FAIRCHILD

SEMICONDUCTOR®

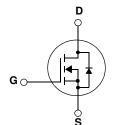
FDD5N53/FDU5N53 N-Channel MOSFET 530V, 4A, 1.5Ω

Features

- + $R_{DS(on)} = 1.25\Omega$ (Typ.)@ $V_{GS} = 10V$, $I_D = 2A$
- Low gate charge (Typ. 11nC)
- Low C_{rss} (Typ. 5pF)
- · Fast switching
- 100% avalanche tested
- · Improved dv/dt capability
- RoHS compliant

January 2009 UniFET[™]

tm


Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pluse in the avalanche and commutation mode. These devices are well suited for high efficient switched mode power suppliesand active power factor correction.

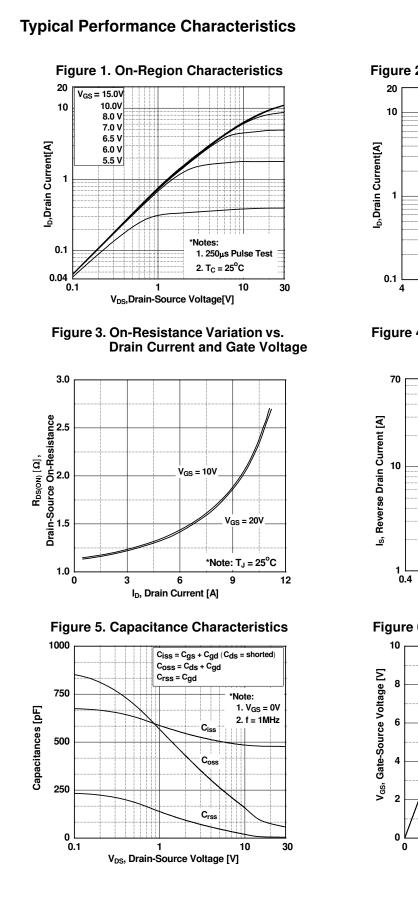
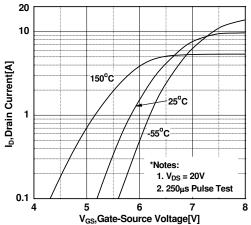
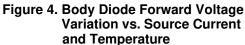
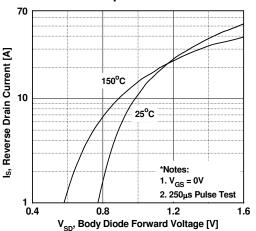
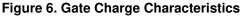
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted*

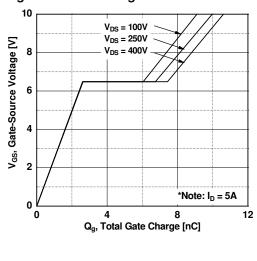
Symbol		Parameter		FDD5N53/FDU5N53	Units	
V _{DSS}	Drain to Source Voltage			530	V	
V _{GSS}	Gate to Source Voltage	±30	V			
ID	Drain Current	-Continuous (T _C = 25 ^o C)		4	- A	
		-Continuous ($T_C = 100^{\circ}C$)		2.4		
I _{DM}	Drain Current - Pulsed (Note 1)		(Note 1)	16	Α	
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	256	mJ	
I _{AR}	Avalanche Current (4	Α	
E _{AR}	Repetitive Avalanche Energy (Note			4	mJ	
dv/dt	Peak Diode Recovery dv/dt (N		(Note 3)	4.5	V/ns	
D	Devuer Dissignation	$(T_{C} = 25^{\circ}C)$		40	W	
P _D	Power Dissipation	- Derate above 25°C		0.3	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperatu 1/8" from Case for 5 Secor	0		300	°C	

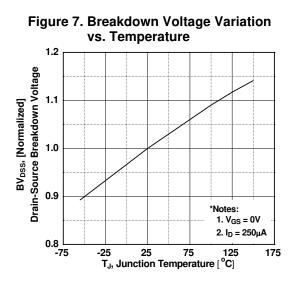
Thermal Characteristics

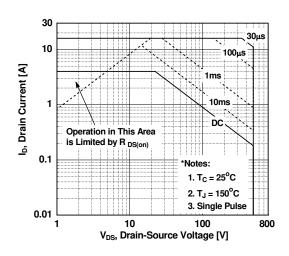
Symbol	Parameter	Ratings	Units
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	1.4	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	110	C/ VV

Device Marking Device		Packag	ge	e Reel Size		Tape Width		Quantity		
		FDD5N53TM	D-PAk	<			3mm		2500	
		FDD5N53TF	D-PAk	K 380mm		1	16mm		2000	
FDU5N53 FDU5N53TU I-PAK		(-		-		70			
Electrica	l Char	acteristics								
Symbol		Parameter		Test Conditions		Min.	Тур.	Max.	Units	
Off Charac	cteristic	S								
BV _{DSS}	Drain to	o Source Breakdown V	oltage	$I_D = 250 \mu A, V_{GS} = 0V, T_J = 25^{\circ}C$			530	-	-	V
ΔBV_{DSS} ΔT_J		own Voltage Temperat	-		$I_D = 250 \mu A$, Referenced to $25^{\circ}C$		-	0.6	-	V/ºC
	Zero G	ate Voltage Drain Curr	ont	$V_{DS} = 53$	$V_{DS} = 530V, V_{GS} = 0V$		-	-	1	Δ
DSS	Zeit G		ent	-	$V_{\rm DS} = 424 \text{V}, \text{ T}_{\rm C} = 125^{\circ} \text{C}$			-	10	μΑ
I _{GSS}	Gate to	Body Leakage Currer	ıt	$V_{GS} = \pm 3$	0V, V _{DS} = 0V		-	-	±100	nA
On Charac	teristic	S								
V _{GS(th)}	Gate T	hreshold Voltage	$V_{GS} = V_{D}$	_S , I _D = 250μA		3.0	-	5.0	V	
R _{DS(on)}		Drain to Source On Resistance		0.0	V, I _D = 2A		-	1.25	1.5	Ω
9FS	Forwar	d Transconductance	$V_{DS} = 40V, I_D = 2A$ (Note 4)			-	4.3	-	S	
	-	eristics apacitance		V _{DS} = 25	V. V _{GS} = 0V	-	-	480	640	pF
C _{iss} C _{oss}	Output	apacitance Capacitance		— V _{DS} = 25 — f = 1MHz	V, V _{GS} = 0V		-	66	88	pF
C _{oss} C _{rss}	Output Reverse	apacitance Capacitance e Transfer Capacitance	3					66 5		pF pF
C _{oss} C _{rss} Q _{g(tot)}	Output Reverse Total Ga	apacitance Capacitance e Transfer Capacitance ate Charge at 10V	3	f = 1MHz			-	66	88 8	pF
C _{oss} C _{rss} Q _{g(tot)} Q _{gs}	Output Reverse Total Ga Gate to	apacitance Capacitance e Transfer Capacitance	9	f = 1MHz	0V, I _D = 5A	(Note 4, 5)	-	66 5 11	88 8 15	pF pF nC
C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd}	Output Reverse Total Ga Gate to Gate to	apacitance Capacitance e Transfer Capacitance ate Charge at 10V Source Gate Charge Drain "Miller" Charge	ə 	f = 1MHz V _{DS} = 40	0V, I _D = 5A	(Note 4, 5)	-	66 5 11 3	88 8 15 -	pF pF nC nC
C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd} Switching	Output Reverse Total Ga Gate to Gate to Charac	apacitance Capacitance e Transfer Capacitance ate Charge at 10V Source Gate Charge Drain "Miller" Charge	2	f = 1MHz V _{DS} = 40	0V, I _D = 5A	(Note 4, 5)	-	66 5 11 3 5	88 8 15 - -	pF pF nC nC
C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd} Switching	Output Reverse Total Ga Gate to Gate to Charac Turn-Or	apacitance Capacitance e Transfer Capacitance ate Charge at 10V Source Gate Charge Drain "Miller" Charge eteristics n Delay Time	e	f = 1MHz V _{DS} = 40 V _{GS} = 10	0V, I _D = 5A V	(Note 4, 5)		66 5 11 3 5 13	88 8 15 - - 36	pF pF nC nC nC nC
C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd} Switching t _{d(on)}	Output Reverse Total Ga Gate to Gate to Charac Turn-Or Turn-Or	apacitance Capacitance e Transfer Capacitance ate Charge at 10V Source Gate Charge Drain "Miller" Charge eteristics n Delay Time n Rise Time	9	f = 1MHz V _{DS} = 40 V _{GS} = 10	0V, I _D = 5A V 0V, I _D = 5A	(Note 4, 5)		66 5 11 3 5	88 8 15 - - 36 54	pF pF nC nC nC nC
C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd} Switching t _{d(on)} t _r t _{d(off)}	Output Reverse Total Ga Gate to Gate to Charac Turn-Or Turn-Or Turn-Of	apacitance Capacitance e Transfer Capacitance ate Charge at 10V Source Gate Charge Drain "Miller" Charge eteristics n Delay Time	9 	$V_{DS} = 40$ $V_{GS} = 10$ $V_{DD} = 25$	0V, I _D = 5A V 0V, I _D = 5A	(Note 4, 5)		66 5 11 3 5 13 22	88 8 15 - - 36	pF pF nC nC nC nC
$\begin{array}{c} C_{oss} \\ C_{rss} \\ Q_{g(tot)} \\ Q_{gs} \\ Q_{gd} \\ \hline \\ \textbf{Switching} \\ \hline \\ \frac{t_{d(on)}}{t_r} \\ \hline \\ t_q \\ \hline \\ t_d(off) \\ \hline \\ t_f \\ \hline \end{array}$	Output Reverse Total Ga Gate to Gate to Charac Turn-Or Turn-Or Turn-Of Turn-Of	apacitance Capacitance e Transfer Capacitance ate Charge at 10V Source Gate Charge Drain "Miller" Charge eteristics n Delay Time n Rise Time ff Delay Time ff Fall Time		$V_{DS} = 40$ $V_{GS} = 10$ $V_{DD} = 25$	0V, I _D = 5A V 0V, I _D = 5A		- - - - - - -	66 5 11 3 5 13 22 28	88 8 15 - - 36 54 66	pF pF nC nC nC nC nS ns ns
$\begin{array}{c} C_{oss} \\ C_{rss} \\ Q_{g(tot)} \\ Q_{gs} \\ Q_{gd} \\ \hline \\ Switching \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ \hline \\ Drain-Sou \\ \hline \end{array}$	Output Reverse Total Ga Gate to Gate to Charac Turn-Or Turn-Of Turn-Of Turn-Of	apacitance Capacitance e Transfer Capacitance ate Charge at 10V Source Gate Charge Drain "Miller" Charge eteristics n Delay Time n Rise Time ff Delay Time	:S	$V_{DS} = 40$ $V_{GS} = 10$ $V_{DD} = 25$ $R_{G} = 250$	0V, I _D = 5A V 0V, I _D = 5A		- - - - - - -	66 5 11 3 5 13 22 28	88 8 15 - - 36 54 66	pF pF nC nC nC nC nS ns ns
C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd} Switching t _{d(on)} t _r t _{d(off)} t _f Drain-Sou I _s	Output Reverse Total Ga Gate to Gate to Charac Turn-Or Turn-Of Turn-Of Turn-Of Turn-Of Maximu	apacitance Capacitance e Transfer Capacitance ate Charge at 10V Source Gate Charge Drain "Miller" Charge eteristics n Delay Time n Rise Time ff Delay Time ff Delay Time de Characteristic	Source Diod	$V_{DS} = 40$ $V_{GS} = 10$ $V_{DD} = 25$ $R_{G} = 250$ $R_{G} = 250$	$0V, I_D = 5A$ V $0V, I_D = 5A$ Current		- - - - - - -	66 5 11 3 5 13 22 28 20	88 8 15 - - 36 54 66 50	pF pF nC nC nC nC nS ns ns ns
C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd} Switching t _{d(on)} t _r t _{d(off)} t _f Drain-Sou I _S	Output Reverse Total Ga Gate to Gate to Charac Turn-Or Turn-Of Turn-Of Turn-Of Turn-Of Maximu Maximu	apacitance Capacitance e Transfer Capacitance ate Charge at 10V Source Gate Charge Drain "Miller" Charge eteristics n Delay Time n Rise Time ff Delay Time ff Fall Time de Characteristic m Continuous Drain to	Source Diod	$V_{DS} = 40$ $V_{GS} = 10$ $V_{DD} = 25$ $R_{G} = 250$ $R_{G} = 250$	$0V, I_D = 5A$ V $0V, I_D = 5A$ $Current$ ent		- - - - - - - - - - -	66 5 11 3 5 13 22 28 20 -	88 8 15 - - 36 54 66 50 4	pF pF nC nC nC nC nS ns ns ns A
C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd} Switching t _{d(on)} t _r t _{d(off)} t _f Drain-Sou I _s	Output Reverse Total Ga Gate to Gate to Charac Turn-Or Turn-Of Turn-Of Turn-Of Turn-Of Maximu Maximu Drain to	apacitance Capacitance e Transfer Capacitance ate Charge at 10V Source Gate Charge Drain "Miller" Charge teristics n Delay Time n Rise Time ff Delay Time ff Fall Time de Characteristic im Continuous Drain to m Pulsed Drain to Sou	Source Diod	$f = 1MHz$ $V_{DS} = 40$ $V_{GS} = 10$ $V_{DD} = 25$ $R_{G} = 250$ $R_{G} = 250$ $R_{G} = 0$	$0V, I_D = 5A$ V $0V, I_D = 5A$ $Current$ ent		- - - - - - - - - - - - - - - - - - -	66 5 11 3 5 5 13 22 28 20 - -	88 8 15 - - - 36 54 66 50 4 16	pF pF nC nC nC nC nS ns ns ns A A


Figure 2. Transfer Characteristics





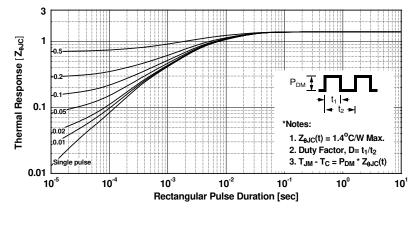


Figure 8. On-Resistance Variation

3.0

2.0

1.5

0.0

4.5

I_D, Drain Current [A]

4

3

2

1

0

25

-75

-25

25

Figure 10. Maximum Drain Current

T_J, Junction Temperature [^oC]

vs. Case Temperature

 $\begin{array}{ccc} 50 & 75 & 100 \\ T_C, \text{ Case Temperature [}^{o}\text{C]} \end{array}$

R_{DS(on)}, [Normalized]

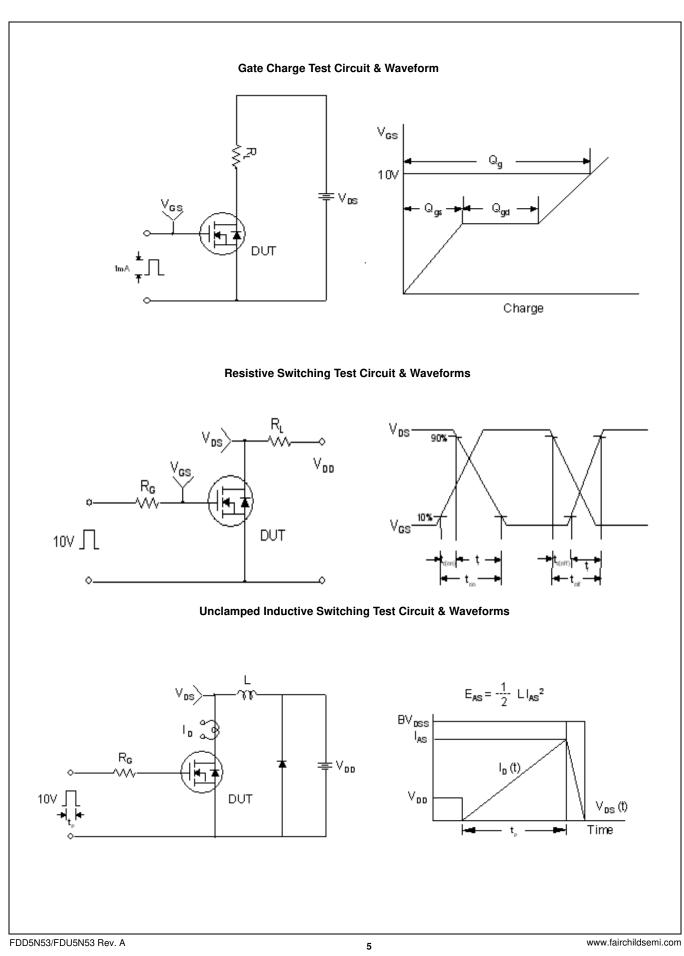
vs. Temperature

*Notes:

1. V_{GS} = 10V

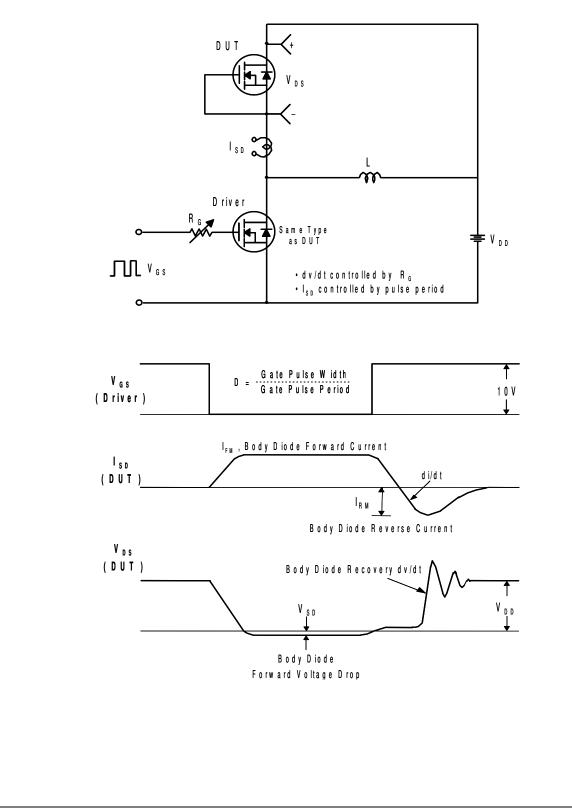
175

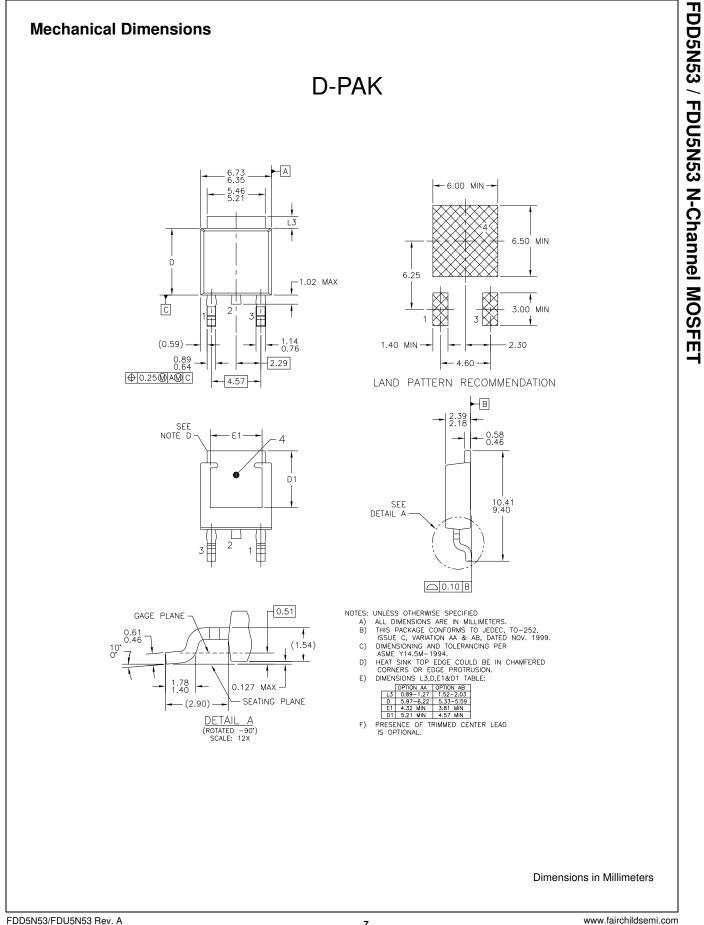
2. I_D = 2A

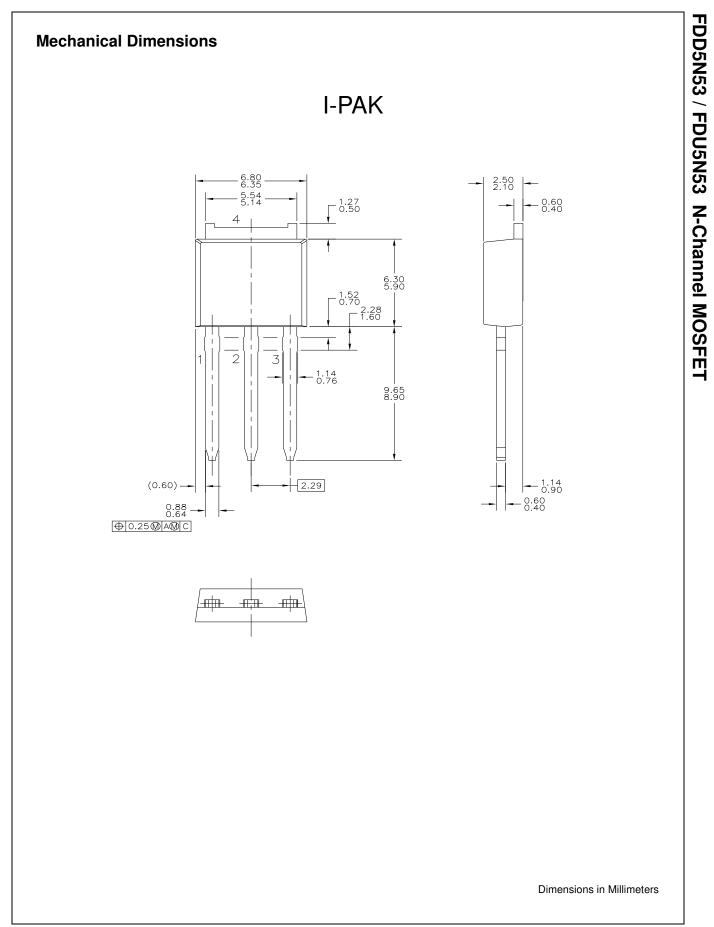

125

125

150


75


FDD5N53 / FDU5N53 N-Channel MOSFET



FDD5N53 / FDU5N53 N-Channel MOSFET

Peak Diode Recovery dv/dt Test Circuit & Waveforms

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Image: Normal StateMicroFETTMSMART STARTIMµSerDesTMMicroPak™SPM®µSerDesTMMillerDrive™STEALTH™VisconsFairchild®MotionMax™SuperFET™Fairchild®Motion-SPM™SuperSOT™-3Fairchild Semiconductor®OPTOLOGIC®SuperSOT™-6FACT Quiet Series™OPTOPLANAR®SuperSOT™-8FACT®Image: Normal SuperSOT™UnitFET™FAST®Image: Normal SuperSOT™VCX™FastvCore™PDP SPM™SyncFET™FlashWriter®*Power-SPM™FPS™PowerSPM™FPS™PowerTrench®PowerXS™Power Franchise®

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.