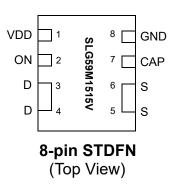


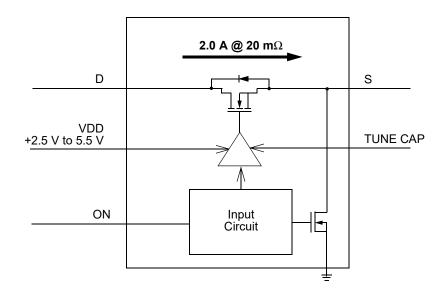
20 m Ω , **2.0 A Fast Turn On** Load Switch with Discharge

General Description


The SLG59M1515V is a 20 m Ω 2.0 A single-channel load switch with configurable slew rate control. The device can enable fast power rail turn on with big cap loading. Internal circuit limits max inrush current to prevent device damage. The product is packaged in an ultra-small 1.0x1.6mm package.

Features

- 1.0 x 1.6 x 0.55 mm STDFN 8L package (2 fused pins for drain and 2 fused pins for source)
- Logic level ON pin capable of supporting 0.85 V CMOS Logic
- · Discharged Load when off
- Fast Turn On time
 - + 25 $\mu s,$ Tune Cap = 0.1 nF, C_{LOAD} = 1 μF @ 100 mA
 - 95 μ s, Tune Cap = 0.5 nF, C_{LOAD} = 10 μ F @ 2.5 A
- Low RDS_{ON}while supporting 2.0 A


 - 20 m Ω , V_{DD} = 5 V, V_D = 1 V 27.5 m Ω , V_{DD} = 3.3 V, V_D = 1 V
- Pb-Free / Halogen-Free / RoHS compliant
- Operating Temperature: -40 °C to 85°C
- Operating Voltage: 2.5 V to 5.5 V
- Power Rail Switching V_D = 0.85 V to V_D = V_{DD} 1.5 V

Pin Configuration

Applications

- · Fast Turn On/Off power rail switching with big Cap loading
- Frequent wake & sleep power cycle
- · Mobile devices and portable devices

Block Diagram

Pin Description

Pin #	Pin Name	Туре	Pin Description
1	VDD	PWR	VDD power for load switch control (2.5 V to 5.5 V)
2	ON	Input	Turns MOSFET ON (4 M Ω pull down resistor) CMOS input with VIL < 0.3 V, VIH > 0.85 V
3	D	MOSFET	Drain of Power MOSFET (fused with pin 4)
4	D	MOSFET	Drain of Power MOSFET (fused with pin 3)
5	S	MOSFET	Source of Power MOSFET (fused with pin 6)
6	S	MOSFET	Source of Power MOSFET (fused with pin 5)
7	CAP	CAP	Tuning Cap
8	GND	GND	Ground

Ordering Information

Part Number	Туре	Production Flow
SLG59M1515V	STDFN 8L	Industrial, -40 °C to 85 °C
SLG59M1515VTR	STDFN 8L (Tape and Reel)	Industrial, -40 °C to 85 °C

Absolute Maximum Ratings

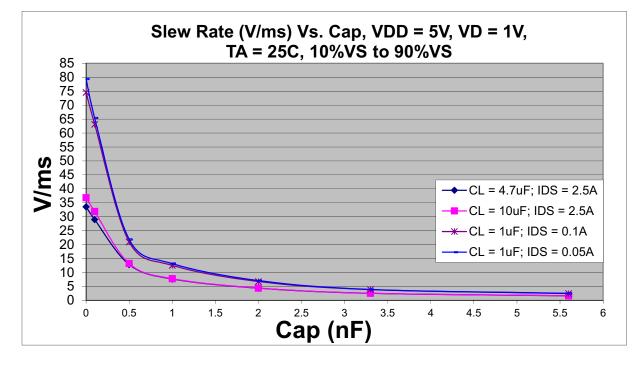
Description	Conditions	Min.	Тур.	Max.	Unit
Power Supply			-	7	V
Storage Temperature		-65	-	150	°C
ESD Protection	Human Body Model	2000			V
Package Power Dissipation			-	0.4	W
	For no more than 20 μs with 1% duty cycle		-	25.0	Α
Peak Current from Drain to Source	For no more than 50 μs with 1% duty cycle		-	12.5	Α
	For no more than 1 ms with 1% duty cycle			3.5	Α
	Power Supply Storage Temperature ESD Protection Package Power Dissipation	Power Supply 5 Storage Temperature 5 ESD Protection Human Body Model 7 Package Power Dissipation 5 Peak Current from Drain to Source 6 For no more than 20 µs with 1% duty cycle 7 For no more than 50 µs with 1% duty cycle 7 For no more than	Power Supply Storage Temperature 65 ESD Protection Human Body Model 2000 Package Power Dissipation For no more than 20 μs with 1% duty cycle Peak Current from Drain to Source For no more than 50 μs with 1% duty cycle	Power SupplyImage: Constraint of the second sec	Power Supply7Storage Temperature150ESD ProtectionHuman Body Model2000Package Power Dissipation0.4Peak Current from Drain to SourceFor no more than 20 µs with 1% duty cycle25.0For no more than 50 µs with 1% duty cycle12.5

only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

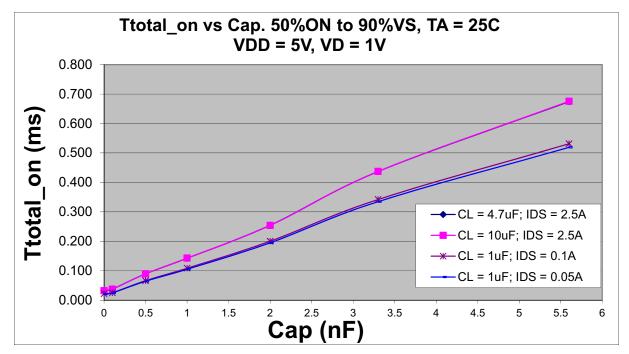
Electrical Characteristics

 T_A = -40 °C to 85 °C (unless otherwise stated)

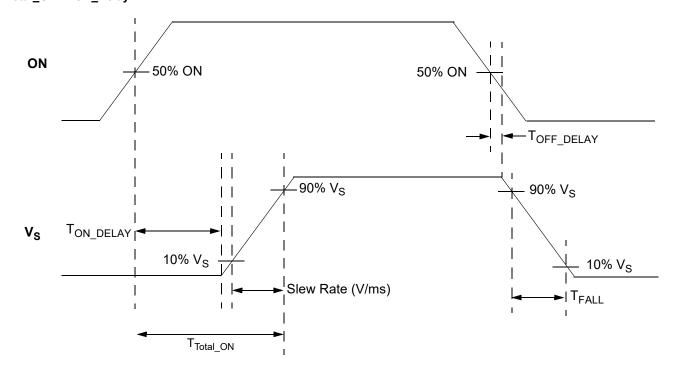
Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Power Supply Voltage	-40 °C to 85 °C	2.5		5.5	V
	Power Supply Current (PIN 1)	when OFF			1	μA
I _{DD}	Fower Supply Current (Fill 1)	when ON, No load			10	μA
	Static Drain to Source	$V_{DD} = 5 V, V_D = 1.05 V, V_{DD} - V_D = 4.0$ V, R _L = 0.5 Ω		20	22	mΩ
	ON Resistance, T _A = 25°C	V_{DD} = 3.3 V, V_{D} = 1.05 V, V_{DD} - V_{D} = 2.3 V, R_{L} = 0.5 Ω		27.5	29	mΩ
RDS _{ON}	Static Drain to Source	$V_{DD} = 5 V, V_D = 1.05 V, V_{DD} - V_D = 4.0 V, R_L = 0.5 \Omega$		23.5	25	mΩ
ND3 _{ON}	ON Resistance, T _A = 70°C	V_{DD} = 3.3 V, V_{D} = 1.05 V, V_{DD} - V_{D} = 2.3 V, R_{L} = 0.5 Ω		31	33	mΩ
	Static Drain to Source	$V_{DD} = 5 V, V_D = 1.05 V, V_{DD} - V_D = 4.0 V, R_L = 0.5 \Omega$		24.5	26	mΩ
	ON Resistance, T _A = 85°C	V_{DD} = 3.3 V, V_{D} = 1.05 V, V_{DD} - V_{D} = 2.3 V, R_{L} = 0.5 Ω		33	35	mΩ
IDS	Operating Current	V _D = 0.85 V to 3.3 V			2.0	А
V _D	Drain Voltage		0.85		V _{DD} - 1.5	V
T	ON Delay Time	50% ON to 10% V _S , Internal Logic Delay, V _{DD} = 5 V, V _D = 1.05 V, Tune Cap = 0.1 nF		12	15	μs
T _{ON_Delay}		50% ON to 10% V _S , Internal Logic Delay, V _{DD} = 5 V, V _D = 1.05 V, Tune Cap = 0.5 nF		32	35	μs



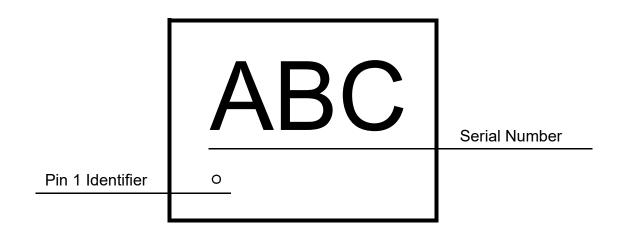
T_A = -40 °C to 85 °C (unless otherwise stated)


Parameter	rameter Description Conditions		Min.	Тур.	Max.	Unit
		50% ON to 90% V _S		Config	urable	1
		50% ON to 90% V _S , V _{DD} = 5 V, V _D = 1.0 V, C _L = 1 μ F, Current Load = 50 mA, Tune Cap = 0.1 nF		32	39	μs
T _{Total_ON}	Total Turn On Time	50% ON to 90% V _{S,} V _{DD} = 5 V, V _D = 1.0 V, C _L = 1 μF, Current Load = 100 mA, Tune Cap = 0.1 nF		32	39	μs
		50% ON to 90% V _S , V _{DD} = 5 V, V _D = 1.0 V, C _L = 4.7 μ F, Current Load = 2.5 A, Tune Cap = 0.5 nF		102	123	μs
		50% ON to 90% V _S , V _{DD} = 5 V, V _D = 1.0 V, C _L = 10 μ F, Current Load = 2.5 A, Tune Cap = 0.5 nF		102	123	μs
		10% V _S to 90% V _S		Config	urable	
		10% V _S to 90% V _S , V _{DD} = 5 V, V _D = 1.0 V, C _L = 1 μ F, Current Load = 50 mA, Tune Cap = 0.1 nF		65	78	V/ms
T _{SLEWRATE}	Slew Rate	10% V _S to 90% V _S , V _{DD} = 5 V, V _D = 1.0 V, C _L = 1 μ F, Current Load = 100 mA, Tune Cap = 0.1 nF		65	78	V/ms
		10% V _S to 90% V _S , V _{DD} = 5 V, V _D = 1.0 V, C _L = 4.7 μ F, Current Load = 2.5 A, Tune Cap = 0.5 nF		13	16	V/ms
		10% V _S to 90% V _S , V _{DD} = 5 V, V _D = 1.0 V, C _L = 10 μ F, Current Load = 2.5 A, Tune Cap = 0.5 nF		13.5	16.5	V/ms
CAP _{SOURCE}	Source Cap	Source to GND			10	μF
R _{DIS}	Discharge Resistance		100	150	300	Ω
ON_V _{IH}	High Input Voltage on ON pin		0.85		V _{DD}	V
ON_V_{IL}	Low Input Voltage on ON pin		-0.3	0	0.3	V
T _{OFF_Delay}	OFF Delay Time	50% ON to V _S Fall, C _L = 10 μ F, R _L = 20 Ω , V _{DD} = 5 V, V _D = 1.0 V, No Tune CAP		120	150	μs
THERM_OFF	Thermal Protection Shutoff	Programmable, automatic shutoff temperature		125		°C
THER- M_OFF_ACC	Thermal Sensor Accuracy				±20	%
THERM_DT	Thermal Disable Time	Thermal sensor disable for the ON rising edge to $100 \ \mu s$. Prevent therm shutdown from inrush current			100	μs

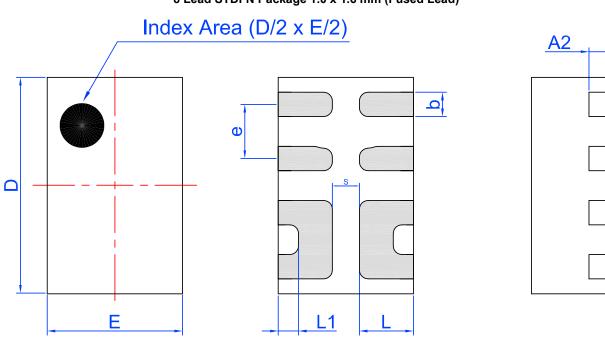
Tune Cap vs Slew Rate

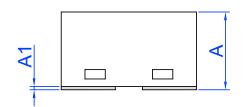


Tune Cap vs Ttotal_on



 T_{Total_ON} , T_{ON_Delay} and Slew Rate Measurement (TBD)

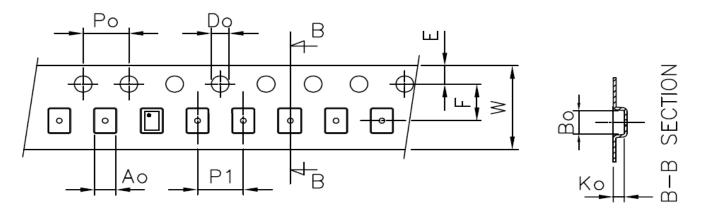



Package Top Marking System Definition

Package Drawing and Dimensions

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
A	0.50	0.55	0.60	D	1.55	1.60	1.65
A1	0.005	-	0.060	E	0.95	1.00	1.05
A2	0.10	0.15	0.20	L	0.35	0.40	0.45
b	0.13	0.18	0.23	L1	0.10	0.15	0.20
е	().40 BSC	,	S	(0.2 REF	



Tape and Reel Specifications

Dookogo	# of	Nominal	Max Units		Reel & Leader (r (min) Trailer		Trailer (min)		Part
Package Type	# of Pins	Package Size [mm]	per Reel	per Box	Hub Size [mm]	Pockets	Length [mm]	Pockets	Length [mm]	Width [mm]	Pitch [mm]
STDFN 8L 1x1.6mm 0.4P FC Green		1.0 x 1.6 x 0.55	3,000	3,000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	PocketBTM Length	PocketBTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge		Tape Width
	A0	В0	K0	P0	P1	D0	E	F	w
STDFN 8L 1x1.6mm 0.4P FC Green	1.12	1.72	0.7	4	4	1.55	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 0.88 mm³ (nominal). More information can be found at www.jedec.org.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>