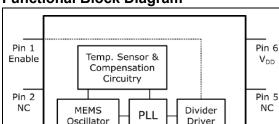


Low-Jitter Precision CMOS Oscillator

Features

- Low RMS Phase Jitter: <1 ps (typ.)
- High Stability: ±10 ppm, ±20 ppm, ±25 ppm, ±50 ppm
- Wide Temperature Range:
 - Automotive: -55°C to +125°C
 - Ext. Industrial: -40°C to +105°C
 - Industrial: -40°C to +85°C
 - Commercial: -20°C to +70°C
- High Supply Noise Rejection: -50 dBc
- Wide Freq. Range: 2.3 MHz to 170 MHz
- Small Industry Standard Footprints
 - 2.5 mm x 2.0 mm, 3.2 mm x 2.5 mm, 5.0 mm x 3.2 mm, and 7.0 mm x 5.0 mm
- Excellent Shock and Vibration Immunity
 - Qualified to MIL-STD-883
- High Reliability
- 20x Better MTF than Quartz Oscillators
- Low Current Consumption
- Supply Range of 2.25 to 3.6V
- Standby and Output Enable Function
- Lead-Free and RoHS Compliant


Applications

- Storage Area Networks
 - SATA, SAS, Fibre Channel
- · Passive Optical Networks
 - EPON, 10G-EPON, V GPON, 10G-PON
- Ethernet
- 1G, 10GBASE-T/KR/LR/SR, and FCoE
- HD/SD/SDI Video and Surveillance
- PCI Express
- Display Port

General Description

The DSC1101 and DSC1121 series of high performance oscillators utilize a proven silicon MEMS technology to provide excellent jitter and stability over a wide range of supply voltages and temperatures. By eliminating the need for quartz or SAW technology, MEMS oscillators significantly enhance reliability and accelerate product development, while meeting stringent clock performance criteria for a variety of communications, storage, and networking applications.

DSC1101 has a standby feature that allows it to completely power-down when EN pin is pulled low; whereas for DSC1121, only the outputs are disabled when EN is low. Both oscillators are available in industry standard packages, including the small 2.5 mm x 2.0 mm, and are "drop-in" replacements for standard 4-pin CMOS quartz crystal oscillators.

Functional Block Diagram

Pin 3

GND

Pin 4

Output

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage, V _{IN}	–0.3V to V _{DD} + 0.3V
Supply Voltage	
ESD Protection On All Pins	
+ Nation: Strangen above these listed under "Absolute Maximum E	

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: 1000+ years of data retention on internal memory.

DC CHARACTERISTICS

Electrical Characteristics							
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
Supply Voltage (Note 1)	V _{DD}	2.25	_	3.6	V	—	
		_	_	0.095		DSC1101, EN pin low, output is disabled	
Supply Current	I _{DD}	_	20	22	mA	DSC1121, EN pin low, output is disabled	
		_	31	35		Output enabled, $C_L = 15 \text{ pF}$, $F_0 = 100 \text{ MHz}$	
Frequency Stability		_		±10		Ext Comm. & Ind. only	
(Including frequency	٨٤			±20		All temp ranges	
variations due to initial tolerance, temp. and	Δ f	_		±25	ppm	All temp ranges	
power supply voltage.)		_		±50		All temp ranges	
Aging	Δf	_		±5	ppm	1 year @ 25°C	
Startup Time (Note 2)	t _{SU}	_		5	ms	T = 25°C	
Input Logic Levels	V _{IH}	0.75×V _{DD}		—		_	
Input Logic High Input Logic Low	V _{IL}	—		$0.25 \times V_{DD}$	V		
Output Disable Time (Note 3)	t _{DS}	_	_	5	ns	_	
	able Time t _{EN}	_		5	ms	DSC1101	
Output Enable Time		_	_	20	ns	DSC1121	
Enable Pull-up Resistor (Note 4)	_		40		kΩ	Pull-up Resistor Exist	
CMOS Output							
Output Logic Levels			_				
Output Logic High Output Logic Low	V _{OL}		_	0.1×V _{DD}	V	I = ±6 mA	

Note 1: Pin 6 V_{DD} should be filtered with 0.1 μ F capacitor.

2: t_{SU} is time to 100 ppm of output frequency after V_{DD} is applied and outputs are enabled.

3: Output Waveform and Test Circuit figures define the parameters.

4: Output is enabled if pad is floated or not connected.

DC CHARACTERISTICS (CONTINUED)

Electrical Characteristics								
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions		
Output Transition Time	t _R	_	1.1	2		20% to 80%		
Rise Time Fall Time	t _F	_	1.3	2	ns	C _L = 15 pF		
Frequency	f ₀	2.3	_	170	MHz	C _L = 15 pF, –20°C to +70°C and –40°C to +85°C		
		3.3	_	170		C _L = 15 pF, –40°C to +105°C and –55°C to +125°C		
Output Duty Cycle	SYM	45	—	55	%	—		
Period Jitter	J _{PER}		3		ps _{RMS}	F _{OUT} = 125 MHz		
	oise J _{PH}		0.3		ps _{RMS}	200 kHz to 20 MHz @ 125 MHz		
Integrated Phase Noise		_	0.38			100 kHz to 20 MHz @ 125 MHz		
		_	1.7	2		12 kHz to 20 MHz @ 125 MHz		

Note 1: Pin 6 V_{DD} should be filtered with 0.1 μ F capacitor.

2: t_{SU} is time to 100 ppm of output frequency after V_{DD} is applied and outputs are enabled.

3: Output Waveform and Test Circuit figures define the parameters.

4: Output is enabled if pad is floated or not connected.

TEMPERATURE SPECIFICATIONS

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
Temperature Ranges (Note 1)							
	T _A	-20	_	+70	°C	Ordering Option E	
Operating Temperature Dange (T)	T _A	-40	—	+85	°C	Ordering Option I	
Operating Temperature Range (T)	T _A	-40	—	+105	°C	Ordering Option L	
	T _A	-55	_	+125	°C	Ordering Option M	
Junction Operating Temperature	Τ _J	—	_	+150	°C	—	
Storage Temperature Range	Τ _S	-55	—	+150	°C	—	
Soldering Temperature Range	_	_	_	+260	°C	40 sec. max	

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

2.0 NOMINAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

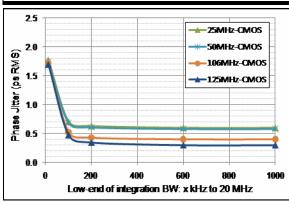


FIGURE 2-1:Phase Jitter (IntegratedPhase Noise).

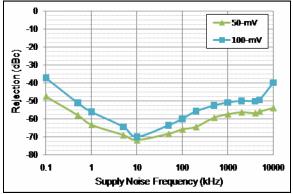
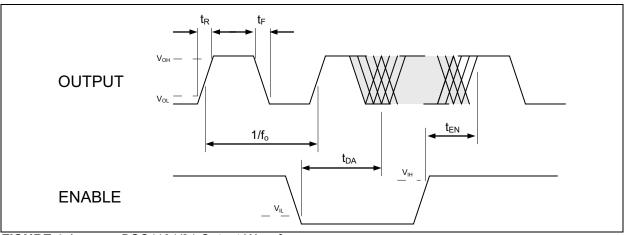


FIGURE 2-2: Power Supply Rejection Ratio.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1. Pin order and descriptions apply across all package types.


TABLE 3-1:PIN FUNCTION TABLE

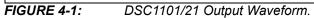
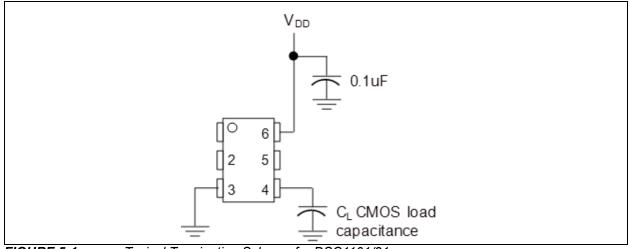
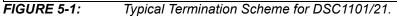

Pin Number 7x5 w/ Pad	Pin Number 7x5 w/o Pad	Pin Number 5x3.2	Pin Number 3.2x2.5	Pin Number 2x2.5	Pin Name	Description
1	1	1	1	1	EN	Enable.
2	2	2	2	2	NC	Do not connect.
3	3	3	3	3	GND	Ground.
4	4	4	4	4	OUT	Output.
5	5	5	5	5	NC	Do not connect.
6	6	6	6	6	V _{DD}	Supply voltage.
PAD	_	_	_	_	PAD	Tie to ground.

TABLE 3-2: OUTPUT ENABLE MODES


EN Pin	DSC1101	DSC1121		
High	Output Active	Output Active		
NC	Output Active	Output Active		
Low	Standby	Output Disabled		


4.0 OUTPUT WAVEFORM

5.0 TYPICAL TERMINATION SCHEME

6.0 BOARD LAYOUT (RECOMMENDED)

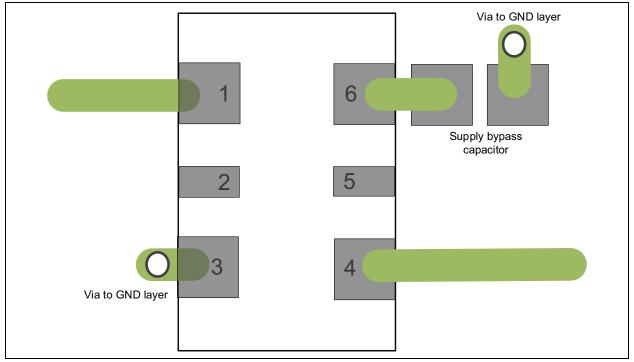
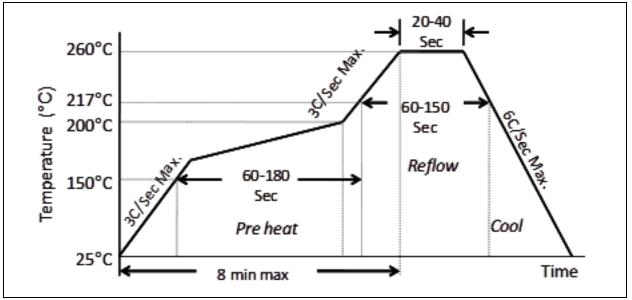
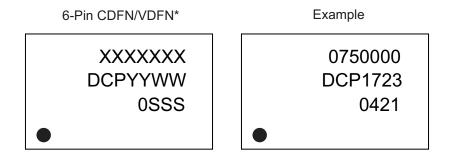



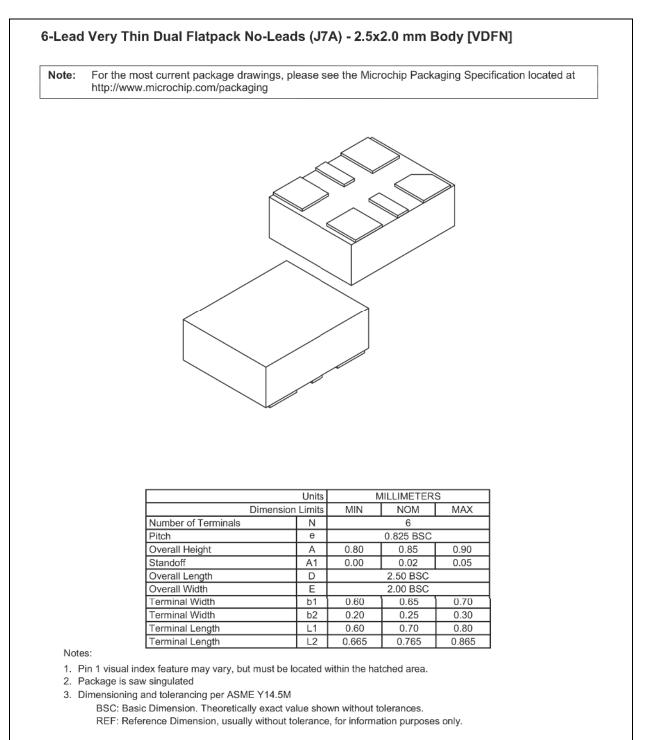
FIGURE 6-1:

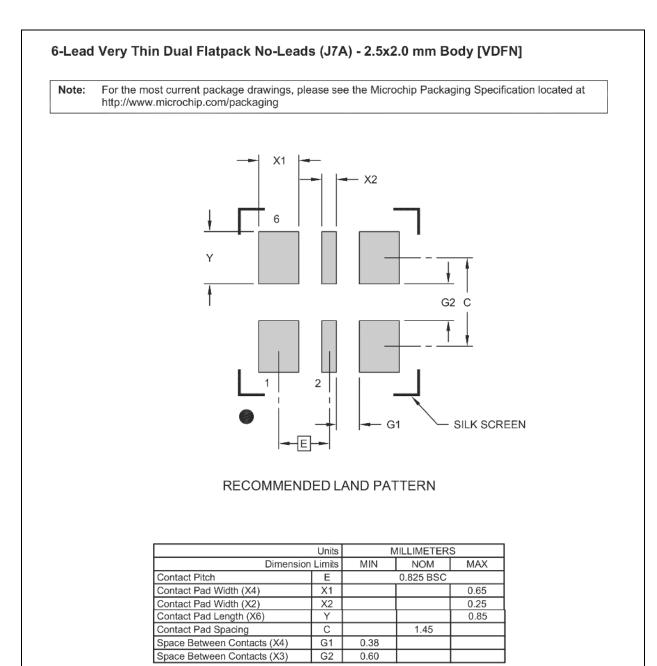
DSC1101/21 Recommended Board Layout.


7.0 SOLDER REFLOW PROFILE

MSL 1 @ 260°C refer to JSTD-020C						
Ramp-Up Rate (200°C to Peak Temp)	3°C/Sec. Max.					
Preheat Time 150°C to 200°C	60-180 Sec.					
Time Maintained Above 217°C	60-150 Sec.					
Peak Temperature	255-260°C					
Time within 5°C of Actual Peak	20-40 Sec.					
Ramp-Down Rate	6°C/Sec. Max.					
Time 25°C to Peak Temperature	8 minutes Max.					

8.0 PACKAGING INFORMATION

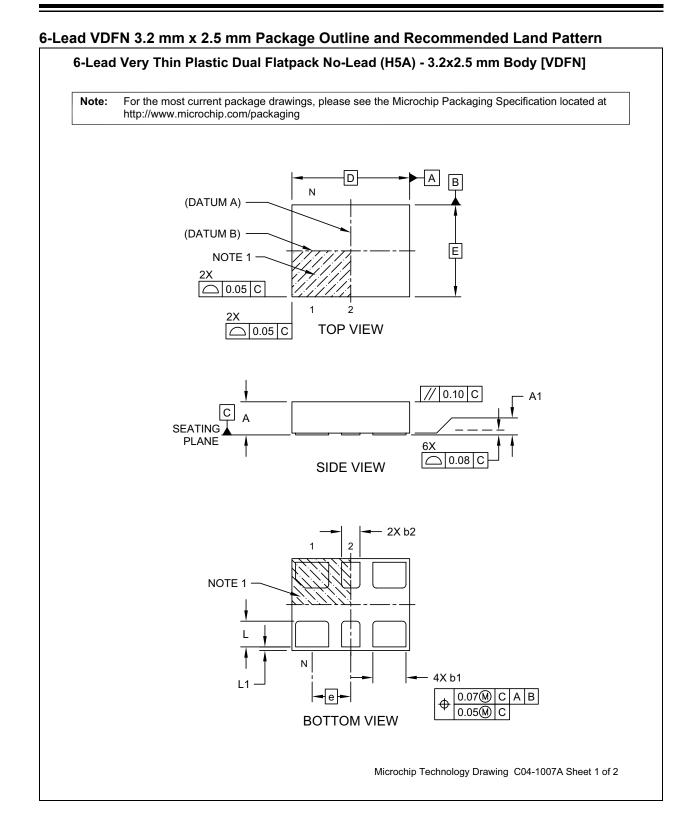

8.1 Package Marking Information

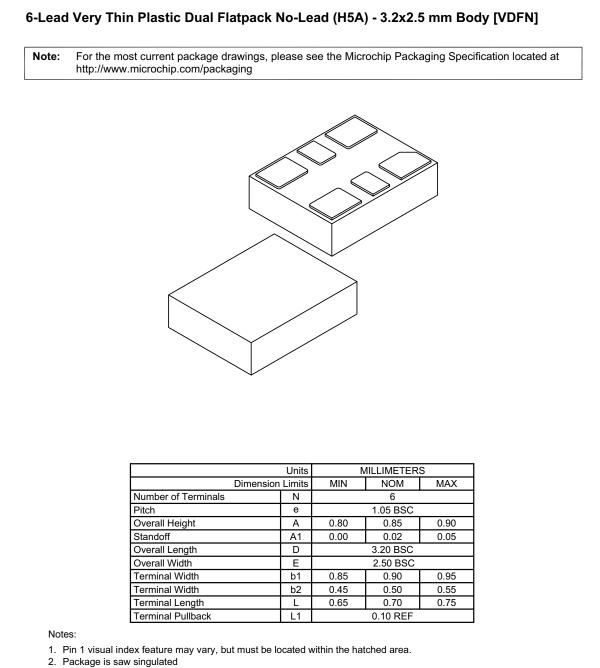

Legen	d: XXX Y YY WW SSS (€3) *	Product code, customer-specific information, or frequency in MHz without printed decimal point Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carried characters the corpor	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for customer-specific information. Package may or may not include ate logo. (_) and/or Overbar (⁻) symbol may not be to scale.

6-Lead VDFN 2.5 mm x 2.0 mm Package Outline and Recommended Land Pattern

6-Lead Very Thin Dual Flatpack No-Leads (J7A) - 2.5x2.0 mm Body [VDFN] For the most current package drawings, please see the Microchip Packaging Specification located at Note: http://www.microchip.com/packaging D А В Ν (DATUM A) (DATUM B) Ē NOTE 1 -2X 2X TOP VIEW 0.05 C 0.10 C С А SEATING PLANE 6X 0.08 C SIDE VIEW 2X b2 2 1 L2 ł 5X L1 Ν 4X b1 0.10 C A B -le-Ф 0.05(M) C BOTTOM VIEW Microchip Technology Drawing C04-1005 Rev C Sheet 1 of 2

Microchip Technology Drawing C04-1005 Rev C Sheet 2 of 2

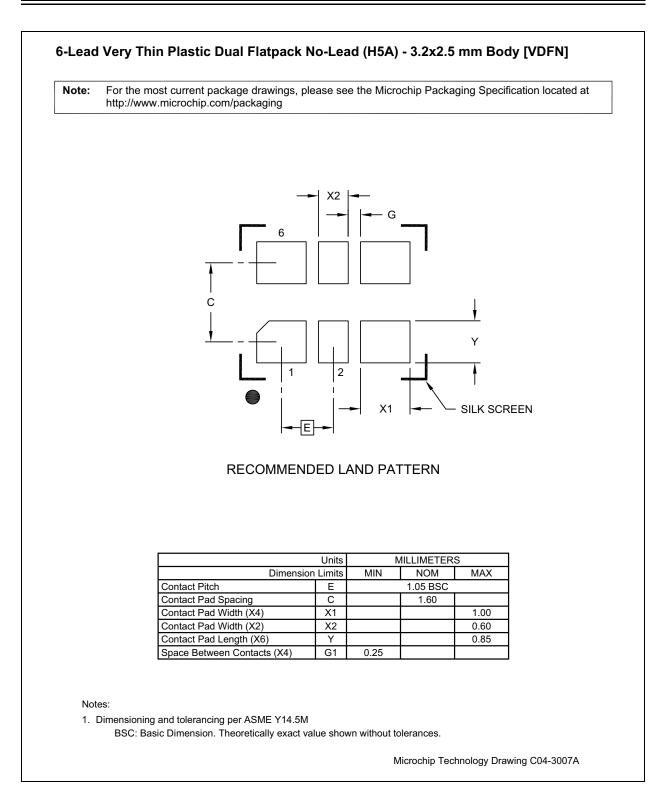

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

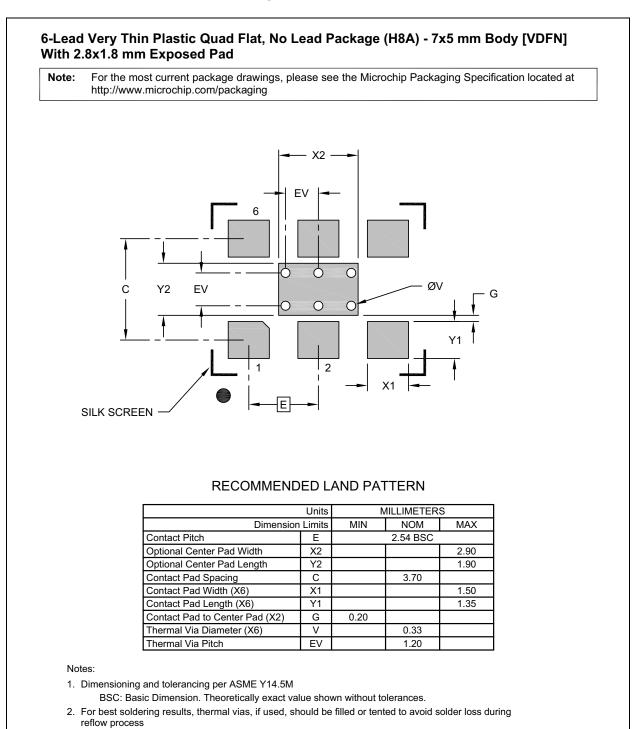
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

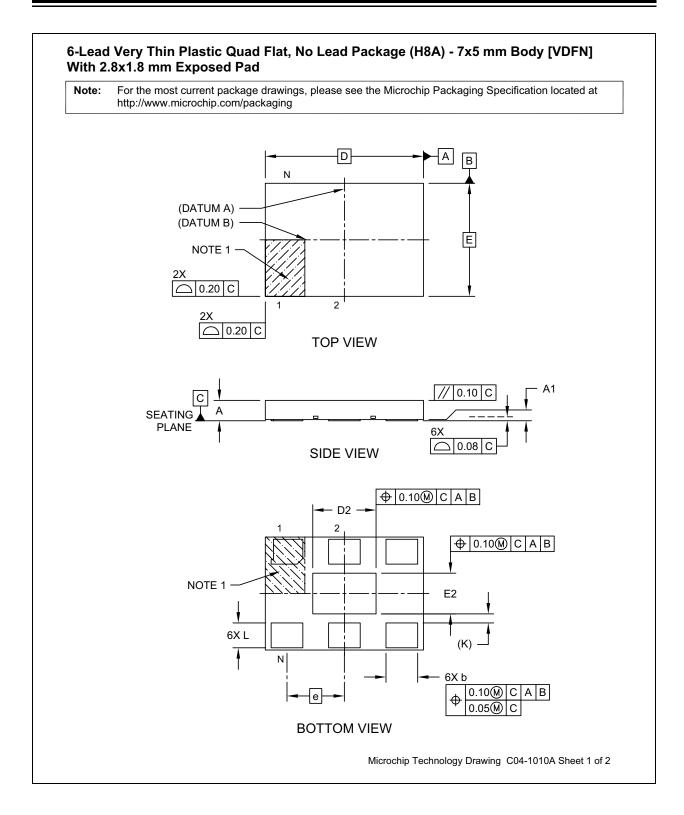
Microchip Technology Drawing C04-3005 Rev C

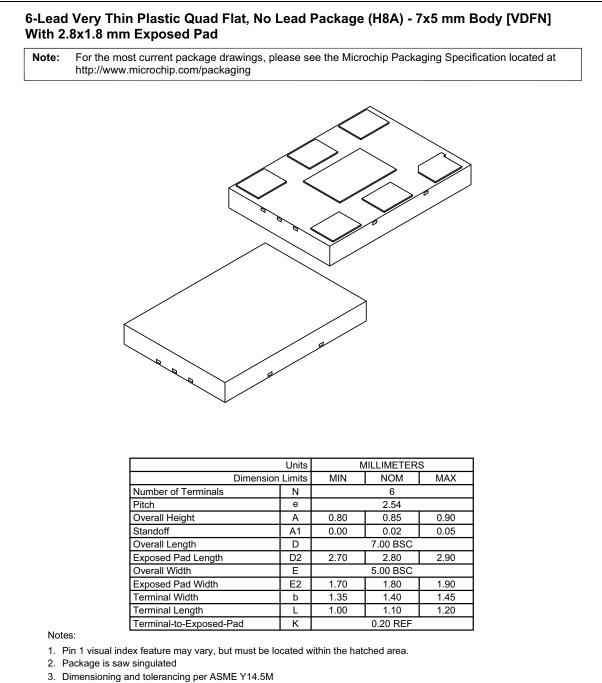


Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

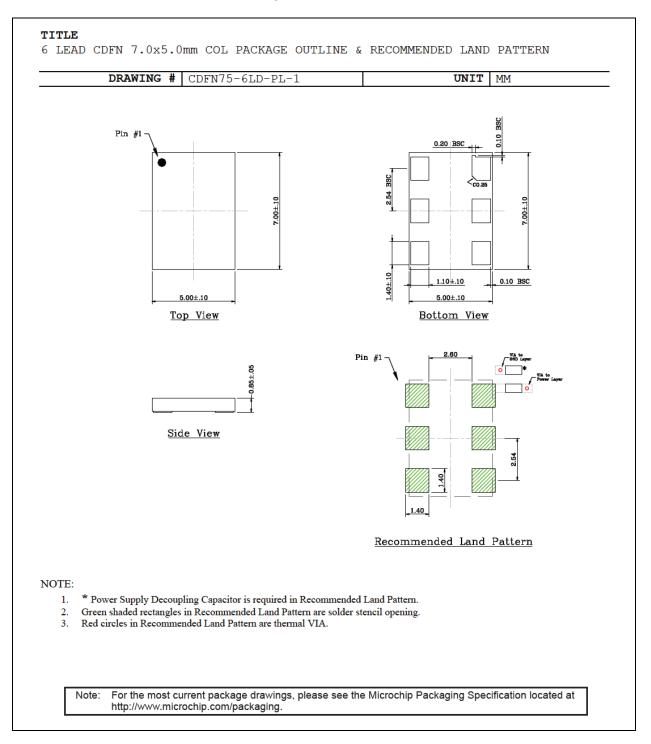

Microchip Technology Drawing C04-1007A Sheet 2 of 2


6-Lead CDFN 5.0 mm x 3.2 mm Package Outline and Recommended Land Pattern



6-Lead VDFN 7.0 mm x 5.0 mm Package Outline and Recommended Land Pattern

Microchip Technology Drawing C04-3010A



BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1010A Sheet 2 of 2

6-Lead CDFN 7.0 mm x 5.0 mm Package Outline and Recommended Land Pattern

APPENDIX A: REVISION HISTORY

Revision A (August 2017)

- Initial creation of document DSC1101/21 to Microchip data sheet template DS20005613A.
- Minor text changes throughout.

Revision B (December 2017)

- Military temperature range changed to Automotive in Features and Product Identification System.
- Supply Current values updated in DC Characteristics table.
- Test Circuit section removed.
- Updated Figure 6-1, Recommended Board Layout.

Revision C (December 2019)

- Corrected Input Logic Low value in DC Characteristics table.
- Updated 6-Lead VDFN 2.5 mm x 2.0 mm Package Outline and Recommended Land Pattern Package Drawing.

Revision D (September 2020)

• Updated the minimum storage temperate value in the Temperature Specifications table to correctly read –55°C.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	<u>X</u>	x	x	-XXX.XXXX	¥	Exa	imples:	
	T	<u>×</u> T	Î		Î	a)	DSC1101AM1-010.000	00T:
Device		mperature Range	Stabili	ty Frequency	Packaging Option			Low-Power Precision CMOS Oscillator with Standby, 6-LD 7.0X5.0
Device:	DSC1101:	Low-Pov Standby		sion CMOS Oscil	llator with			VDFN, Automotive Tem- perature Range, ±50 ppm,
	DSC1121:	,		sion CMOS Oscil	llator			10 MHz Output Fre- quency, 1,000/Reel
Paakaga	A =	6 Lood 7 (.0 mm VDFN		b)	DSC1101BL2-030.00	
Package:	в =	6-Lead 5.0) mm x 3	.2 mm CDFN				Low-Power Precision CMOS Oscillator with
	C = D =			.5 mm VDFN				Standby, 6-LD 5.0X3.2
	D = N =			.0 mm VDFN .0 mm CDFN (no	center pad)			CDFN, Extended Indus-
		o Loud 7.			contor puu)			trial Temperature Range,
Temperature	E =	20°C to	+70°C /E	xtended Comme	rcial)			±25 ppm, 30 MHz Output
Range:	I =	-40°C to			rciar)			Frequency, 110/Tube
	L =	–40°C to	+105°℃ (Extended Industr	ial)	c)	DSC1101DE5-150.000	0:
	M =	–55°C to	+125°C (Automotive)				Low-Power Precision
								CMOS Oscillator with
Stability:	1 =	±50 ppm						Standby, 6-LD 2.5X2.0
-	2 =	±25 ppm						VDFN, Extended Commer-
	3 = 5 =	±20 ppm						cial Temperature Range,
	5 =	±10 ppm						±10 ppm, 150 MHz Output
						.15	D004404410 075 000	Frequency, 110/Tube
Frequency:	XXX.XXXX	=2.3 MHz to	5 170 MF	Iz (user-defined)		d)	DSC1101AI2-075.000	
								Low-Power Precision CMOS Oscillator with
Packing Option:	<blank>=</blank>	110/Tube						
• •	T =	1,000/Ree	el					Standby, 6-LD 7.0X5.0
								VDFN, Industrial Tempera-
								ture Range, ±25 ppm, 75 MHz Output Fre-
								quency, 1,000/Reel
						Not	e 1: Tape and Reel ide	ntifier only appears in the
							identifier is used for	er description. This or ordering purposes and
							with your Microchi	e device package. Check p Sales Office for package e Tape and Reel option.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- · Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are
 committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection
 feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or
 other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUEN-TIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet Iogo, memBrain, Mindi, MiVVi, MPASM, MPF, MPLAB Certified Iogo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\ensuremath{\textcircled{\sc 0}}$ 2017-2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-6869-1

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141

Tel: 81-6-6152-7160

Tel: 81-3-6880- 3770

Tel: 82-53-744-4301

Tel: 82-2-554-7200

Tel: 60-3-7651-7906

Tel: 63-2-634-9065

Tel: 65-6334-8870

Taiwan - Hsin Chu

Taiwan - Kaohsiung

Thailand - Bangkok

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Italy - Padova

Italy - Milan

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Japan - Osaka

Japan - Tokyo

Korea - Daegu

Korea - Seoul

Malaysia - Kuala Lumpur

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila

Singapore

Tel: 886-3-577-8366

Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Tel: 66-2-694-1351

China - Zhuhai