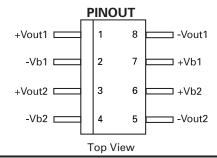
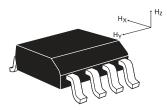
DUAL MAGNETIC FIELD SENSOR

DESCRIPTION


This device is a special tangential field difference sensor with two AMR (Anisotropic Magneto-Resistive) bridges for field movement measurements or field comparative measurements.


The ZMX40M contains two extremely sensitive magnetic sensor chips, mounted parallel to each other in an SM8 package, employing the magneto-resistive effect of thin film permalloy. It allows the measurement of magnetic fields or the detection of magnetic parts. The sensors each consist of a chip covered with thin film permalloy stripes which form a Wheatstone bridge, whose output voltage is proportional to the magnetic field component Hy. A field Hx, which is perpendicular to Hy, is necessary to suppress the hysteresis and to bias the sensors into the linear region. This field Hx is provided by an internal permanent magnet.

The chips are mounted in the package 3mm apart. If a magnet travels horizontally above the sensor, each chip will give an output which will peak as the magnet passes above it and the two peaks will be spatially separated by 3mm.

FEATURES

- Output voltage proportional to magnetic field Hy across each chip
- Both chips are in the same orientation and chip centres are 3mm apart in Y direction
- Magnetic fields vertical to the chip level Hz are not effective
- Disturbing fields Hx up to 30 kA/m are allowed
- Extremely small chip distance from the top side of package for accurate measurement
- Internal magnet each chip for creation of auxiliary field Hx

When the two peaks are the same amplitude, the magnet must be mid-way between the two chips. Therefore this double sensor can be used to measure position of, for example, a wheel tooth very accurately for automotive and machine-tool applications. With calibration to allow for the tolerances on the bridge outputs being slightly different, the ZMX40M has been used in machine tool applications to resolve distances down to 30µm. By comparing the two outputs and adding some hysteresis, a large-geometry magnetic tape reader (for example for a magnetic tape ruler) can be made. By combining both bridge outputs a current sensor can be also made by adding an external current loop over or under the ZMX40M. This loop is outside the package and therefore provides excellent galvanic isolation.

APPLICATIONS

- · Linear position measurement for process control, door interlocks, proximity detectors and precision machine tools
- H-field movement measurement for a magnetic tape recognition
- High voltage isolated current measurement up to many amps range by using a suitable current loop over or under the IC
- Detection of rotating magnets in the presence of a disturbing field by comparisons of maximum values of individual sensors

DEVICE MARKING

ZMX40M

CONNECTION DIAGRAM

AMR chip 1: supply voltage between +Vb1 and -Vb1

output voltage of bridge between

+Vout1 and -Vout1

AMR chip 2: supply voltage between +Vb2 and

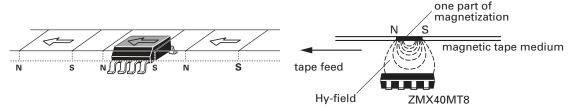
-Vb2 output voltage of bridge between +Vout2 and -Vout2

ABSOLUTE MAXIMUM RATINGS

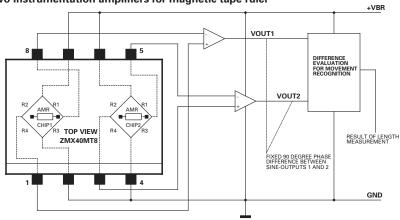
120020121111111111111111111111111111111									
PARAMETER	SYMBOL	LIMIT	UNIT						
Supply voltage for each sensor chip (1,2)	V _B	12	V						
Total power dissipation	P _{TOT}	240	mW						
Operating temperature range	T _{amb}	-25 to +125	°C						
Storage temperature range	T _{stg}	-25 to +125	°C						

ELECTRICAL CHARACTERISTICS (at T_{amb} =25°C and H_{χ} =3 kA/m unless otherwise stated)

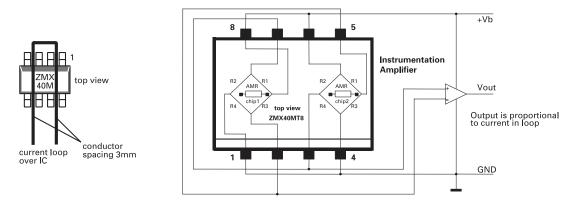
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	TEST CONDITIONS
Bridge resistance	R _{br}	1.4	-	2.2	kΩ	
Output voltage range	V _O /V _B	12	-	24	mV/V	
Open circuit sensitivity	S	3.0	-	5.0	(mV/V)/ (kA/m)	V _B =const.
Hysteresis of output voltage	V _{OH} /V _B	-	-	50	μV/V	
Offset voltage	V _{off} /V _B	-1.5	-	+1.5	mV/V	
Operating frequency	f _{max}	0	-	1	MHz	
Temp. coeff. of offset voltage	TCV _{off}	-3	-	+3	(µV/V)/K	T _{amb} = -25 to +125°C
Temp. coeff. of bridge resistance	TCR _{br}	+0.25	+0.3	+0.35	%/K	T _{amb} = -25 to +125°C
Temp. coeff. of open circuit sensitivity V _B =5V	TCS _V	-0.25	-0.3	-0.35	%/K	T _{amb} = -25 to +125°C
Temp. coeff. of open circuit sensitivity I _B =3mA	TCS _I	-	-0.1	-	%/K	T _{amb} = -25 to +125°C


ORDERING INFORMATION

DEVICE	REEL SIZE	TAPE WIDTH	QUANTITY PER REEL		
ZMX40MT8TA	7″	12mm	1000 units		
ZMX40MT8TC	13"	12mm	4000 units		


TYPICAL APPLICATIONS

Magnetic tape scanning (field movement measurement for magnetic tape ruler):



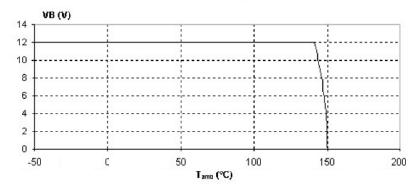
The changing voltage peaks in both AMR bridges are used for the tape movement measurement.

ZMX40M plus two instrumentation amplifiers for magnetic tape ruler

Current sensor (by combining both bridge outputs and a high isolation voltage)

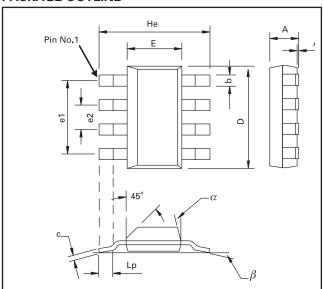
This double chip solution with the current loop conductor guarantees good rejection of external fields and a high isolation voltage.

ISSUE 1 - MARCH 2004


Sensor output characteristic ZMX40M Vo = f(Hy) typ.

Vo (mV/V)
15
10
5
0
-5

-6,00 -5,00 -4,00 -3,00 -2,00 -1,00 0,00 1,00 2,00 3,00 4,00 5,00 6,00 **Hy (kA/m)**


Supply voltage (maximum) derating curve ZMX40M

 $V_{\text{bmax}} = f(T_{\text{amb}})$

PACKAGE OUTLINE

PACKAGE DIMENSIONS

	M	lillimete	ers		Inches	·				Millimeters			Inches		
DIM	Min	Max	Тур.	Min	Max	Тур.	DIM	Min	Max	Тур.	Min	Max	Тур.		
А	-	1.7	-	-	0.067	-	e1	-	-	4.59	-	-	0.1807		
A1	0.02	0.1	-	0.008	0.004	-	e2	-	-	1.53	-	-	0.0602		
b	-	-	0.7	-	-	0.0275	He	6.7	7.3	-	0.264	0.287	-		
С	0.24	0.32	-	0.009	0.013	-	Lp	0.9	-	-	0.035	-	-		
D	6.3	6.7	-	0.248	0.264	-	α	-	15°	-	-	15°	-		

© Zetex plc 2004

Europe	Americas	Asia Pacific	Corporate Headquaters
Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd	Zetex plc
Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza Tower 1	Fields New Road, Chadderton
D-81673 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Oldham, OL9 8NP
Germany	USA	Hong Kong	United Kingdom
Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100 611	Telephone (44) 161 622 4444
Fax: (49) 89 45 49 49	Fax: (1) 631 360 8222	Fax: (852) 24250 494	Fax: (44) 161 622 4446
europe.sales@zetex.com	usa.sales@zetex.com	asia.sales@zetex.com	hq@zetex.com

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to **www.zetex.com**

ISSUE 1 - MARCH 2004

