

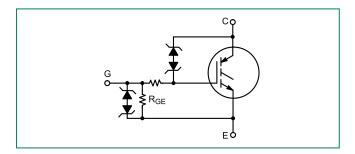
NGD8201B - 20 A, 400 V, N-Channel Ignition IGBT, DPAK

20 Amps, 400 Volts $V_{CE}(on) \le 1.8 \text{ V}$ @ $I_{C} = 10 \text{ A}, V_{GE} \ge 4.5 \text{ V}$

Maximum Ratings (T₁ = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CES}	430	V _{DC}
Gate-Gate Voltage	V _{CER}	430	V _{DC}
Gate-Emitter Voltage	V _{GE}	18	V _{DC}
Collector Current-Continuous @ T _C = 25°C - Pulsed	I _c	15 50	A _{DC}
ESD (Human Body Model) R = 1500 Ω , C = 100 pF	ESD	8.0	kV
ESD (Machine Model) R = 0 Ω, C = 200 pF	ESD	800	V
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	115 0.77	Watts W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	–55 to +175	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


Description

This Logic Level Insulated Gate Bipolar Transistor (IGBT) features monolithic circuitry integrating ESD and Over–Voltage clamped protection for use in inductive coil drivers applications. Primary uses include Ignition, Direct Fuel Injection, or wherever high voltage and high current switching is required.

Features

- Ideal for Coil-on-Plug and Driver-on-Coil Applications
- DPAK Package Offers Smaller Footprint for Increased Board Space
- Gate-Emitter ESD Protection
- Temperature Compensated Gate-Collector Voltage Clamp Limits Stress Applied to Load
- Integrated ESD Diode Protection
- New Design Increases Unclamped Inductive Switching (UIS) Energy Per Area
- LowThreshold Voltage for Interfacing Power Loads to Logic or Microprocessor Devices
- Low Saturation Voltage
- High Pulsed Current Capability
- · Emitter Ballasting for Short-Circuit Capability
- These are Pb-Free Devices

Functional Diagram

Additional Information

Resources

Samples

Unclamped Collector–To–Emitter Avalanche Characteristics (-55°C ≤ TJ ≤ 175°C)						
	Symbol	Value	Unit			
Single Pulse Collector-to-Emitter Avalanche Energy						
$V_{CC} = 50 \text{ V}, V_{GE} = 5.0 \text{ V}, P_k I_L = 22 \text{ A}, R_G = 1000 \Omega, L = 1.8 \text{ mH}, Starting T_J = 25^{\circ}C$		435				
$V_{CC} = 50 \text{ V}, V_{GE} = 5.0 \text{ V}, P_k I_L = 17 \text{ A}, R_G = 1000 \Omega, L = 3.0 \text{ mH}, Starting T_J = 25^{\circ}\text{C}$	E _{AS}	433	mJ			
$V_{CC} = 50 \text{ V}, V_{GE} = 5.0 \text{ V}, P_k I_L = 19 \text{ A}, R_G = 1000 \Omega, L = 1.8 \text{ mH}, Starting T_J = 125 °C$		325				
Reverse Avalanche Energy						
$V_{CC} = 100 \text{ V}, V_{GE} = 20 \text{ V}, P_k I_L = 25.8 \text{ A}, L = 6.0 \text{ mH}, Starting T_J = 25^{\circ}\text{C}$	E _{AS (R)}	2000	mJ			

Thermal Characteristics

	Symbol	Value	Unit
Thermal Resistance, Junction to Case	$R_{\scriptscriptstyle{ hetaJC}}$	1.3	°C/W
Thermal Resistance, Junction to Ambient DPAK (Note 1)	$R_{\scriptscriptstyle{\thetaJA}}$	95	-C/ VV
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	T _L	275	°C

^{1.} When surface mounted to an FR4 board using the minimum recommended pad size $\,$

Electrical Characteristics - OFF

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit	
Collector-Emitter	D\/	I _c = 2.0 mA	T _J = -40°C to 150°C	380	395	420	V	
Clamp Voltage	BV _{CES}	I _c = 10 mA	T _J = -40°C to 150°C	390	405	430	V	
		$V_{CE} = 15 V$ $V_{GE} = 0 V$	T _J = 25°C	-	-	2.0		
Zero Gate Voltage	l _{CES}		T _J = 25°C	-	1.5	5	μA _{DC}	
Collector Current	'CES	$V_{CE} = 350 \text{ V}$ $V_{GE} = 0 \text{ V}$	T _J = 150°C	-	10	30*	F. DC	
			T _J = -40°C	-	0.5	2.5		
	BV _{CES(R)}		T _J = 25°C	27	33	35		
Reverse Collector–Emitter Clamp Voltage		I _c = -75 mA	T _J = 150°C	30	36	40	V _{DC}	
			T _J = -40°C	25	32	35		
			T _J = 25°C	-	0.7	1.0		
Reverse Collector–Emitter Leakage Current	I _{CES(R)}	 CES(R)	V _{CE} = -24 V	T _J = 150°C	-	12	25*	mA
			T _J = -40°C	-	0.1	1.0		
Gate-Emitter Clamp Voltage	BV _{GES}	I _G = 5.0 mA	T _J = -40°C to 150°C	11	13	15	V _{DC}	
Gate-Emitter Leakage Current	I _{GES}	V _{GE} = 10.0 V	T _J = -40°C to 150°C	384	640	700	μA _{DC}	
Gate-Emitter Resistor (Note 3)	R _{GE}	-	$T_J = -40$ °C to 150°C	10	16	26	kΩ	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

 $^{{\}rm *Maximum\,Value\,\,of\,\,Characteristic\,\,across\,Temperature\,\,Range}.$

Electrical Characteristics - ON (Note 3)

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
		I _c = 1.0 mA,	T _J = 25°C	1.2	1.5	1.8	
Gate Threshold Voltage	V _{GE (th)}	$V_{GE} = V_{CE}$	T _J = 150°C	0.8	1.0	1.3	V _{DC}
		▼ GE — ▼ CE	T _J = -40°C	1.4	1.7	2.0*	
Threshold Temperature Coefficient (Negative)	_	-	-	_	3.4	_	mV/∘C
			T _J = 25°C	1.0	1.2	1.5	
		$I_c = 6.0 \text{ A},$	T _J = 150°C	1.0	1.2	1.5	
		$V_{GE} = 4.0 \text{ V}$	T _J = -40°C	1.0	1.2	1.5*	
		L 00A	T _J = 25°C	1.2	1.4	1.6*	
	ollector-to-Emitter On-Voltage	$I_{c} = 8.0 \text{ A},$ $V_{GE} = 4.0 \text{ V}$	T _J = 150°C	1.2	1.4	1.6	
			T _J = -40°C	1.2	1.4	1.6*	
		1 10 A	T _J = 25°C	1.3	1.5	1.8	
Collector to Emitter		$I_c = 10 \text{ A},$	T _J = 150°C	1.3	1.5	1.9	
		V _{GE} = 4.0 V	T _J = -40°C	1.3	1.6	1.8*	V _{DC}
On Voltago			T _J = 25°C	1.7	1.9	2.3	
		$I_{c} = 15 A,$ $V_{GE} = 4.0 V$	T _J = 150°C	1.9	2.2	2.5*	
		V _{GE} = 4.0 V	T _J = -40°C	1.5	1.9	2.3	
		L — 10 A	T _J = 25°C	1.3	1.5	1.8*	
		$I_{c} = 10 \text{ A},$ $V_{GE} = 4.5 \text{ V}$	T _J = 150°C	1.3	1.5	1.8*	
			T _J = -40°C	1.3	1.5	1.8*	
		$I_c = 6.5 \text{ A},$ $V_{GE} = 3.7 \text{ V}$	T _J = 25°C	-	-	1.65	
Forward Transconductance	gfs	$I_{c} = 6.0 \text{ A},$ $V_{ce} = 5.0 \text{ V}$	T _J = 25°C to 150°C	8.0	14	25	Mhos

^{*}Maximum Value of Characteristic across Temperature Range.

^{3.} Pulse Test: Pulse Width \leq 300 μ S, Duty Cycle \leq 2%.

Dynamic Characteristics

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit	
Input Capacitance	C _{iss}	V _{cc} = 25 V	T 4000	400	800	1000		
Output Capacitance	C _{oss}	$V_{GE} = 0V$	$V_{GE} = 0V$	T _J = -40°C to 150°C	50	75	100	pF
Transfer Capacitance	C _{RSS}	f = 1.0 MHz	130 C	4.0	7.0	10		

Switching Characteristics

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
Turn-Off Delay Time (Resistive)	t _{d (off)}	$V_{cc} = 300 \text{ V}$ $I_{c} = 6.5 \text{ A}$	T _J = 25°C	-	4.0	10	
Fall Time (Resistive)	t _f	$R_{G} = 1.0 \text{ k}\Omega$ $R_{L} = 46 \Omega$	T _J = 25°C	-	9.0	15	Saa
Turn-On Delay Time	t _{d (on)}	$V_{cc} = 10 \text{ V}$ $I_{c} = 6.5 \text{ A}$	T _J = 25°C	-	0.7	4.0	μSec
Rise Time	t _r	$R_G = 1.0 \text{ k}\Omega$ $R_L = 1.5 \Omega$	T _J = 25°C	-	4.5	7.0	

Typical Electrical Characteristics

Figure 1. Maximum Single Pulse Switch Off Current vs. Inductance

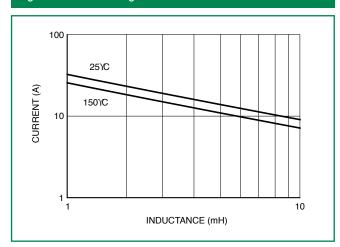


Figure 3. Output Characteristics, T_J = 25°C

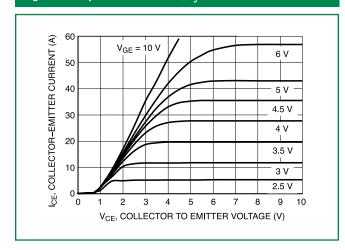


Figure 5. On–Region Characteristics, T₁ = -40°C

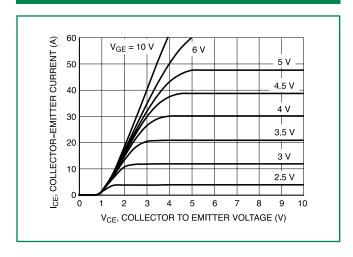


Figure 2. Transfer Characteristics

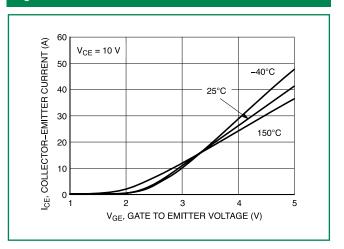
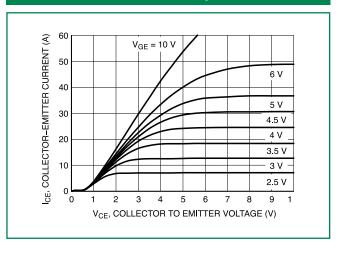
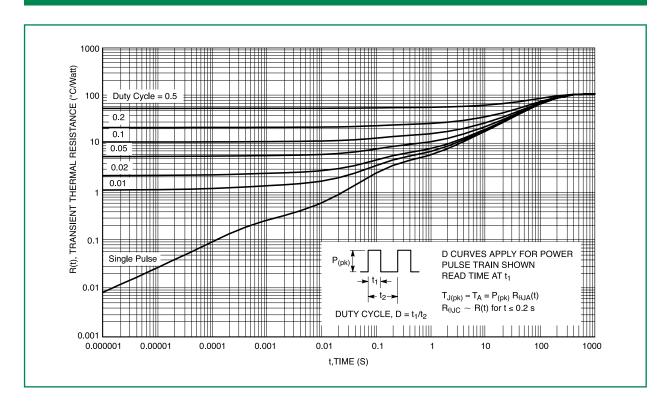


Figure 4. On–Region Characteristics, T_J = 150°C

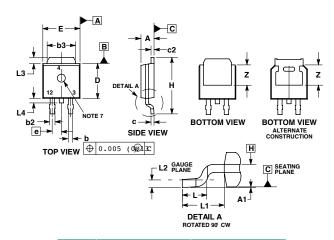
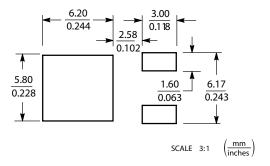
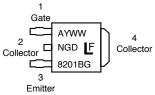


Figure 6. Transient Thermal Resistance (Non-normalized Junction-to-Ambient mounted on minimum pad area)

Dimensions



.	Inc	hes	Millim	neters	
Dim	Min	Max	Min	Max	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.028	0.045	0.72	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090 BSC		2.29	BSC	
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.114	REF	2.90 REF		
L2	0.020	BSC	0.51 BSC		
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASMEY14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and $7\,$
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
- 5. DIMENSIONS D AND E ARE DETERMINED ATTHE OUTERMOST EXTREMES OFTHE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
- 7. OPTIONAL MOLD FEATURE.

Soldering Footrpint

Part Marking System

NGD8201B= Device Code
A= Assemlby Location
Y= Year
WW = Work Week
G = Pb-Free Device

ORDERING INFORMATION

Device	Package	Shipping†
NGD8201BNT4G	DPAK (Pb-Free)	2,500 / Tape & Reel

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics.