Unit: mm

TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (U-MOSVI-H)

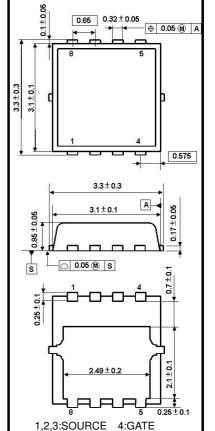
# **TPCC8006-H**

High-Efficiency DC-DC Converter Applications Notebook PC Applications Portable Equipment Applications

- Small footprint due to a small and thin package
- · High-speed switching
- Small gate charge: Q<sub>SW</sub> = 7.4 nC (typ.)
- Low drain-source ON-resistance:

 $R_{DS (ON)} = 6.5 \text{ m}\Omega \text{ (typ.)} \text{ (V}_{GS} = 4.5 \text{ V)}$ 

- High forward transfer admittance:  $|Y_{fs}| = 67 \text{ S (typ.)}$
- Low leakage current:  $I_{DSS} = 10 \mu A (max) (V_{DS} = 30 V)$
- Enhancement mode:  $V_{th} = 1.3$  to 2.3 V ( $V_{DS} = 10$  V,  $I_D = 0.2$  mA)


### Absolute Maximum Ratings (Ta = 25°C)

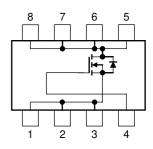
| Characte                 | eristic                      | Symbol           | Rating     | Unit |
|--------------------------|------------------------------|------------------|------------|------|
| Drain-source voltage     |                              | $V_{DSS}$        | 30         | V    |
| Drain-gate voltage (F    | GS = 20 kΩ)                  | $V_{DGR}$        | 30         | V    |
| Gate-source voltage      |                              | V <sub>GSS</sub> | ±20        | V    |
| Drain current            | DC (Note 1)                  | ID               | 22         | Α    |
| Drain current            | Pulsed (Note 1)              | I <sub>DP</sub>  | 66 27      | A    |
| Drain power dissipati    | on (Tc = 25°C)               | $P_{D}$          | 27         | W    |
| Drain power dissipation  | on $(t = 10 s)$<br>(Note 2a) | $P_{D}$          | 1.9        | W    |
| Drain power dissipati    | on (t = 10 s)<br>(Note 2b)   | P <sub>D</sub>   | 0.7        | W    |
| Single-pulse avalance    | ne energy<br>(Note 3)        | E <sub>AS</sub>  | 126        | mJ   |
| Avalanche current        |                              | I <sub>AR</sub>  | 22         | Α    |
| Repetitive avalanche (To | energy<br>c = 25°C) (Note 4) | E <sub>AR</sub>  | 1.89       | mJ   |
| Channel temperature      |                              | T <sub>ch</sub>  | 150        | °C   |
| Storage temperature      | range                        | T <sub>stg</sub> | -55 to 150 | °C   |

Note: For Notes 1 to 4, refer to the next page.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

This transistor is an electrostatic-sensitive device. Handle with care.

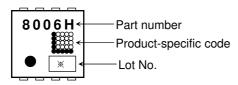



Weight: 0.02 g (typ.)

5,6,7,8:DRAIN

JEDEC JEITA TOSHIBA

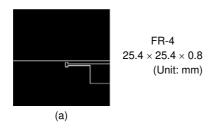
## **Circuit Configuration**

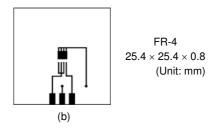

2-3X1A



#### **Thermal Characteristics**

| Characteristic                                                        | Symbol                 | Max | Unit |
|-----------------------------------------------------------------------|------------------------|-----|------|
| Thermal resistance, channel to case (Tc = 25°C)                       | R <sub>th (ch-c)</sub> | 4.7 | °C/W |
| Thermal resistance, channel to ambient $(t = 10 \text{ s})$ (Note 2a) | R <sub>th (ch-a)</sub> | 66  | °C/W |
| Thermal resistance, channel to ambient $(t = 10 \text{ s})$ (Note 2b) | R <sub>th (ch-a)</sub> | 180 | °C/W |

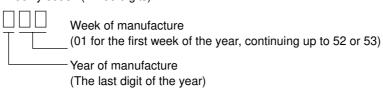

## Marking (Note 5)




Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2: (a) Device mounted on a glass-epoxy board (a)

(b) Device mounted on a glass-epoxy board (b)



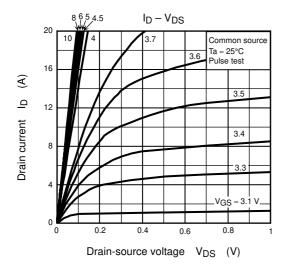


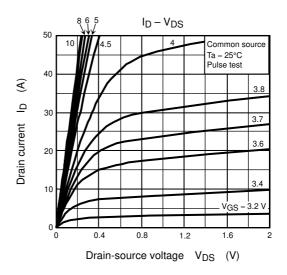

Note 3:  $V_{DD}=24~V,~T_{ch}=25^{\circ}C$  (initial),  $L=200~\mu H,~R_{G}=25~\Omega,~I_{AR}=22~A$ 

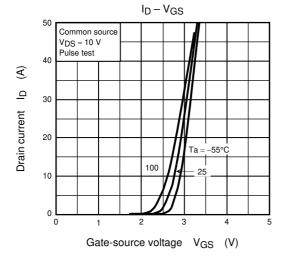
Note 4: Repetitive rating: pulse width limited by maximum channel temperature

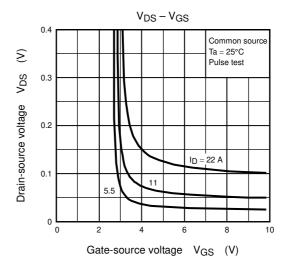
Note 5: \* Weekly code: (Three digits)

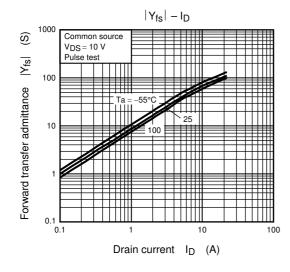


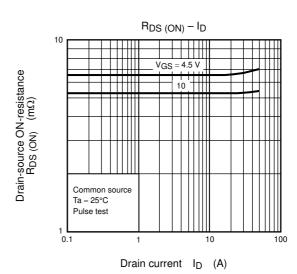

## Electrical Characteristics (Ta = 25°C)


| Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | aracteristic                                                    | teristic Symbol Test Condition Min Typ. |                                                                          | Тур.                                                                                                                                                                                                                                                                         | Max   | Unit |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|----|
| Gate leakage cur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rent                                                            | I <sub>GSS</sub>                        | $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$                        | _                                                                                                                                                                                                                                                                            | _     | ±100 | nA |
| Drain cutoff curre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt                                                              | I <sub>DSS</sub>                        | V <sub>DS</sub> = 30 V, V <sub>GS</sub> = 0 V                            |                                                                                                                                                                                                                                                                              | _     | 10   | μА |
| Drain agurag bro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | okdowa voltago                                                  | V (BR) DSS                              | $I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$                              | 30                                                                                                                                                                                                                                                                           | _     | _    | V  |
| Drain-source breakdown voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 | V (BR) DSX                              | $I_D = 10 \text{ mA}, V_{GS} = -20 \text{ V}$                            | 15                                                                                                                                                                                                                                                                           | _     | _    | V  |
| Gate threshold voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 | V <sub>th</sub>                         | $V_{DS} = 10 \text{ V}, I_D = 0.2 \text{ mA}$                            | 1.3                                                                                                                                                                                                                                                                          | _     | 2.3  | ٧  |
| Drain-cource ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | resistance                                                      | D                                       | $V_{GS} = 4.5 \text{ V}, I_D = 11 \text{ A}$                             |                                                                                                                                                                                                                                                                              | 6.5   | 9.3  | mΩ |
| Diain-source Oiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | resistance                                                      | nds (ON)                                | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 11 A                            | —     —     10       30     —     —       15     —     —       1.3     —     2.3       —     6.5     9.3       —     5.3     8.0       34     67     —       —     1700     2200       —     110     180       —     350     —       —     2.8     4.2       —     3.8     — | 11122 |      |    |
| Forward transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | admittance                                                      | Y <sub>fs</sub>                         | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 11 A                            | 34                                                                                                                                                                                                                                                                           | 67    | _    | S  |
| Input capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )                                                               | C <sub>iss</sub>                        |                                                                          | _                                                                                                                                                                                                                                                                            | 1700  | 2200 |    |
| Reverse transfer capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 | C <sub>rss</sub>                        | $V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$         | _                                                                                                                                                                                                                                                                            | 110   | 180  | pF |
| Output capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 | Coss                                    |                                                                          | _                                                                                                                                                                                                                                                                            | 350   | _    |    |
| Gate resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 | rg                                      | $V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 5 \text{ MHz}$         | _                                                                                                                                                                                                                                                                            | 2.8   | 4.2  | Ω  |
| $ P_{DS} = 10 \text{ V},  P_{DS} = 11 \text{ A} $ $ P_{DS} = 10 \text{ V},  P_{DS} = 11 \text{ A} $ $ P_{DS} = 10 \text{ V},  P_{DS} = 11 \text{ A} $ $ P_{DS} = 10 \text{ V},  P_{DS} = 11 \text{ A} $ $ P_{DS} = 10 \text{ V},  P_{DS} = 11 \text{ A} $ $ P_{DS} = 10 \text{ V},  P_{DS} = 11 \text{ A} $ $ P_{DS} = 10 \text{ V},  $ | Rise time                                                       | t <sub>r</sub>                          | 10 V 🔲 lp = 11 A                                                         | _                                                                                                                                                                                                                                                                            | 3.8   | _    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                               | 10                                      | _                                                                        |                                                                                                                                                                                                                                                                              |       |      |    |
| Switching time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Y <sub>fs</sub>   V <sub>DS</sub> = 10 V, I <sub>D</sub> = 11 A | - ns                                    |                                                                          |                                                                                                                                                                                                                                                                              |       |      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Turn-off time                                                   | t <sub>off</sub>                        | 55                                                                       | _                                                                                                                                                                                                                                                                            | 42    | _    |    |
| Total gate charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tal gate charge                                                 |                                         | $V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 22 \text{ A}$ | _                                                                                                                                                                                                                                                                            | 27    | _    |    |
| (gate-source plus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gate-drain)                                                     | Qg                                      | $V_{DD} \approx 24 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 22 \text{ A}$  | _                                                                                                                                                                                                                                                                            |       |      | nC |
| Gate-source charge 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 | Q <sub>gs1</sub>                        |                                                                          | _                                                                                                                                                                                                                                                                            | 5.2   | _    |    |
| Gate-drain ("Miller") charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 | Q <sub>gd</sub>                         | $V_{DD} \approx 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 22 \text{ A}$ |                                                                                                                                                                                                                                                                              | 4.8   | _    |    |
| Gate switch charg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ge                                                              | Q <sub>SW</sub>                         |                                                                          | _                                                                                                                                                                                                                                                                            | 7.4   | _    |    |

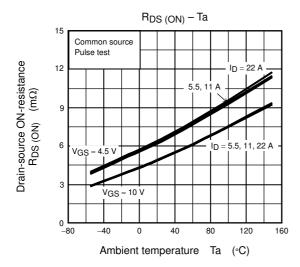

## **Source-Drain Ratings and Characteristics (Ta = 25°C)**

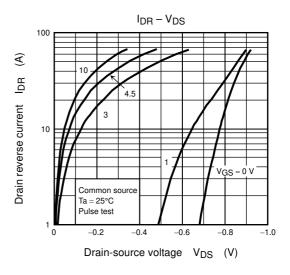

| Characteristic          |       | Symbol   | Test Condition   | Min                                           | Тур. | Max | Unit |   |
|-------------------------|-------|----------|------------------|-----------------------------------------------|------|-----|------|---|
| Drain reverse current   | Pulse | (Note 1) | I <sub>DRP</sub> | _                                             | _    | _   | 66   | Α |
| Forward voltage (diode) |       |          | $V_{DSF}$        | $I_{DR} = 22 \text{ A}, V_{GS} = 0 \text{ V}$ |      | _   | -1.2 | V |

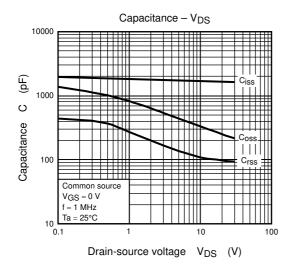

3 2010-03-25

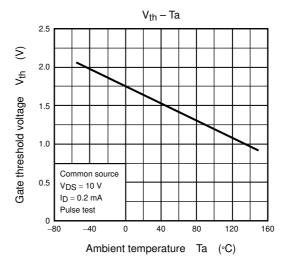


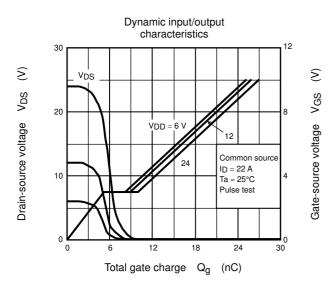


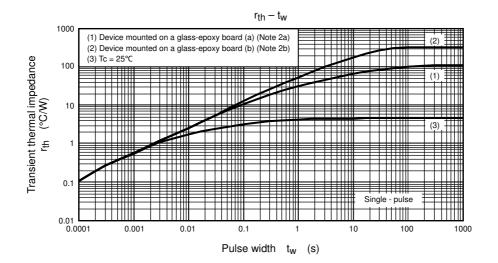



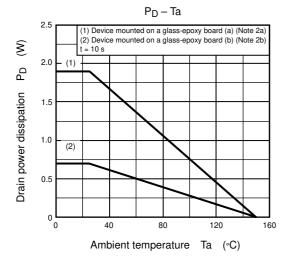



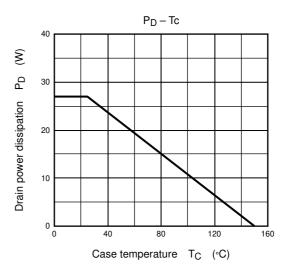



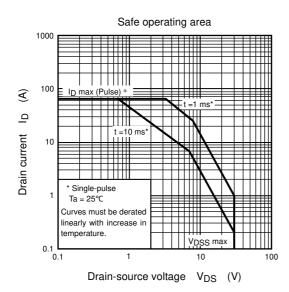


4






5 2010-03-25









6 2010-03-25

#### **RESTRICTIONS ON PRODUCT USE**

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before creating and producing designs and using, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application that Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact ("Unintended Use"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this document.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
  applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
  FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
  WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
  LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
  LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
  SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
  FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
   Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.