
PHOTONIC DETECTORS INC.

Silicon Photodiode, U.V. Enhanced Photovoltaic Type PDU-V101

RESPONSIVITY (A/W)

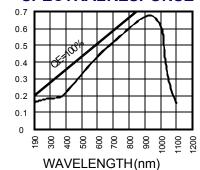
FEATURES

- Low noise
- U.V. enhanced
- High shunt resistance
- U.V. window

DESCRIPTION

The **PDU-V101** is a silicon, PIN planar diffused, U.V. enhanced photodiode. Ideal for low noise photovoltaic applications. Packaged in a hermetic TO-46 metal can with a flat U.V. transmitting window.

APPLICATIONS


- Spectrometers
- Fluorescent analysers
- · U.V. meters
- Colorimeters

ABSOLUTE MAXIMUM RATING (TA=25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS
V _{BR}	Reverse Voltage		75	V
T _{STG}	Storage Temperature	-55	+150	∘C
T _O	Operating Temperature Range	-40	+125	⊙C
T _s	Soldering Temperature*		+240	∘C
IL	Light Current		500	mA

^{*1/16} inch from case for 3 secs max

SPECTRALRESPONSE

ELECTRO-OPTICAL CHARACTERISTICS (TA=25°C unless otherwise noted)

LLLOTINO	LEEGING OF HOAE STIATAGE ENGINEE (TA-25 O difference indica)									
SYMBOL	CHARACTERISTIC	TEST CONDITIONS	MIN	TYP	MAX	UNITS				
l _{sc}	Short Circuit Current	H = 100 fc, 2850 K	4	4.5		μ A				
I _D	Dark Current	$H = 0, V_R = 10 \text{ mV}$		6	10	pA				
R _{SH}	Shunt Resistance	$H = 0, V_R = 10 \text{ mV}$	1	1.6		GΩ				
TCR _{SH}	RSH Temp. Coefficient	$H = 0, V_R = 10 \text{ mV}$		-8		%/℃				
C _J	Junction Capacitance	H = 0, V _R = 0 V**		115		pF				
λ range	Spectral Application Range	Spot Scan	190		1100	nm				
R	Responsivity	V_R = 0 V, λ = 254 nm	.12	.18		A/W				
V _{ER}	Breakdown Voltage	I = 10 μA	5	10		V				
NEP	Noise Equivalent Power	V _R = 10 mV @ Peak		2.5x10 ⁻¹⁵		W/√ Hz				
tr	Response Time	RL = 1 K Ω V _R = 0 V		450		nS				