ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

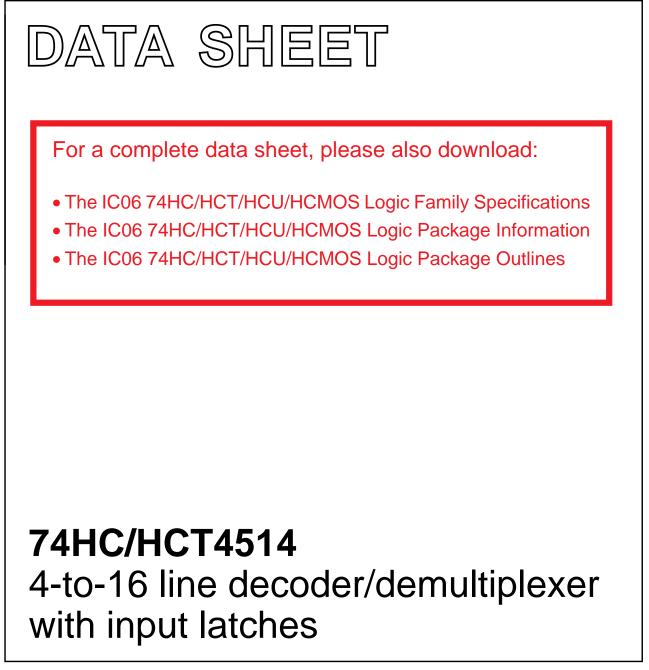
Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:


- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 September 1993

74HC/HCT4514

FEATURES

- Non-inverting outputs
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4514 are high-speed Si-gate CMOS devices and are pin compatible with "4514" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4514 are 4-to-16 line

decoders/demultiplexers having four binary weighted address inputs (A₀ to A₃), with latches, a latch enable input (LE), and an active LOW enable input (\overline{E}). The 16 outputs (Q₀ to Q₁₅) are mutually exclusive active HIGH. When LE is HIGH, the selected output is determined by the data on A_n. When LE goes LOW, the last data present at A_n are stored in the latches and the outputs remain stable. When \overline{E} is LOW, the selected output, determined by the contents of the latch, is HIGH. At \overline{E} HIGH, all outputs are LOW. The enable input (\overline{E}) does not affect the state of the latch.

When the "4514" is used as a demultiplexer, \overline{E} is the data input and A₀ to A₃ are the address inputs.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP			
STWBUL	FARAMETER	CONDITIONS	НС	нст		
t _{PHL} / t _{PLH}	propagation delay A _n to Q _n	C _L = 15 pF; V _{CC} = 5 V	23	26	ns	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	44	45	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

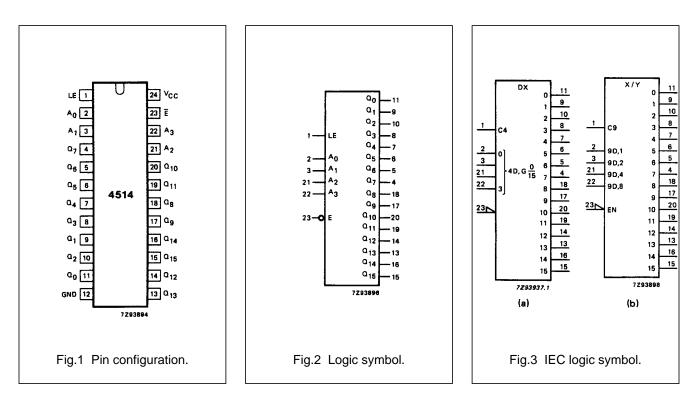
 f_i = input frequency in MHz

fo = output frequency in MHz

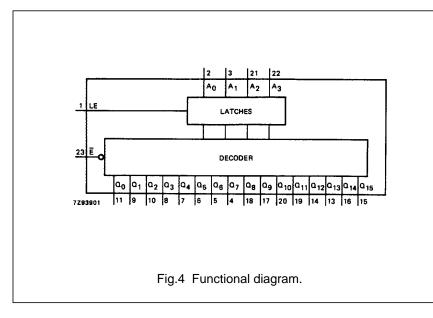
 $\Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

 C_L = output load capacitance in pF

 V_{CC} = supply voltage in V


2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	LE	latch enable input (active HIGH)
2, 3, 21, 22	A ₀ to A ₃	address inputs
11, 9, 10, 8, 7, 6, 5, 4, 18, 17, 20, 19, 14, 13, 16, 15	Q ₀ to Q ₁₅	multiplexer outputs (active HIGH)
12	GND	ground (0 V)
23	Ē	enable input (active LOW)
24	V _{CC}	positive supply voltage

74HC/HCT4514

74HC/HCT4514

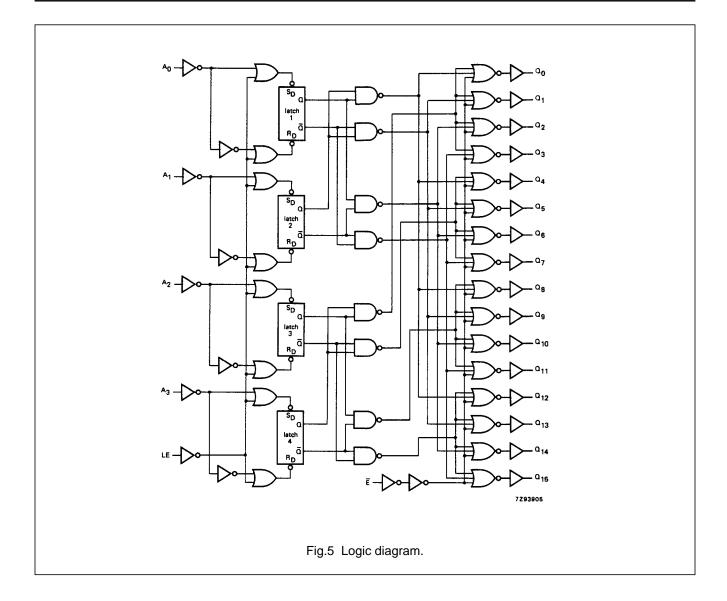
APPLICATIONS

- Digital multiplexing
- Address decoding
- Hexadecimal/BCD decoding

FUNCTION TABLE

INPUTS						OUTPUTS														
Ē	A ₀	A ₁	A ₂	A ₃	Q ₀	Q ₁	Q ₂	Q_3	Q_4	Q_5	Q_6	Q 7	Q ₈	Q9	Q ₁₀	Q ₁₁	Q ₁₂	Q ₁₃	Q ₁₄	Q ₁₅
Н	X	X	Х	Х	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
L L L	L H L H	L L H H	L L L L	L L L	H L L L	L H L L	L L H L	L L H	L L L	L L L	L L L	L L L	L L L L	L L L	L L L L	L L L	L L L	L L L	L L L	L L L
L L L	L H L H	L L H H	H H H H	L L L	L L L	L L L	L L L	L L L	H L L	L H L L	L L H L	L L H	L L L	L L L	L L L	L L L	L L L	L L L	L L L	L L L
L L L	L H L H	L L H H	L L L L	H H H H	L L L L	L L L	L L L	L L L	L L L	L L L	L L L	L L L	H L L L	L H L L	L L H L	L L H	L L L	L L L	L L L	L L L
L L L	L H L H	L L H H	H H H H	H H H	L L L						L L L		L L L	L L L	L L L	L L L	H L L	L H L	L L H L	L L H

Notes


1. LE = HIGH

H = HIGH voltage level

L = LOW voltage level

X = don't care

74HC/HCT4514

74HC/HCT4514

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 \text{ V}; t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pF}$

	PARAMETER			-	Г _{ать} (°		TEST CONDITIONS				
SYMBOL					74HC			WAVEFORMS			
SYMBOL			+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay A_n to Q_n		74 27 22	230 46 39		290 58 49		345 69 59	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay LE to Q _n		74 27 22	230 46 39		290 58 49		345 69 59	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay Ē to Q _n		41 15 12	175 35 30		220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig.6
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6
t _W	latch enable pulse width HIGH	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7
t _{su}	set-up time A _n to LE	90 18 15	25 9 7		115 23 20		135 27 23		ns	2.0 4.5 6.0	Fig.7
t _h	hold time A _n to LE	1 1 1	-11 -4 -3		1 1 1		1 1 1		ns	2.0 4.5 6.0	Fig.7

74HC/HCT4514

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
A _n	0.65
LE	1.40
Ē	1.00

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

				1		TEST CONDITIONS						
SYMBOL	PARAMETER						WAVEFORMS					
STWIDOL	FARAMETER		+25		- 40 t	to +85	-40 te	o +125	UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay A _n to Q _n		30	55		69		83	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay LE to Q _n		29	50		63		75	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay \overline{E} to Q_n		17	40		50		60	ns	4.5	Fig.6	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6	
t _W	latch enable pulse width HIGH	16	4		20		24		ns	4.5	Fig.7	
t _{su}	set-up time A _n to LE	18	9		23		27		ns	4.5	Fig.7	
t _h	hold time A _n to LE	3	-3		3		3		ns	4.5	Fig.7	

74HC/HCT4514

AC WAVEFORMS

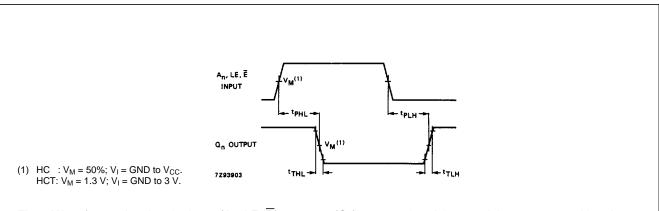
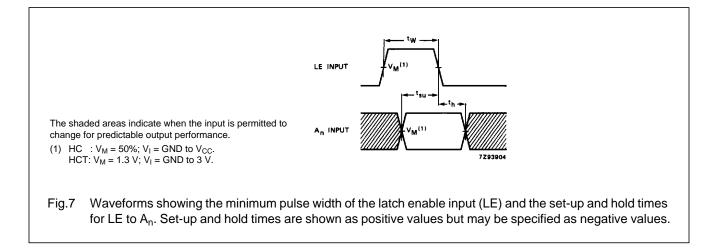
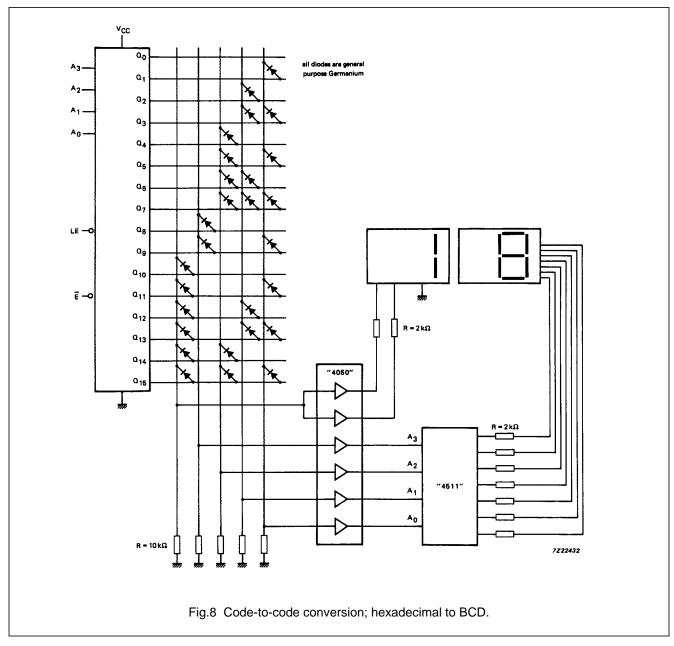




Fig.6 Waveforms showing the input (A_n, LE, \overline{E}) to output (Q_n) propagation delays and the output transition times.

74HC/HCT4514

APPLICATION INFORMATION

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".