AK7

Request Samples (>)

Check Inventory

7.0 x 5.0 x 1.8 mm **RoHS/RoHS II Compliant** MSL Level = 1

ESD Sensitive (Pb)

Features

- 3rd overtone solution
- Ultra-Low jitter: 75 fs typ RMS (100fs MAX, F= 156.25MHz LVPECL); spurs included
- Frequency range: 100MHz to 220MHz
- Lowest in-class power consumption (16mA Typ LVDS)
- \pm 20ppm & \pm 25ppm stability (-40 to +85°C) options available (dependent on frequency)
- 3.3V, 2.5V, 1.8V Vdd supply
- LVPECL, LVDS, & HCSL differential output options
- Output enable standard

Key Electrical Specifications

Applications

- Networking & communications
- Gigabit Ethernet
- Fibre Channel
- SONET/SDH
- RF systems, base stations (BTS)
- Datacenter
- PCI Express
- Test & measurement

Parameter	·s	Min.	Typ.	Max.	Unit	Notes
Frequency Range		100		220	MHz	
Standard Available Frequence	ies		22.88 125 .25 200 2		MHz	Contact Abracon for availability of frequencies not listed
		2.97	3.3	3.63		Option "A"
Supply Voltage (Vdd) [Note 1]	upply Voltage (Vdd) [Note 1]		2.5	2.62	V	Option "B"
		1.71	1.8	1.89		Option "C"
	LVPECL		30	50		@ 220MHz; @ Vdd=3.3V
Supply Current (Idd)	LVDS		16	27	mA	@ 220MHz; @ Vdd=3.3V
	HCSL		17	30		@ 220MHz; @ Vdd=3.3V
Operating Temperature Rang	T. A. D.			+70	°C	Option "D"
Operating Temperature Kang	e	-40		+85		Option "F" or "Q"
Storage Temperature		-55		+150	°C	
Frequency Accuracy (Initial S [Note 3] at time of shipment (Pre-Refl	,	-10	<±5	+10	ppm	Relative to carrier frequency
D G. 1 III. Note	2 21	-15		+15		Option "D" (-20°C to +70°C)
Frequency Stability over Notes Operating Temperature Rang		-20		+20	ppm	Option "Q" (-40°C to +85°C)
operating reinperature Rang	C	-25		+25		Option "F" (-40°C to +85°C)
Aging over 20 Year Product	Life [Note 4]	-15		+15	ppm	
All-Inclusive Frequency Acc	uracy (Total	-40		+40		Option "D" (-20°C to +70°C)
Stability)	• `	-45		+45	ppm	Option "Q" (-40°C to +85°C)
over 20 Year Product Life [No	ites 4, 5]	-50		+50		Option "F" (-40°C to +85°C)

AK7

Request Samples ()

Check Inventory

ESD Sensitive (Pb)

7.0 x 5.0 x 1.8 mm **RoHS/RoHS II Compliant** MSL Level = 1

Parameter	s	Min.	Тур.	Max.	Unit	Notes
	LVDECL		0.2	0.4		@ Vdd=3.3V, R_L =50 Ω
	LVPECL		0.3	0.6		@ Vdd=2.5V, R_L =50Ω
	LVDS		0.15	0.4	ns	@ Vdd=3.3V, R_L =100 Ω
Rise (Tr) / Fall (Tf) Time			0.15	0.4		@ Vdd=2.5V, R _L =100Ω
20% to 80% V _{peak to peak}			0.3	0.5		@ Vdd=1.8V, R_L =100 Ω
			0.3	0.5		@ Vdd=3.3V, R_L =50 Ω to GND
	HCSL		0.3	0.5		@ Vdd=2.5V, R_L =50 Ω to GND
			0.3	0.6		@ Vdd=1.8V, R_L =50 Ω to GND
Duty Cycle		45		55	%	
Start-up Time [Note 2]			< 2	5.0	ms	

Note 1: Supply voltage (Vdd) = 1.8V option not available with LVPECL output

Note 2: Relative to initial measured frequency @ +25°C

Note 3: Option Q only available in select frequencies. Please contact Abracon for availability

Note 4: Relative to post-reflow frequency

Note 5: Includes temperature stability, initial frequency accuracy, load pulling, power supply variation, and 20-year aging

AK7

Request Samples (>)

Check Inventory

7.0 x 5.0 x 1.8 mm **RoHS/RoHS II Compliant**

ESD Sensitive MSL Level = 1

Parar	neters		Min.	Typ.	Max.	Unit	Notes
	LVPECL	V_{OH}	V _{dd} -1.03		V_{dd} -0.88		D -500 t- V 20V
D:00 1	LVPECL	$V_{ m OL}$	V_{dd} -1.85		V _{dd} -1.60		$R_L=50\Omega$ to $V_{dd}-2.0V$
Differential	LVDC	V_{OH}		1.40	1.60	V	$R_L=100\Omega$ between
Output High Voltage (V _{OH}) Output Low Voltage (V _{OL})	LVDS	$V_{ m OL}$	0.90	1.10		V	both outputs
Output Low Voltage (Vol.)	HCCI	V_{OH}	0.40	0.74	0.85		$R_L=50\Omega$ to ground
	HCSL	V_{OL}	-0.15	0.00	0.15		on each output
			0.595	0.750	0.930		LVPECL
Output Voltage Swing			0.250	0.350	0.450	V	LVDS
			0.620	0.700	0.780		HCSL
	_		0.7*(V _{dd})				Output Enable or No Connect
Output Enable & Disable Con	utput Enable & Disable Control				0.3*(V _{dd})	V	Output Disable (High Impedance)
Output Enable Time				< 1	5.0	ms	
Output Disable Time					0.2	μs	
Output Disable Current Consu	mption				< 10	μΑ	$OE \le 0.3V$
		LVPECL		70	95		@ Vdd=3.3V
RMS Phase Jitter [Note 6, 7, 8]		LVPECL		80	105	fsec	@ Vdd=2.5V
@ +25°C	@ 200 MHz	LVDS		125	150		@ Vdd=3.3V
	W 200 NIHZ	LVDS		150	175	isec	@ Vdd=2.5V
(12kHz- 20MHz BW)		HCCI		120	145]	@ Vdd=3.3V
		HCSL		135	160		@ Vdd=2.5V
		LVPECL		75	100		@ Vdd=3.3V
		LVPECL		80	105	-	@ Vdd=2.5V
	@ 156.25	LVDC		90	115	c	@ Vdd=3.3V
	MHz	LVDS		80	105	fsec	@ Vdd=2.5V
		Heer		110	135		@ Vdd=3.3V
		HCSL		115	140		@ Vdd=2.5V
		LADEGI		115	140		@ Vdd=3.3V
		LVPECL		95	120		@ Vdd=2.5V
		LUDG		125	150		@ Vdd=3.3V
	@ 148.5 MHz	LVDS		120	145	fsec	@ Vdd=2.5V
				130	155		@ Vdd=3.3V
		HCSL		135	160		@ Vdd=2.5V
				115	140	1	@ Vdd=1.8V

Note 6: Guaranteed by characterization; RMS Phase Jitter specifications are inclusive of any spurs

Note 7: Phase jitter measured with Keysight E5052B Signal Source Analyzer

Note 8: Refer to the next section for phase noise test setup and representative phase noise plots

AK7

Request Samples (>)

Check Inventory

7.0 x 5.0 x 1.8 mm **RoHS/RoHS II Compliant** MSL Level = 1

@ Vdd=1.8V

155

180

Paran	ieters		Min.	Typ.	Max.	Unit	Notes
		LVPECL		100	125		@ Vdd=3.3V
RMS Phase Jitter [Note 6, 7, 8]		LVPECL		100	125		@ Vdd=2.5V
@ +25°C				150	175		@ Vdd=3.3V
(1211) 20141 DW	@ 125 MHz	LVDS		110	135	fsec	@ Vdd=2.5V
(12kHz- 20MHz BW)	W 125 MITZ			140	165	isec	@ Vdd=1.8V
				135	160		@ Vdd=3.3V
		HCSL		140	165		@ Vdd=2.5V
				135	160		@ Vdd=1.8V
		LVDECL		150	175		@ Vdd=3.3V
		LVPECL		155	180		@ Vdd=2.5V
				130	155		@ Vdd=3.3V
	○ 122 00 MH	LVDS		115	140		@ Vdd=2.5V
	@ 122.88 MHz			165	190		@ Vdd=1.8V
				135	160	fsec	@ Vdd=3.3V
		HCSL		140	165		@ Vdd=2.5V
				125	150		@ Vdd=1.8V
		LVDS		155	180		@ Vdd=2.5V
	@ 100 MHz			145	170		@ Vdd=3.3V
	@ 100 MHz	HCSL		120	145		@ Vdd=2.5V

Phase Noise Test Setup

- Keysight E5052B Signal Source Analyzer
- Integration Bandwidth = 12kHz to 20MHz
- Spurious Activity (entire plot trace) = Not omitted (Normalized in dBc/Hz)
- Specifed Spur Omission Function = Not enabled
- IF Gain = 20dB
- Correlation = 5
- Average = 3

Note 6: Guaranteed by characterization; RMS phase jitter specifications are inclusive of any spurs

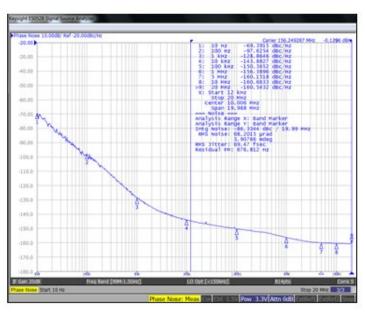
Note 7: RMS phase jitter measured with Keysight E5052B Signal Source Analyzer

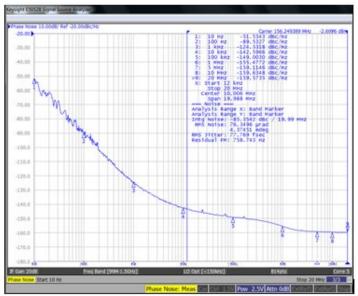
Note 8: Refer to next section for phase noise test setup and representative phase noise plots

AK7

Request Samples ()

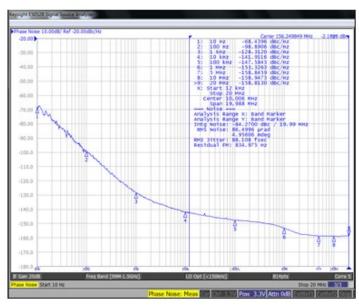
Check Inventory

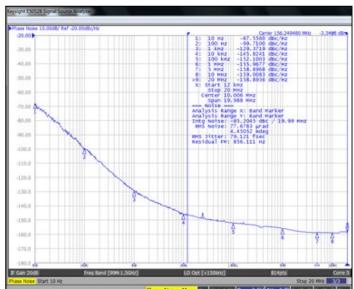

ESD Sensitive



7.0 x 5.0 x 1.8 mm RoHS/RoHS II Compliant MSL Level = 1

Representative Phase Noise Plots @ +25°C [Note 9]


F=156.2500MHz | V_{dd}=3.3V | LVPECL RMS Phase Jitter = 69 fsec F=156.2500MHz | V_{dd} =2.5V | LVPECL RMS Phase Jitter = 77 fsec

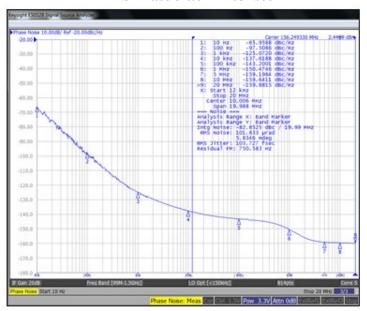


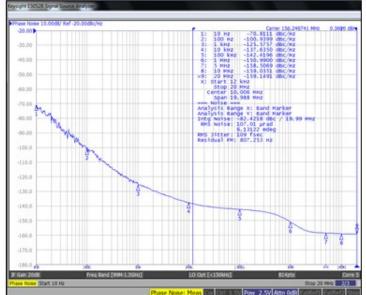
 $F=156.2500MHz \mid V_{dd}=3.3V \mid LVDS$ RMS Phase Jitter = 88 fsec

Note 9: Contact Abracon for phase noise plots at alternative supply voltage (V_{dd}) & differential output formats

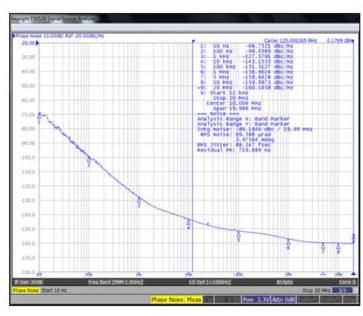
AK7

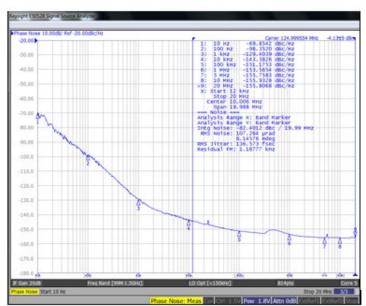
Request Samples (S)


Check Inventory


7.0 x 5.0 x 1.8 mm RoHS/RoHS II Compliant

ESD Sensitive (Pb) MSL Level = 1


 $F=156.2500MHz \mid V_{dd}=3.3V \mid HCSL$ RMS Phase Jitter = 103 fsec


F=156.2500MHz | V_{dd} =2.5V | HCSL RMS Phase Jitter = 109 fsec

 $F{=}125.0000MHz \mid V_{dd}{=}3.3V \mid LVPECL$ RMS Phase Jitter = 88 fsec

 $F{=}125.0000MHz \mid V_{dd}{=}1.8V \mid LVDS$ RMS Phase Jitter = 136 fsec

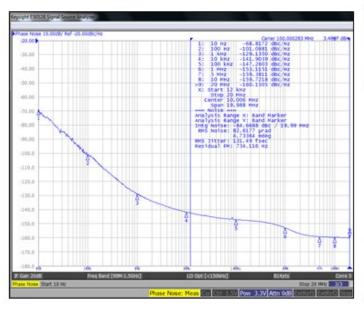
Note 9: Contact Abracon for phase noise plots at alternative supply voltage (V_{dd}) & differential output formats

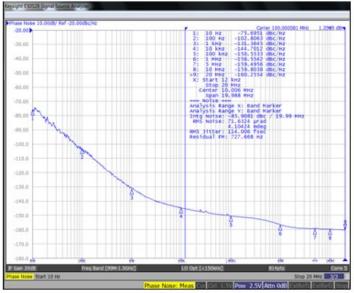
REVISED: 06-17-19

AK7

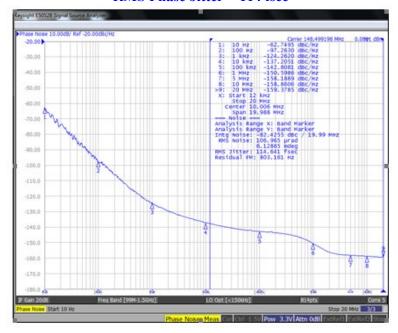
Request Samples (S)

Check Inventory

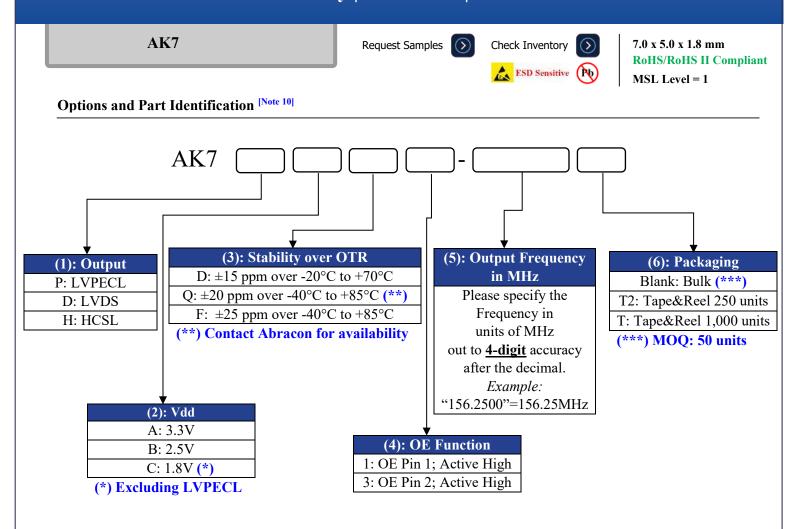

7.0 x 5.0 x 1.8 mm RoHS/RoHS II Compliant


MSL Level = 1

ESD Sensitive


 $F{=}100.0000MHz \mid V_{dd}{=}3.3V \mid HCSL$ RMS Phase Jitter = 131 fsec

F=100.0000MHz | V_{dd} =2.5V | HCSL RMS Phase Jitter = 114 fsec



 $F=148.5000MHz \mid V_{dd}=3.3V \mid LVPECL$ RMS Phase Jitter = 114 fsec

Note 9: Contact Abracon for phase noise plots at alternative supply voltage (V_{dd}) & differential output formats

Part Number Example:

AK7PAF1-156.2500

AK7PAF1-156.2500T2

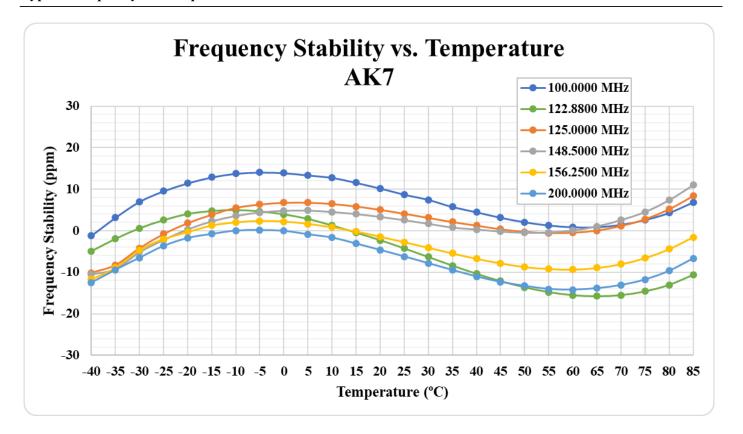
AK7PAF1-156.2500T

Note 10: Contact Abracon for non-standard part number configurations and/or requests with carrier frequency callouts up to 5 & 6 digit accuracy after the decimal

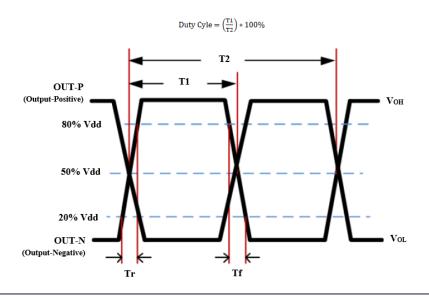
REVISED: 06-17-19

AK7

Request Samples (>)


Check Inventory

ESD Sensitive (Pb)



7.0 x 5.0 x 1.8 mm RoHS/RoHS II Compliant MSL Level = 1

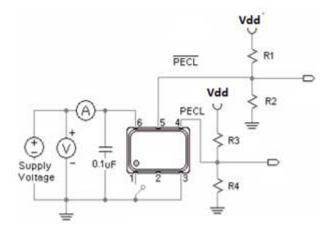
Typical Frequency vs. Temperature Characteristics

Differential Output Waveform

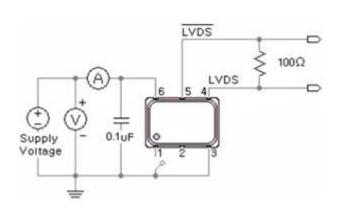
AK7

Request Samples (S)

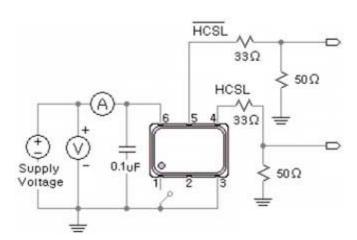
Check Inventory


7.0 x 5.0 x 1.8 mm **RoHS/RoHS II Compliant**

ESD Sensitive (Pb) MSL Level = 1


Recommended Test Circuit [Note 11]

LVPECL


LVDS

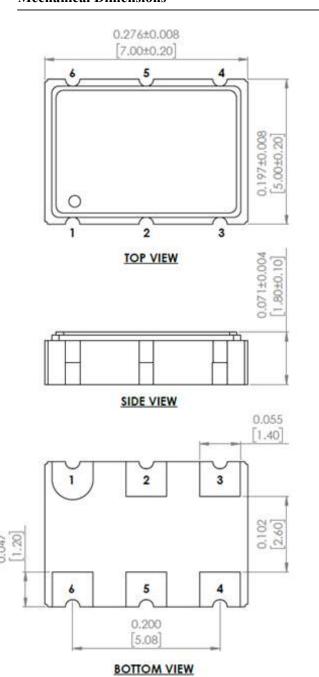
Vdd= 3.3V: R1=R3=127 Ω ; R2=R4=82.5 Ω Vdd= 2.5V: R1=R3= 250Ω ; R2=R4= 62.5Ω

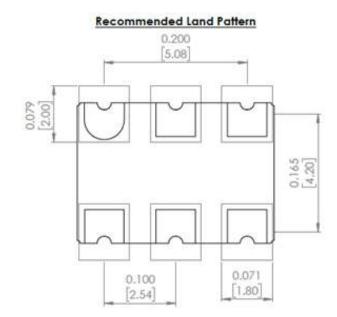
HCSL

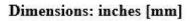
Note 11: Recommended test circuit images are representative of when the OE Function is located on Pin 1; when the OE Function is located on Pin 2, then Pin 1=No Connect & Pin 2=OE or No Connect.

AK7

Request Samples ()


Check Inventory


ESD Sensitive Pb


7.0 x 5.0 x 1.8 mm RoHS/RoHS II Compliant MSL Level = 1

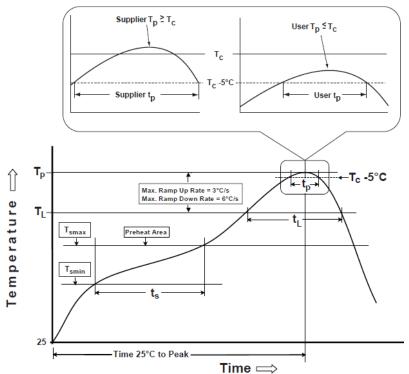
Mechanical Dimensions

Case 1 Pin #1=Output Enable/Disable Function where OE is Active HIGH		Case 2 Pin #2=Output Enable/Disable Function where OE is Active HIGH		
Pin	Description	Pin	Description	
#1	Output Enable = Logic High, "1", Vdd	# 1	No Connect	
# 1	Output Disable =		Output Enable =	
	Logic Low, "0", GND	# 2	Logic High, "1", Vdd	
# 2	No Connect	# 2	Output Enable =	
# 4	140 Collifect		Logic Low, "0", GND	
# 3	GND	# 3	GND	
# 4	Output	# 4	Output	
# 5	Complementary output	# 5	Complementary output	
# 6	Supply Voltage (Vdd)	# 6	Supply Voltage (Vdd)	

AK7

Request Samples (S)

Check Inventory


7.0 x 5.0 x 1.8 mm **RoHS/RoHS II Compliant**

220 °C

220 °C

ESD Sensitive (Pb) MSL Level = 1

Reflow Profile [JEDEC J-STD-020]

Table 1 **SnPb Eutectic Process** Classification Temperatures (T_c) Volume mm³ Thickness <350 <u>></u>350

235 °C

220 °C

Table 2

<2.5 mm

≥2.5 mm

Pb-Free Proce Classification		es (T₅)	
Package Thickness	Volume mm³ <350	Volume mm ³ 350-2000	Volume mm³ >2000
<1.6 mm	260 °C	260 °C	260 °C
1.6 mm - 2.5 mm	260 °C	250 °C	245 °C
>2.5 mm	250 °C	245 °C	245 °C

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Preheat / soak		
Temperature minimum (T _{smin})	100°C	150°C
Temperature maximum (T _{smax})	150°C	200°C
Time (T _{smin} to T _{smax}) (t _s)	60 - 120 sec.	60 - 120 sec.
Average ramp-up rate (T _{smax} to T _P)	3°C/sec. max	3°C/sec. max
Liquidous temperature (T _L)	183°C	217°C
Time at liquidous (t _L)	60 - 150 sec.	60 - 150 sec.
Peak package body temperature (T _P)*	see Table 1	see Table 2
Time $(t_p)^{**}$ within 5°C of the specified classification temperature (T_c)	20 sec.	30 sec.
Ramp-down rate (T _p to T _{smax})	6°C/sec. max	6°C/sec. max
Time 25°C to peak temperature	6 min. max	8 min. max
Reflow cycles	2 max	2 max

^{*}Tolerance for peak profile temperature (T_P) is defined as a supplier minimum and a user maximum.

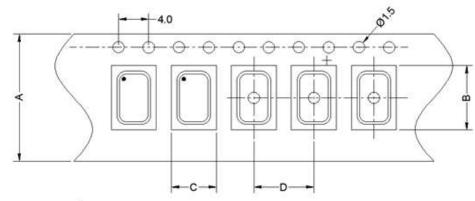
^{**}Tolerance for time at peak profile temperature (tp) is defined as supplier minimum and a user maximum.

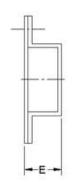
AK7

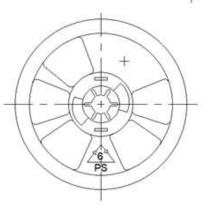
Request Samples (>)

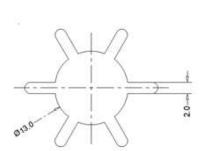
Check Inventory

ESD Sensitive

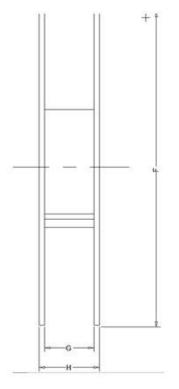



7.0 x 5.0 x 1.8 mm RoHS/RoHS II Compliant MSL Level = 1


Packaging


Bulk (MOQ=50 units)
T2 = Tape & Reel 250 units/reel
T= Tape & Reel 1,000 units/reel

Feeding (PULL) Direction ->



Dimensions
16.0
7.2
5.4
8.0
1.8
Dimensions
180.0
16.5
19.6

Dimensions: mm

ATTENTION: Abracon LLC's products are COTS – Commercial-Off-The-Shelf products; suitable for Commercial, Industrial and, where designated, Automotive Applications. Abracon's products are not specifically designed for Military, Aviation, Aerospace, Life-dependent Medical applications or any application requiring high reliability where component failure could result in loss of life and/or property. For applications requiring high reliability and/or presenting an extreme operating environment, written consent and authorization from Abracon LLC is required. Please contact Abracon LLC for more information.

