISED JANUARY 2020

SN74LVC1G17-Q1 Single Schmitt-Trigger Buffer

Features 1

- Qualified for Automotive Applications
- Supports 5-V V_{CC} operation
- Inputs accept voltages to 5.5 V
- Max t_{pd} of 8 ns at 3.3 V
- Low power consumption, 20-µA Max I_{CC}
- ±24-mA Output drive at 3.3 V
- Ioff Supports live insertion, partial-power-down mode, and back-drive protection
- ESD protection exceeds JEDEC JS-001
 - 2000-V Human-body model
 - 1000-V Charged-device model

2 Applications

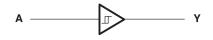
- AV receiver
- Audio dock: portable
- Blu-ray player and home theater
- MP3 player/recorder
- Personal digital assistant (PDA)
- Power: Telecom/server AC/DC supply: single controller: analog and digital
- Solid state drive (SSD): client and enterprise
- TV: LCD/Digital and high-definition (HDTV)
- Tablet: Enterprise
- Video analytics: server
- Wireless headset, keyboard, and mouse

3 Description

This single Schmitt-trigger buffer is designed for 1.65-V to 5.5-V V_{CC} operation.

The SN74LVC1G17-Q1 device contains one buffer and performs the Boolean function Y = A.

The CMOS device has high output drive while maintaining low static power dissipation over a broad V_{CC} operating range.


The SN74LVC1G17-Q1 is available in a variety of packages.

Device Information⁽¹⁾

DEVICE NAME	PACKAGE	BODY SIZE (NOM)		
	SOT-23 (5)	2.9 mm × 1.6 mm		
SN74LVC1G17-Q1	SC-70 (5)	2.0 mm × 1.25 mm		
	SON (6)	1.45 mm × 1.0 mm		

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Simplified Schematic

EXAS

STRUMENTS

www.ti.com

Table of Contents

1	Feat	tures	1
2	Арр	lications	1
3	Des	cription	1
4	Rev	ision History	2
5	Pin	Configuration and Functions	3
6	Spe	cifications	4
	6.1	Absolute Maximum Ratings	4
	6.2	ESD Ratings	4
	6.3	Recommended Operating Conditions	5
	6.4	Thermal Information	5
	6.5	Electrical Characteristics—DC Limit Changes	6
	6.6	Switching Characteristics AC Limit	6
	6.7	Operating Characteristics	7
	6.8	Typical Characteristics	7
7	Para	ameter Measurement Information	8
8	Deta	ailed Description	9

	8.1	Overview	9
	8.2	Functional Block Diagram	9
	8.3	Feature Description	
	8.4	Device Functional Modes	
9	App	lication and Implementation	10
	9.1	Application Information	10
		Typical Application	
10	Pow	ver Supply Recommendations	11
11	Lave	out	11
	-	Layout Guidelines	
		Layout Example	
12	Dev	ice and Documentation Support	12
	12.1		
	12.2	Electrostatic Discharge Caution	12
	12.3	-	
13	Mec	hanical, Packaging, and Orderable	
-		rmation	12

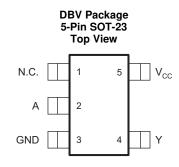
4 Revision History

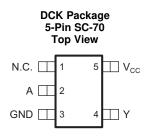
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (October 2019) to Revision C

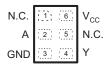
•	Corrected clerical errors introduced in Revision B: Features included incorrect values	. 1
•	Changed to automotive ESD table format	. 4
•	Corrected clerical errors introduced in Revision B: Electrical Characteristics values returned to Revision A values	. 6
•	Corrected clerical errors introduced in Revision B: Switching Characteristics values returned to Revision A values	. 6
•	Deleted inaccurate typical characteristics plot for operation across temperature.	. 7
•	Deleted unnecessary parameter measurement information for 15 pF load (unused)	. 8

Changes from Revision A (April 2008) to Revision B


•	Added Applications.	. 1
•	Added Device Information table.	. 1
•	Removed Ordering Information table.	. 3
•	Added DRY package to graphic figures and Pin Functions table	. 3
•	Added Pin Functions table.	
•	Added ESD Ratings table.	. 4
•	Added Thermal Information table.	
•	Added Typical Characteristics.	. 7
•	Added Detailed Description section.	. 9
•	Added Application and Implementation section.	10
•	Revised Image for Typical Application	
•	Added Power Supply Recommendations section.	11
•	Added Layout section.	11
•	Added Device and Documentation Support section	
•	Added Mechanical, Packaging, and Orderable Information section	


Page

Page



5 Pin Configuration and Functions

DRY Package 6-Pin SON Transparent Top View

(1) N.C. - No internal connection

See mechanical drawings for at the end of the data sheet for dimensions

PIN			DESCRIPTION
NAME	DBV, DCK	DRY	DESCRIPTION
NC	1	1, 5	Not connected
А	2	2	Input
GND	3	3	Ground
Y	4	4	Output
V _{CC}	5	6	Power terminal

Pin Functions

Specifications 6

6.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range	Supply voltage range			
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output	in the high-impedance or power-off state ⁽²⁾	-0.5	6.5	V
Vo	Voltage range applied to any output	in the high or low state $^{(2)(3)}$	-0.5	$V_{CC} + 0.5$	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
lo	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND			±100	mA
T _{stg}	Storage temperature		-65	150	°C

Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under
 The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
 The value of V_{CC} is provided in the *Recommended Operating Conditions* table.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatia discharge	Human body model (HBM), per AEC Q100-002 ⁽¹⁾ HBM ESD Classification Level 2	±2000	M
V _(ESD)		Charged device model (CDM), per AEC Q100-011 CDM ESD Classification Level C6	±1000	V

(1) AEC Q100-002 indicate that HBM stressing shall be in accordrance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT	
v	Supply voltage	Operating	1.65	5.5	V	
V _{CC}	Supply voltage	Data retention only	1.5		v	
VI	Input voltage		0	5.5	V	
Vo	Output voltage		0	V_{CC}	V	
		V _{CC} = 1.65 V		-4		
	High-level output current	$V_{CC} = 2.3 V$		-8		
I _{OH}		V 2V		-16	mA	
		$V_{CC} = 3 V$		-24		
		$V_{CC} = 4.5 V$		-32		
		V _{CC} = 1.65 V		4		
		$V_{CC} = 2.3 V$		8		
I _{OL}	Low-level output current	N 2.N		16	mA	
		$V_{CC} = 3 V$		24		
		$V_{CC} = 4.5 V$		32		
T _A	Operating free-air temperature		-40	125	°C	

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	DBV	DCK	DRY	UNIT
		5 PINS	5 PINS	6 PINS	
$R_{ hetaJA}$	Junction-to-ambient thermal resistance	229	280	608	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	164	66	432	°C/W
$R_{ hetaJB}$	Junction-to-board thermal resistance	62	67	446	°C/W
ΨJT	Junction-to-top characterization parameter	44	2	191	°C/W
ΨJB	Junction-to-board characterization parameter	62	66	442	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	-	-	198	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

SCES663C - MARCH 2006 - REVISED JANUARY 2020

www.ti.com

ISTRUMENTS

ÈXAS

6.5 Electrical Characteristics—DC Limit Changes

over recommended operating free-air temperature range (unless otherwise noted)

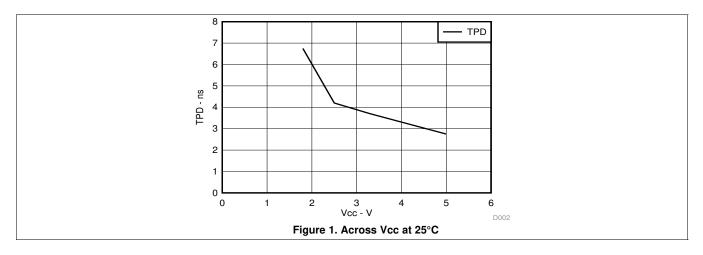
PARAMETER	TEST CONDITION	ONS	V _{cc}	MIN	TYP N	IAX	UNIT		
			1.65 V	0.64	1	.25			
V-			2.3 V	1	1	.68			
V _{T+} (Positive-going input			3 V	1.36	2	2.04	V		
threshold voltage)			4.5 V	2.07	2	2.86			
			5.5 V	2.53	3	3.43			
			1.65 V	0.23	().71			
V _{T-}			2.3 V	0.44	1	.05			
(Negative-going input			3 V	0.77	1	.35	V		
hreshold voltage)			4.5 V	1.22	2	2.09			
			5.5 V	1.73	2	2.52			
			1.65 V	0.26	().74			
ΔV _T			2.3 V	0.33	().92			
Hysteresis			3 V	0.4	().99	v		
$(V_{T+} - V_{T-})$			4.5 V	0.45	1	.28			
			5.5 V	0.56	1	.32	2		
	I _{OH} = -100 μA		1.65 V to 5.5 V	V _{CC} - 0.1					
	$I_{OH} = -4 \text{ mA}$		1.65 V	1.2					
V _{OH}	I _{OH} =8 mA		2.3 V	1.9			V		
	I _{OH} = -16 mA		0.1/	2.4					
	I _{OH} = -24 mA		3 V	2.3					
	I _{OH} = -32 mA		4.5 V	3.8					
	I _{OL} = 100 μA		1.65 V to 5.5 V			0.1	V		
	$I_{OL} = 4 \text{ mA}$		1.65 V		().45			
V _{OL}	I _{OL} = 8 mA		2.3 V			0.4			
	I _{OL} = 16 mA		0.1/			0.5			
	I _{OL} = 24 mA		3 V			0.7			
	I _{OL} = 32 mA		4.5 V			0.7			
I A input	V _I = 5.5 V or GND		0 to 5.5 V			±10	μA		
off	$V_1 \text{ or } V_0 = 5.5 \text{ V}$		0			±25	μA		
сс	$V_1 = 5.5 V \text{ or GND},$					20	μA		
ΔI _{CC}	One input at $V_{CC} - 0.6 V$, Other inputs at V_{CC} or GND	Other inputs at V _{CC} or GND				500	μA		
Cı	$V_1 = V_{CC}$ or GND				4.5		pF		

6.6 Switching Characteristics AC Limit

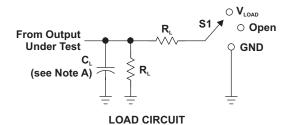
over recommended operating free-air temperature range, C_L = 30 pF or 50 pF (unless otherwise noted) (see Figure 2)

					-	-40°C T	O 125°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1		V _{CC} = ± 0.2		V _{CC} = ± 0.3		V _{CC} = ± 0.9		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	Y	2.8	14	1	9	1.5	8	0.7	7	ns

Copyright © 2006–2020, Texas Instruments Incorporated

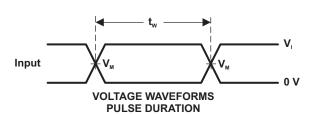


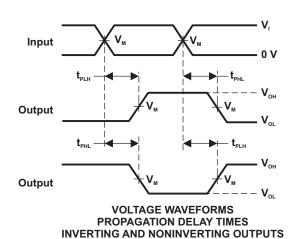
6.7 Operating Characteristics

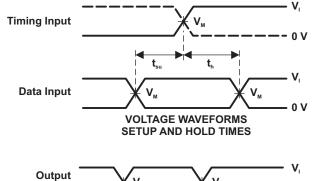

 $T_A = 25^{\circ}C$

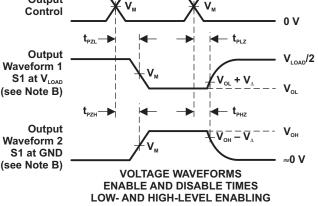
	PARAMETER	TEST	V _{CC} = 1.8 V	$V_{CC} = 2.5 V$	$V_{CC} = 3.3 V$	$V_{CC} = 5 V$	UNIT	
	FANAMETEN	CONDITIONS	ТҮР	ТҮР	ТҮР	ТҮР	UNIT	
C _{pd}	Power dissipation capacitance	f = 10 MHz	20	21	22	26	pF	

6.8 Typical Characteristics




Parameter Measurement Information 7




TEST	S1
$t_{_{PLH}}/t_{_{PHL}}$	Open
t_{PLZ}/t_{PZL}	VLOAD
t _{PHZ} /t _{PZH}	GND

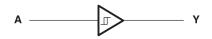
	IN	PUTS	N N	N	•	_	N
V _{cc}	V	t,/t,	V _M	VLOAD	C	R	V
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	1 k Ω	0.15 V
$2.5 V \pm 0.2 V$	V_{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	500 Ω	0.15 V
$3.3 \text{ V} \pm 0.3 \text{ V}$	3 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
$5~V~\pm~0.5~V$	V_{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	50 pF	500 Ω	0.3 V

NOTES: A. C, includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. $t_{\mbox{\tiny PLZ}}$ and $\dot{t}_{\mbox{\tiny PHZ}}$ are the same as $t_{\mbox{\tiny dis}}$
- F. $t_{\mbox{\tiny PZL}}$ and $t_{\mbox{\tiny PZH}}$ are the same as $t_{\mbox{\tiny en}}.$
- G. $t_{Pl\,H}$ and t_{PHl} are the same as t_{rd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms

8 Submit Documentation Feedback


8 Detailed Description

8.1 Overview

The SN74LVC1G17-Q1 device contains one Schmitt trigger buffer and performs the Boolean function Y = A. The device functions as an independent buffer, but because of Schmitt action, it will have different input threshold levels for a positive-going (V_{T+}) and negative-going (V_{T-}) signals .

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

8.2 Functional Block Diagram

8.3 Feature Description

- Wide operating voltage range. ٠
- Operates From 1.65 V to 5.5 V.
- Allows Down voltage translation.
- Inputs accept voltages to 5.5 V.
- I_{off} feature allows voltages on the inputs and outputs, when V_{CC} is 0 V.

8.4 Device Functional Modes

Table 1. Function Table

INPUT A	OUTPUT Y
Н	Н
L	L

TEXAS INSTRUMENTS

www.ti.com

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74LVC1G17-Q1 is a high-drive CMOS device that can be used for a multitude of buffer type functions where the input is slow or noisy. It can produce 24 mA of drive current at 3.3 V making it Ideal for driving multiple outputs and good for high speed applications up to 100 MHz. The inputs are 5.5 V tolerant allowing it to translate down to V_{CC} .

9.2 Typical Application

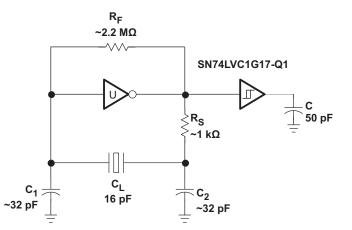
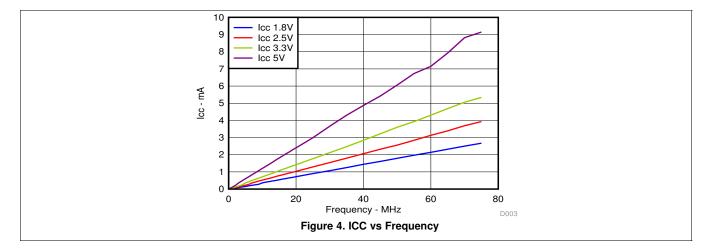


Figure 3. SN74LVC1G17-Q1 Typical Application

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.


9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
 - Rise time and fall time specs. See $(\Delta t/\Delta V)$ in the
 - Recommended Operating Conditions table.
 - Specified high and low levels. See $(V_{IH} \text{ and } V_{IL})$ in the
 - Recommended Operating Conditions table.
 - Inputs are overvoltage tolerant allowing them to go as high as (V₁ max) in the
 - Recommended Operating Conditions table at any valid V_{CC}.
- 2. Recommend Output Conditions
 - Load currents should not exceed (I_O max) per output and should not exceed (continuous current through V_{CC} or GND) total current for the part. These limits are located in the
 - Absolute Max Ratings table.
 - Outputs should not be pulled above V_{CC}.

Typical Application (continued)

9.2.3 Application Curves

10 Power Supply Recommendations

The power supply can be any voltage between the min and max supply voltage rating located in the *Recommended Operating Conditions* table.

Each Vcc pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply a $0.1-\mu$ F capacitor is recommended and if there are multiple Vcc pins then a $0.01-\mu$ F or $0.022-\mu$ F capacitor is recommended for each power pin. It is ok to parallel multiple bypass caps to reject different frequencies of noise. $0.1-\mu$ F and $1-\mu$ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float. In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input terminals should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to Gnd or Vcc whichever make more sense or is more convenient.

11.2 Layout Example

12 Device and Documentation Support

12.1 Trademarks

All trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
							(6)				
SN74LVC1G17QDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	C17O	Samples
SN74LVC1G17QDCKRQ1	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(C7J, C7O)	Samples
SN74LVC1G17QDRYRQ1	ACTIVE	SON	DRY	6	5000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HM	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

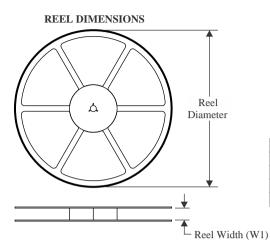
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

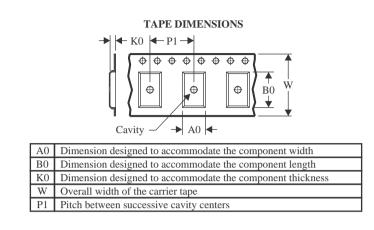
OTHER QUALIFIED VERSIONS OF SN74LVC1G17-Q1 :

• Catalog : SN74LVC1G17

Enhanced Product : SN74LVC1G17-EP

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications

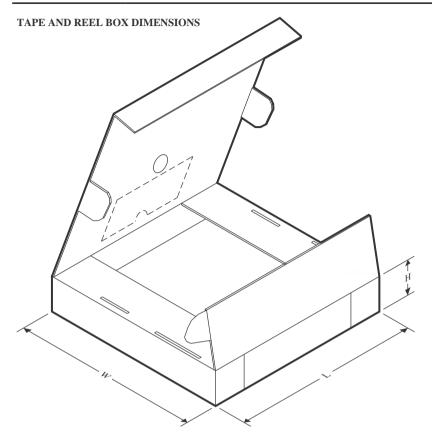


Texas

STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



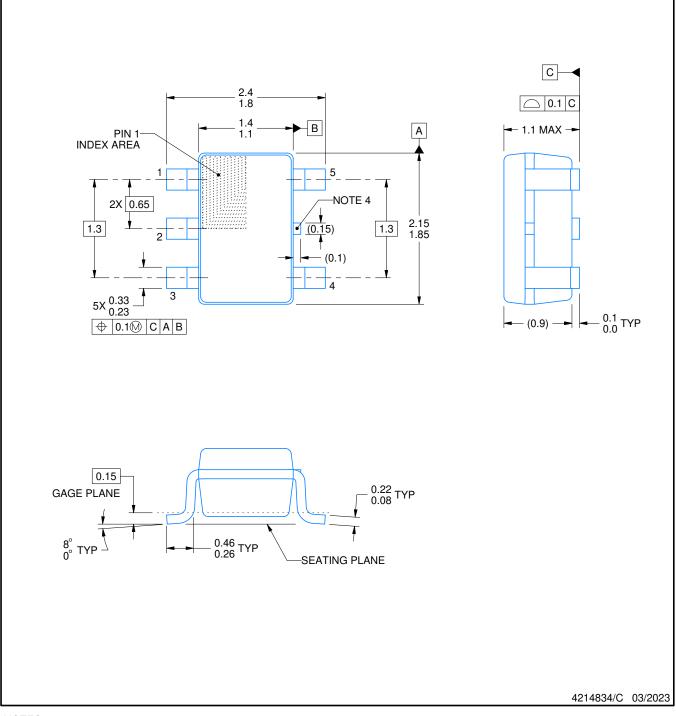
*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC1G17QDBVRQ1	SOT-23	DBV	5	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
SN74LVC1G17QDCKRQ1	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
SN74LVC1G17QDCKRQ1	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
SN74LVC1G17QDRYRQ1	SON	DRY	6	5000	180.0	9.5	1.2	1.65	0.7	4.0	8.0	Q1

PACKAGE MATERIALS INFORMATION

7-Oct-2023

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC1G17QDBVRQ1	SOT-23	DBV	5	3000	200.0	183.0	25.0
SN74LVC1G17QDCKRQ1	SC70	DCK	5	3000	200.0	183.0	25.0
SN74LVC1G17QDCKRQ1	SC70	DCK	5	3000	190.0	190.0	30.0
SN74LVC1G17QDRYRQ1	SON	DRY	6	5000	189.0	185.0	36.0


DCK0005A

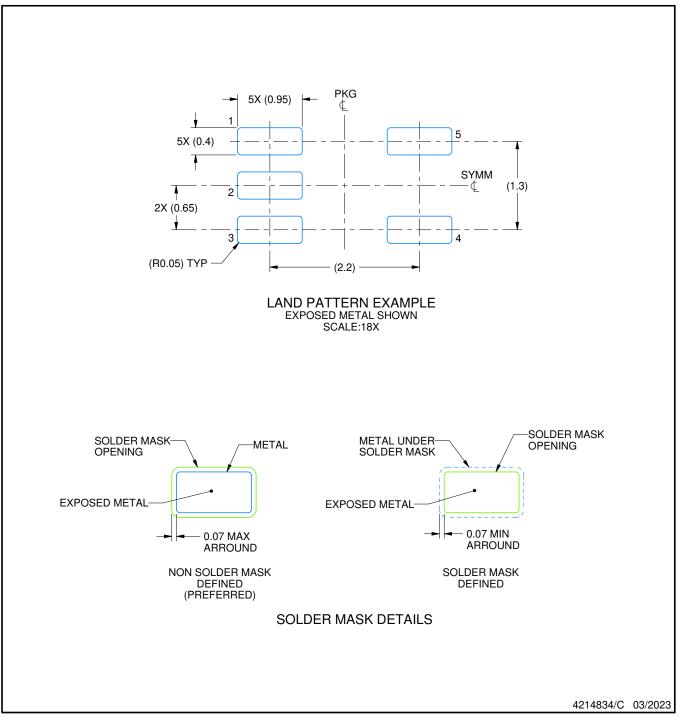
PACKAGE OUTLINE

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-203.
 Support pin may differ or may not be present.



DCK0005A

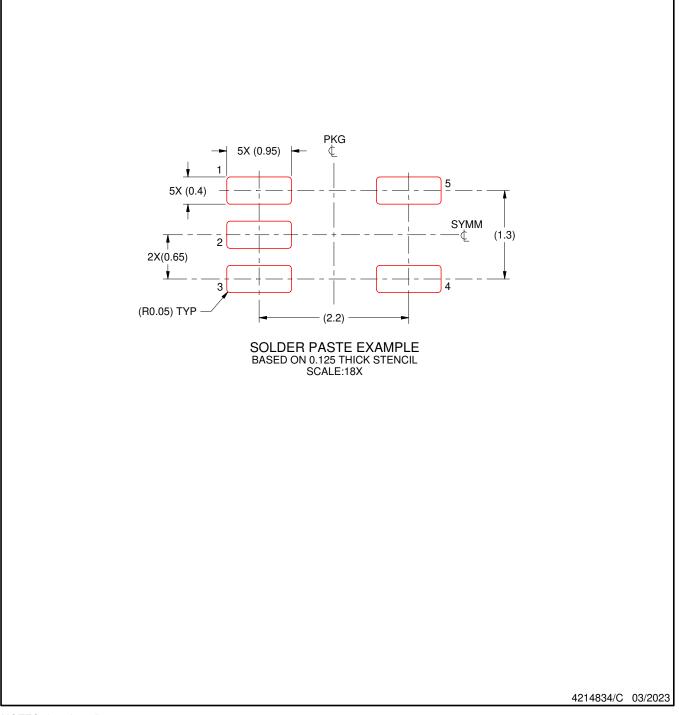
EXAMPLE BOARD LAYOUT

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DCK0005A

EXAMPLE STENCIL DESIGN

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

7. Board assembly site may have different recommendations for stencil design.

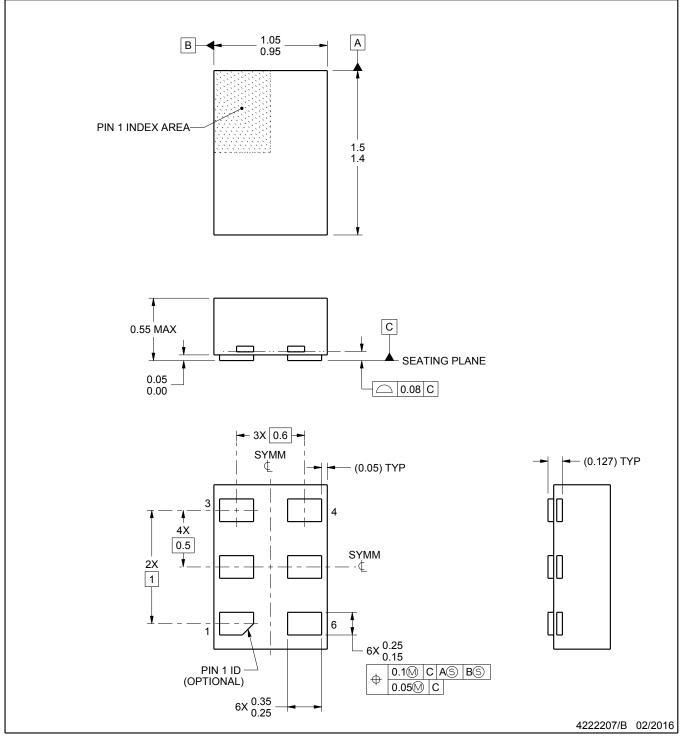
^{6.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

GENERIC PACKAGE VIEW

USON - 0.6 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4207181/G


DRY0006B

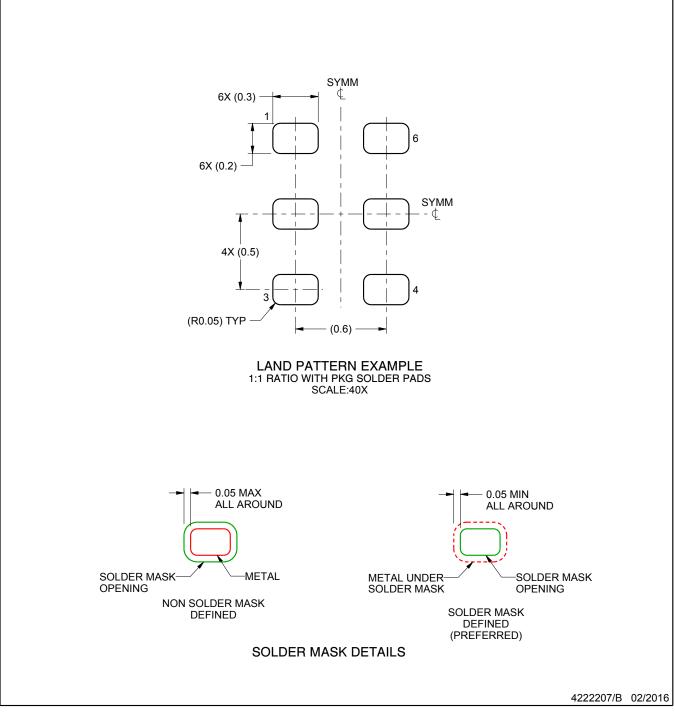
PACKAGE OUTLINE

USON - 0.55 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.



DRY0006B

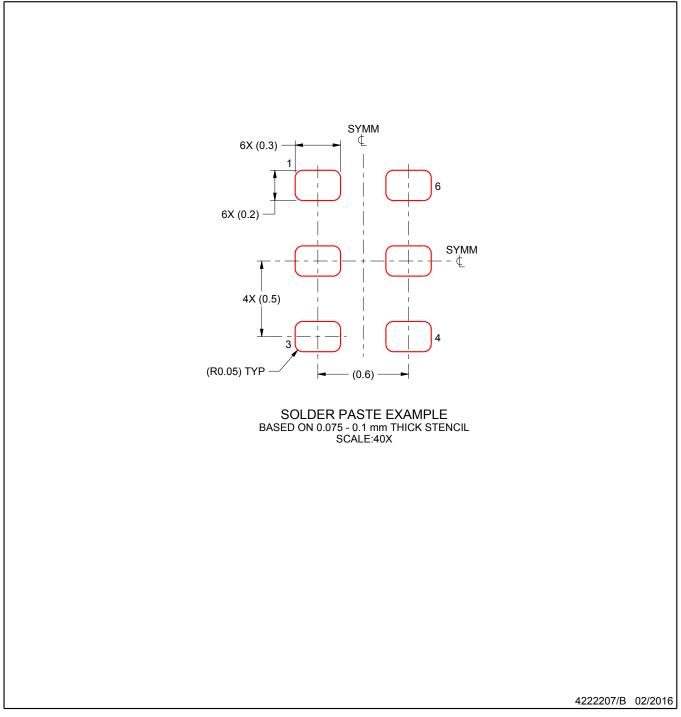
EXAMPLE BOARD LAYOUT

USON - 0.55 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).



DRY0006B

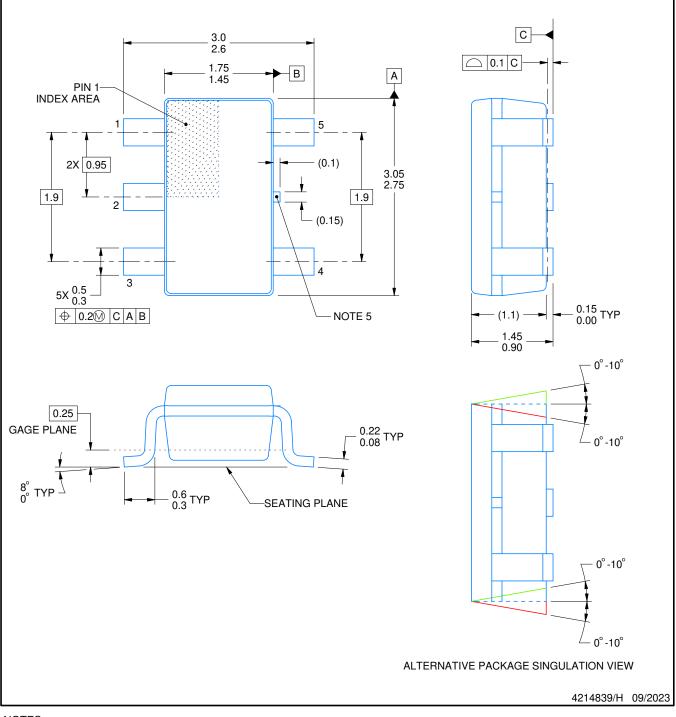
EXAMPLE STENCIL DESIGN

USON - 0.55 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


DBV0005A

PACKAGE OUTLINE

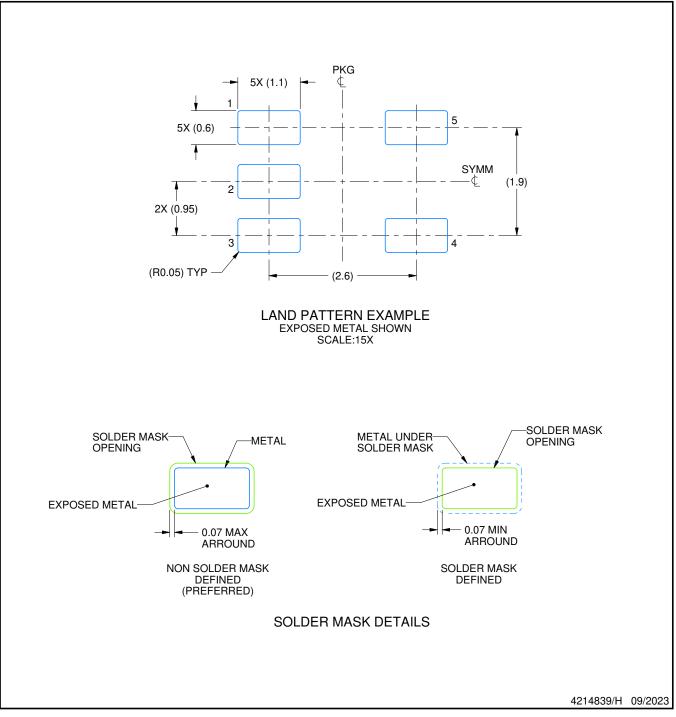
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.This drawing is subject to change without notice.Refernce JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.



DBV0005A

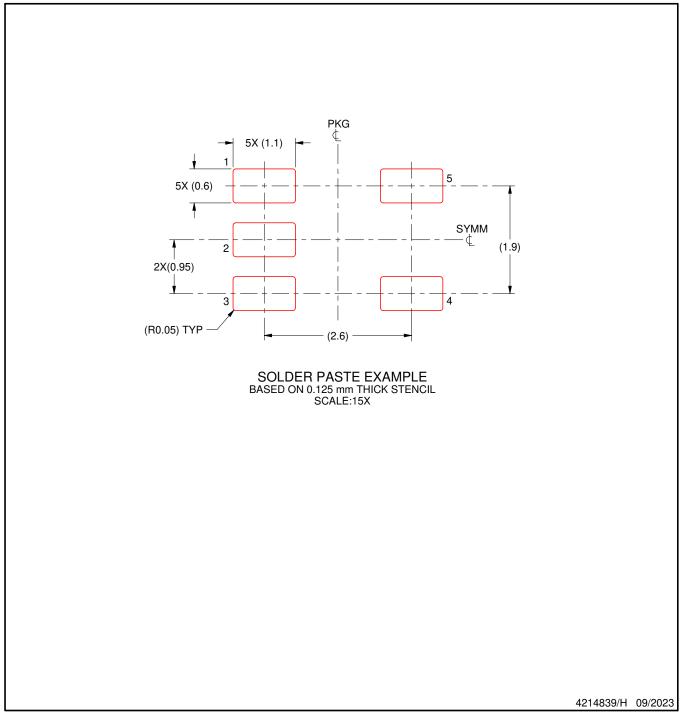
EXAMPLE BOARD LAYOUT

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBV0005A

EXAMPLE STENCIL DESIGN

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated