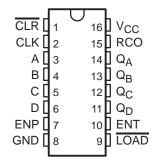
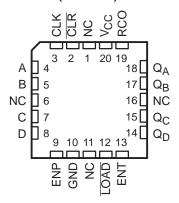
SDAS276A - DECEMBER 1994 - REVISED JULY 2000


- Internal Look-Ahead Circuitry for Fast Counting
- Carry Output for n-Bit Cascading
- Synchronous Counting
- Synchronously Programmable
- Package Options Include Plastic Small-Outline (D) and Shrink Small-Outline (DB) Packages, Ceramic Chip Carriers (FK), Standard Plastic (N) and Ceramic (J) DIPs

description


These synchronous, presettable, 4-bit decade and binary counters feature an internal carry look-ahead circuitry for application in high-speed counting designs. The SN54ALS162B is a 4-bit decade counter. The 'ALS161B, 'ALS163B, 'AS161, and 'AS163 devices are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when instructed by the count-enable (ENP, ENT) inputs and internal gating. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. A buffered clock (CLK) input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.

These counters are fully programmable; they can be preset to any number between 0 and 9 or 15. Because presetting is synchronous, setting up a low level at the load (LOAD) input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable inputs.

SN54ALS161B, SN54ALS162B, SN54ALS163B, SN54AS161, SN54AS163... J PACKAGE SN74ALS161B, SN74AS161, SN74AS163... D OR N PACKAGE SN74ALS163B... D, DB, OR N PACKAGE (TOP VIEW)

SN54ALS161B, SN54ALS162B, SN54ALS163B, SN54AS161, SN54AS163 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

The clear function for the 'ALS161B and 'AS161 devices is asynchronous. A low level at the clear (\overline{CLR}) input sets all four of the flip-flop outputs low, regardless of the levels of the CLK, \overline{LOAD} , or enable inputs. The clear function for the SN54ALS162B, 'ALS163B, and 'AS163 devices is synchronous, and a low level at \overline{CLR} sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily by decoding the \overline{Q} outputs for the maximum count desired. The active-low output of the gate used for decoding is connected to \overline{CLR} to synchronously clear the counter to 0000 (LLLL).

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. ENP and ENT inputs and a ripple-carry (RCO) output are instrumental in accomplishing this function. Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. RCO, thus enabled,

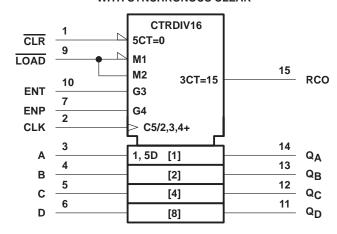
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SDAS276A - DECEMBER 1994 - REVISED JULY 2000

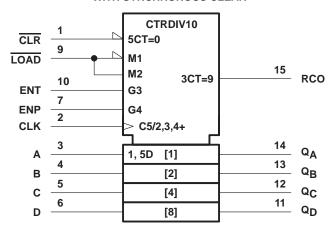
description (continued)

produces a high-level pulse while the count is maximum (9 or 15, with Q_A high). The high-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the level of CLK.

These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, or $\overline{\text{LOAD}}$) that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the stable setup and hold times.

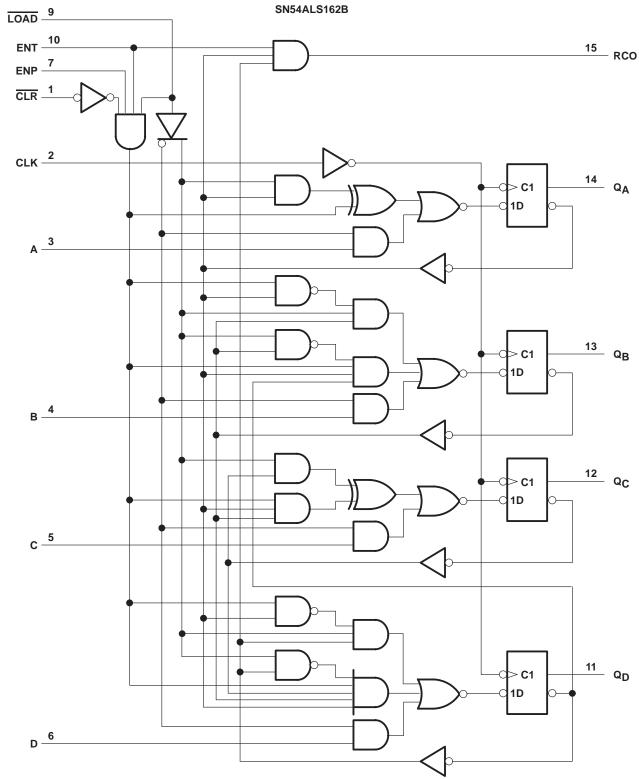

The SN54ALS161B, SN54ALS162B, SN54ALS163B, SN54AS161, and SN54AS163 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS161B, SN74ALS163B, SN74AS161, and SN74AS163 are characterized for operation from 0°C to 70°C.

logic symbols†


'ALS161B AND 'AS161 BINARY COUNTERS WITH DIRECT CLEAR

'ALS163B AND 'AS163 BINARY COUNTERS WITH SYNCHRONOUS CLEAR

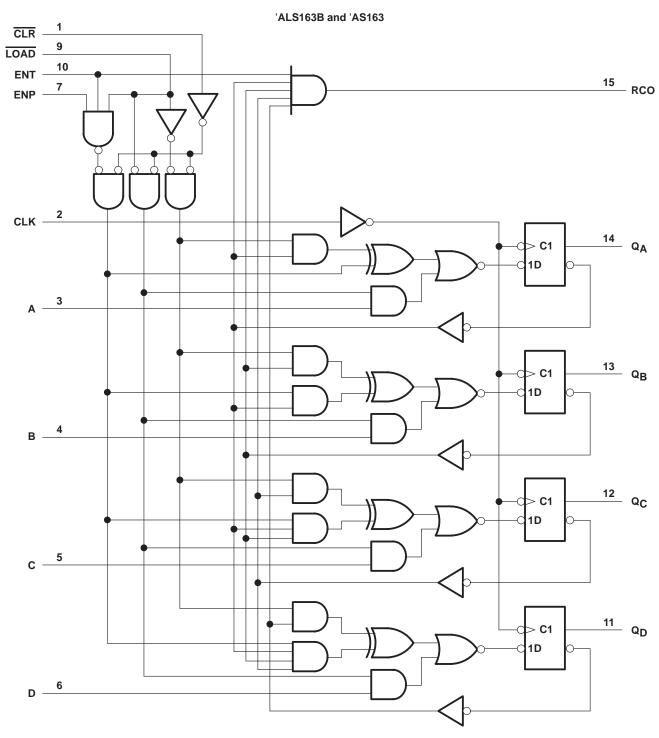
SN54ALS162B DECADE COUNTER WITH SYNCHRONOUS CLEAR



[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, DB, J, and N packages.

SDAS276A - DECEMBER 1994 - REVISED JULY 2000

logic diagram (positive logic)



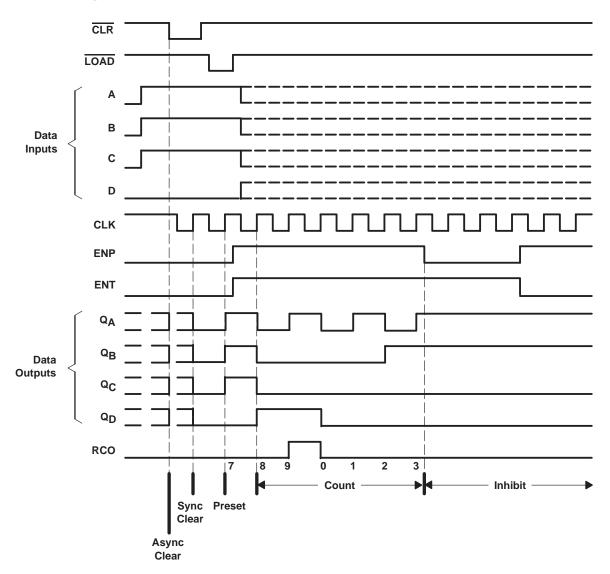
Pin numbers shown are for the J package.

SDAS276A - DECEMBER 1994 - REVISED JULY 2000

logic diagram (positive logic)

Pin numbers shown are for the D, DB, J, and N packages.

'ALS161B and 'AS161 synchronous binary counters are similar; however, CLR is asynchronous.

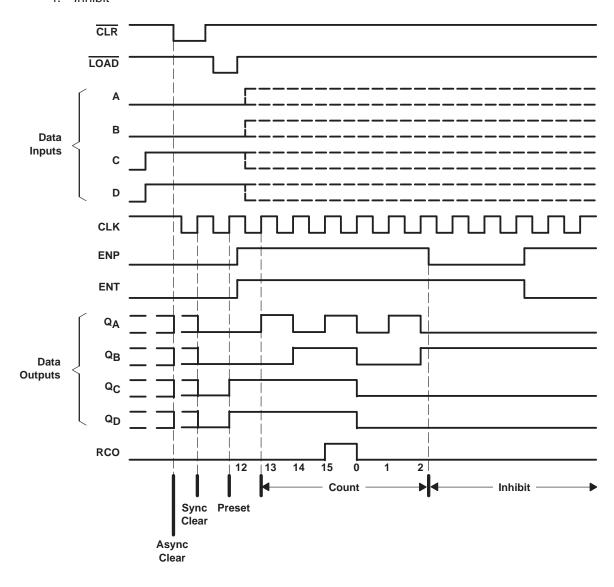

SDAS276A - DECEMBER 1994 - REVISED JULY 2000

typical clear, preset, count, and inhibit sequences

SN54ALS162B

The following sequence is illustrated below:

- 1. Clear outputs to zero (SN54ALS162B is synchronous)
- 2. Preset to BCD 7
- 3. Count to 8, 9, 0, 1, 2, and 3
- 4. Inhibit


SDAS276A - DECEMBER 1994 - REVISED JULY 2000

typical clear, preset, count, and inhibit sequences

'ALS161B, 'AS161, 'ALS163B, and 'AS163

The following sequence is illustrated below:

- 1. Clear outputs to zero ('ALS161B and 'AS161 are asynchronous; 'ALS163B and 'AS163 are synchronous.)
- 2. Preset to binary 12
- 3. Count to 13, 14, 15, 0, 1, and 2
- 4. Inhibit

SDAS276A - DECEMBER 1994 - REVISED JULY 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		0.5	V to 7 \
Input voltage range, V _I		0.5	V to 7 \
Package thermal impedance, θ_{JA} (see Note 1):	D package		73°C/V
	DB package		82°C/W
	N package		67°C/V
Storage temperature range Total	-	-65°C 1	to 150°C

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions

		SN	54ALS16 54ALS16 54ALS16	2B	SN7 SN7	UNIT		
		MIN	MIN NOM MAX			NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
V_{IL}	Low-level input voltage			0.7			0.8	V
ІОН	High-level output current			-0.4			-0.4	mA
loL	Low-level output current			4			8	mA
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CO	SN54ALS161B SN54ALS162B SN54ALS163B			SN7 SN7	UNIT			
			MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIK	$V_{CC} = 4.5 \text{ V},$	$I_{I} = -18 \text{ mA}$			-1.5			-1.5	V
Voн	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -0.4 \text{ mA}$	VCC -2	2		V _{CC} -2	2		V
Val	V _{CC} = 4.5 V	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	V
VOL	VCC = 4.5 V	$I_{OL} = 8 \text{ mA}$					0.35	0.5	V
lį	$V_{CC} = 5.5 V,$	V _I = 7 V			0.1			0.1	mA
lін	V _{CC} = 5.5 V,	V _I = 2.7 V			20			20	μΑ
I _{IL}	V _{CC} = 5.5 V,	V _I = 0.4 V			-0.2			-0.2	mA
ΙΟ§	V _{CC} = 5.5 V,	V _O = 2.25 V	-20		-112	-30		-112	mA
Icc	V _{CC} = 5.5 V			12	21		12	21	mA

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

[§] The output conditions have been chosen to produce a current that closely approximates one-half of the true short-circuit output current, IOS.

SDAS276A - DECEMBER 1994 - REVISED JULY 2000

timing requirements over recommended operating conditions (unless otherwise noted) (see Figure 1)

				SN54AL SN54AL SN54AL	S162B	SN74AL SN74AL		UNIT
				MIN	MAX	MIN	MAX	
fclock	Clock frequency		22		40	MHz		
	Pulse duration	CLR high or low		20		12.5		ns
t _W	Puise duration	'ALS161B	'ALS161B CLR low					115
		A, B, C, D	50		15			
		LOAD		20		15		
		'ALS161B	ENP, ENT	25		15		
t _{su}	Setup time, before CLK↑	SN54ALS162B, 'ALS163B	TENP, ENT	20		15		ns
		'ALS161B	CLR inactive	10		10		
		CNEAN CACOD IN CACOD	CLR low	20		15		
		SIN04ALS 102B, ALS 103B	SN54ALS162B, 'ALS163B CLR high			10		
t _h	Hold time, all synchronous input	0		0		ns		

switching characteristics over recommended operating conditions (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	ТО	SN54AL	S161B	SN74AL	S161B	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT
f _{max}			22		40		MHz
^t PLH	CLK	RCO	5	34	5	20	no
^t PHL	CLK	RCO	5	27	5	20	ns
^t PLH	CLK	Any O	4	19	4	15	20
^t PHL	CLK	Any Q	6	25	6	20	ns
t _{PLH}	CNIT	RCO		18	3	13	ns
^t PHL	ENT	KCO	3	17	3	13	115
tou	CLR	Any Q	8	27	8	24	ns
^t PHL	CLR	RCO	11	32	11	23	115

switching characteristics over recommended operating conditions (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54AL SN54AL		SN74AL	UNIT	
	(1141 01)	(0011 01)	MIN	MAX	MIN	MAX	
f _{max}			22		40		MHz
^t PLH	CLK	RCO	5	25	5	20	ns
^t PHL	OLK	RCO	5	25	5	20	115
^t PLH	CLK	Any Q	4	18	4	15	ns
^t PHL	OLK	Ally Q	6	25	6	20	115
t _{PLH}	ENT	RCO	3	16	3	13	ns
^t PHL	LINI	NOO	3	16	3	13	115

SDAS276A - DECEMBER 1994 - REVISED JULY 2000

recommended operating conditions

		SN54AS161 SN54AS163			SN SN		UNIT	
			NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
loh	High-level output current			-2			-2	mA
loL	Low-level output current			20			20	mA
T _A	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST CO	NDITIONS		N54AS16			74AS16 74AS16		UNIT
				MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	
VIK		$V_{CC} = 4.5 \text{ V},$	$I_{ } = -18 \text{ mA}$			-1.2			-1.2	V
Vон		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -2 \text{ mA}$	V _{CC} -2	2		V _{CC} -2			V
VOL		$V_{CC} = 4.5 \text{ V},$	$I_{OL} = 20 \text{ mA}$		0.25	0.5		0.25	0.5	V
	LOAD					0.3			0.3	
Ц	ENT	$V_{CC} = 5.5 V,$	$V_I = 7 V$			0.2			0.2	mA
	All others					0.1			0.1	
	LOAD					60			60	
ΊΗ	ENT	$V_{CC} = 5.5 V$,	$V_{I} = 2.7 V$			40			40	μΑ
	All others	1				20			20	
	LOAD					-1.5			-1.5	
Ι _Ι L	ENT	$V_{CC} = 5.5 V$,	$V_{I} = 0.4 \ V$			-1			-1	mA
	All others	1				-0.5			-0.5	
IO [‡]		V _{CC} = 5.5 V,	V _O = 2.25 V	-30		-112	-30		-112	mA
ICC		V _{CC} = 5.5 V			35	53		35	53	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

SDAS276A - DECEMBER 1994 - REVISED JULY 2000

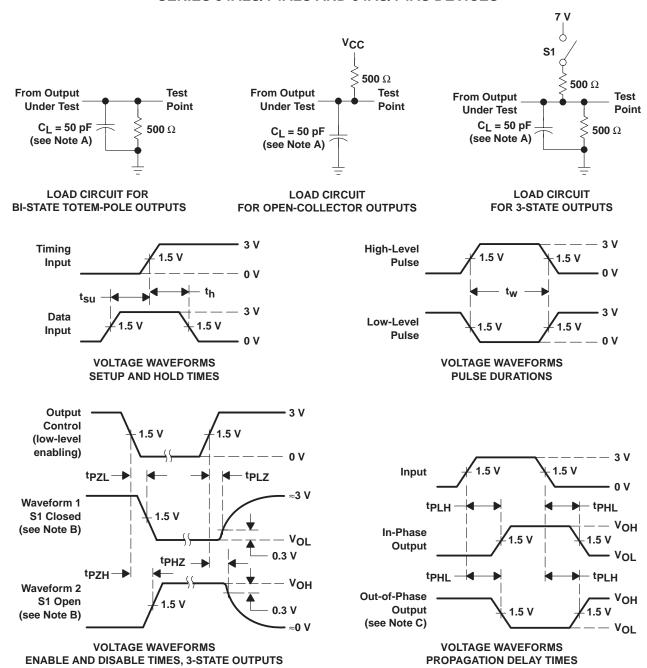
timing requirements over recommended operating conditions (see Figure 1)

				SN54A SN54A	-	SN74A SN74A		UNIT
				MIN	MAX	MIN	MAX	
fclock	Clock frequency				65		75	MHz
	Pulse duration	CLR high or low		7.7		6.7		ns
t _W Pulse duration		'AS161	CLR low	10		8		115
		A, B, C, D	10		8			
		LOAD	LOAD			8		
	Catum time hatara CLIVA	ENP, ENT		10		8		
t _{su}	Setup time, before CLK↑	'AS161	CLR inactive	10		8		ns
		146463	CLR low	14		12		
		A3103	'AS163 CLR high (inactive)			9		
th	h Hold time, all synchronous inputs after CLK↑					0		ns

switching characteristics over recommended operating conditions (see Figure 1)

PARAMETER	FROM	то	SN54A	S161	SN74A	S161	LINUT
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT
f _{max}			65*		75		MHz
+ 5	CLK	RCO (with LOAD high)		8.5	1	8	20
^t PLH	CLK	RCO (with LOAD low)	3	17.5	3	16.5	ns
^t PHL	CLK	RCO	2	14	2	12.5	ns
^t PLH	CLK	Any	1	7.5	1	7	20
^t PHL	CLK	Any Q	2	14	2	13	ns
^t PLH	FNIT	RCO	1.5	10	1.5	9	ns
^t PHL	ENT	, KCO	1	9.5	1	8.5	115
to	CLR	Any Q	2	14	2	13	ns
^t PHL	OLK	RCO	2	14	2	12.5	115

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.


switching characteristics over recommended operating conditions (see Figure 1)

PARAMETER	FROM	то	SN54A	S163	SN74A	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNII
f _{max}			65*		75		MHz
t	to H CLK		1	8.5	1	8	no
^t PLH	CLK	RCO (with LOAD low)	3	17.5	3	16.5	ns
t _{PHL}	CLK	RCO	2	14	2	12.5	ns
t _{PLH}	CLK	Any Q	1	7.5	1	7	ns
t _{PHL}	CLK	Ally Q	2	14	2	13	115
t _{PLH}	ENT	RCO	1.5	10	1.5	9	ns
t _{PHL}	LINI	NOO	1	9.5	1	8.5	115

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
- D. All input pulses have the following characteristics: $PRR \le 1$ MHz, $t_f = t_f = 2$ ns, duty cycle = 50%.
- E. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

APPLICATION INFORMATION

n-bit synchronous counters

This application demonstrates how the ripple-mode carry circuit (see Figure 2) and the carry look-ahead circuit (see Figure 3) can be used to implement a high-speed n-bit counter. The SN54ALS162B counts in BCD. The 'ALS161B, 'AS161, 'ALS163B, and 'AS163 devices count in binary. When additional stages are added, the f_{max} decreases in Figure 2, but remains unchanged in Figure 3.

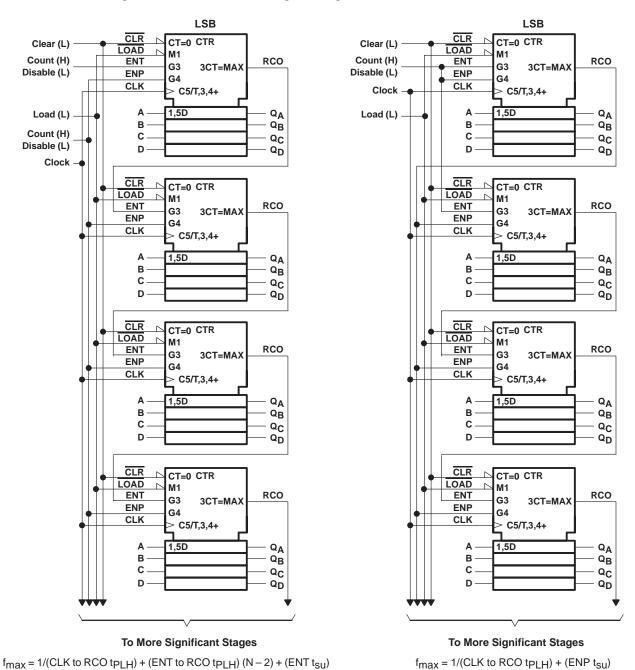


Figure 2. Ripple-Mode Carry Circuit

Figure 3. Carry Look-Ahead Circuit

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
83022012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	83022012A SNJ54ALS 161BFK	Samples
8302201EA	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	8302201EA SNJ54ALS161BJ	Samples
8302201FA	ACTIVE	CFP	W	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	8302201FA SNJ54ALS161BW	Samples
83022022A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	83022022A SNJ54ALS 163BFK	Samples
8302202EA	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	8302202EA SNJ54ALS163BJ	Samples
JM38510/38001B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 38001B2A	Samples
JM38510/38001BEA	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	JM38510/ 38001BEA	Samples
JM38510/38002B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 38002B2A	Samples
JM38510/38002BEA	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	JM38510/ 38002BEA	Samples
M38510/38001B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 38001B2A	Samples
M38510/38001BEA	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	JM38510/ 38001BEA	Samples
M38510/38002B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 38002B2A	Samples
M38510/38002BEA	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	JM38510/ 38002BEA	Samples
SN54ALS161BJ	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SN54ALS161BJ	Samples
SN54ALS163BJ	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SN54ALS163BJ	Samples
SN74ALS161BD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS161B	Samples

www.ti.com

6-Feb-2020

Orderable Device	Status	Package Type	U	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Sample
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74ALS161BDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS161B	Sample
SN74ALS161BDRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS161B	Sample
SN74ALS161BN	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	0 to 70	SN74ALS161BN	Sample
SN74ALS161BNSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS161B	Sample
SN74ALS163BD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS163B	Sample
SN74ALS163BDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM 0 to 70		ALS163B	Sampl
SN74ALS163BDRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM 0 to 70		ALS163B	Sampl
SN74ALS163BN	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type 0 to 70		SN74ALS163BN	Sampl
SN74ALS163BNSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM 0 to 70		ALS163B	Sampl
SN74AS161N	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	0 to 70	SN74AS161N	Sampl
SN74AS161NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	74AS161	Sampl
SN74AS163D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	AS163	Samp
SN74AS163N	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	0 to 70	SN74AS163N	Samp
SN74AS163NE4	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	0 to 70	SN74AS163N	Samp
SNJ54ALS161BFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type -55 to 125		83022012A SNJ54ALS 161BFK	Samp
SNJ54ALS161BJ	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	8302201EA SNJ54ALS161BJ	Samp
SNJ54ALS161BW	ACTIVE	CFP	W	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	8302201FA SNJ54ALS161BW	Samp
SNJ54ALS163BFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	83022022A	Samp

PACKAGE OPTION ADDENDUM

6-Feb-2020

Orderable Device		Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	_ (1)		Drawing		uty _	(2)		(3)	-	(4/5) SNJ54ALS 163BFK	_
SNJ54ALS163BJ	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	8302202EA SNJ54ALS163BJ	Samples
SNJ54AS161J	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SNJ54AS161J	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

6-Feb-2020

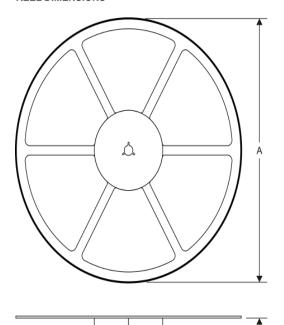
OTHER QUALIFIED VERSIONS OF SN54ALS161B, SN54ALS163B, SN54AS161, SN74ALS161B, SN74ALS163B, SN74AS161:

• Catalog: SN74ALS161B, SN74ALS163B, SN74AS161

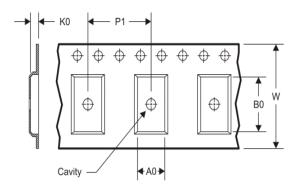
• Military: SN54ALS161B, SN54ALS163B, SN54AS161

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product


• Military - QML certified for Military and Defense Applications

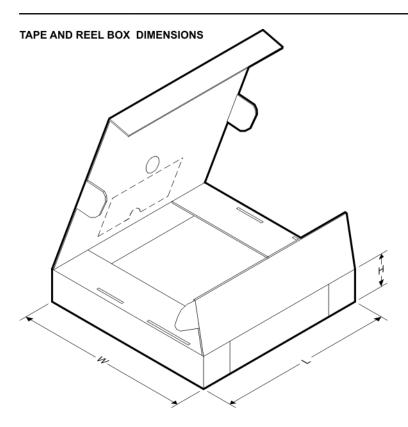
PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

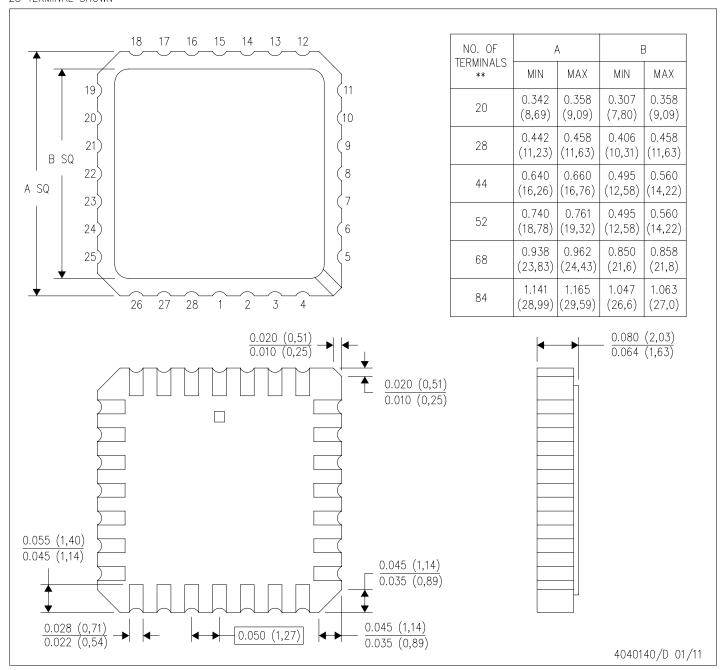

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ALS161BDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74ALS161BNSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74ALS163BDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74ALS163BNSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74AS161NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com 14-Jul-2012

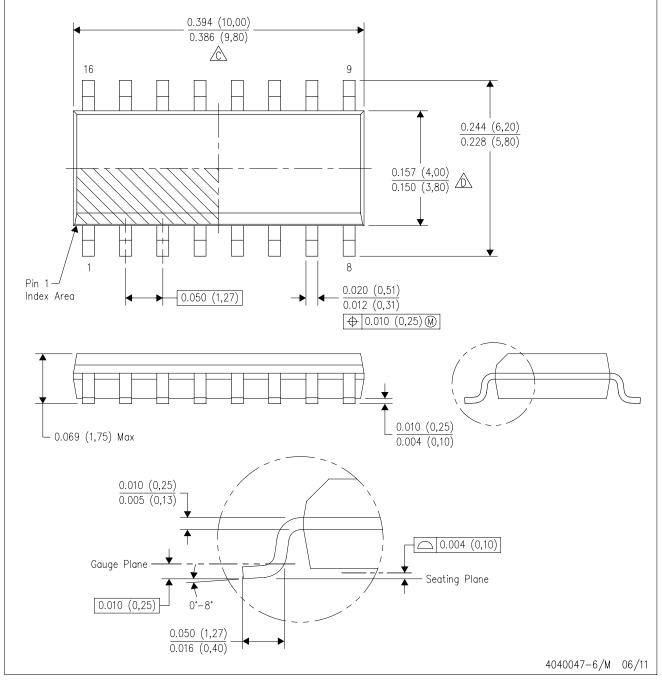

*All dimensions are nominal

7 til diffictiolorio are florifital							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ALS161BDR	SOIC	D	16	2500	333.2	345.9	28.6
SN74ALS161BNSR	SO	NS	16	2000	367.0	367.0	38.0
SN74ALS163BDR	SOIC	D	16	2500	333.2	345.9	28.6
SN74ALS163BNSR	SO	NS	16	2000	367.0	367.0	38.0
SN74AS161NSR	SO	NS	16	2000	367.0	367.0	38.0

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

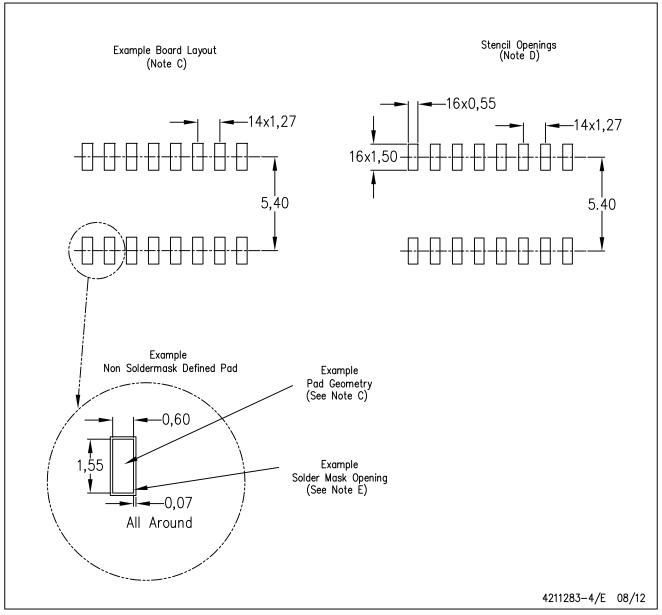
28 TERMINAL SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

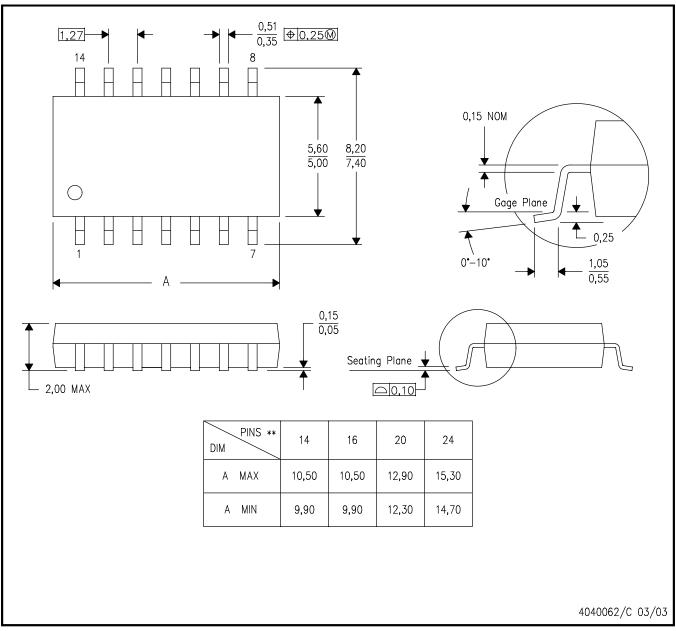


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

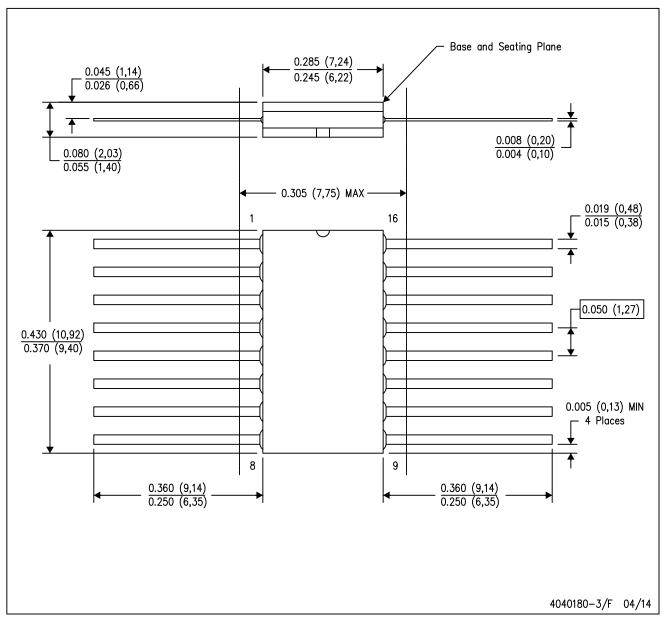


MECHANICAL DATA

NS (R-PDSO-G**)

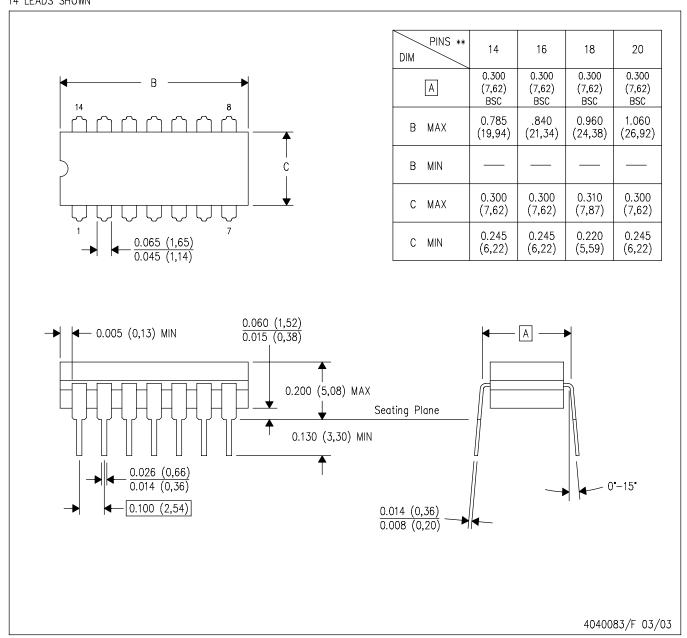
14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE



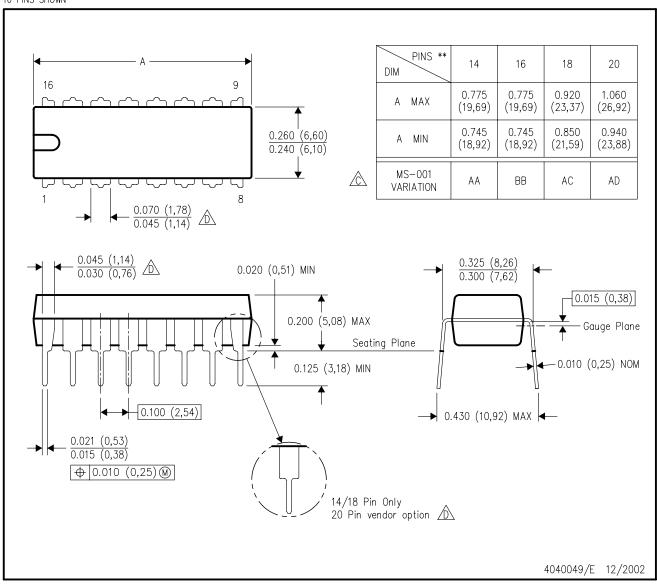
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F16)


CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16

14 LEADS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated