

16-Mbit (1M × 16/2M × 8) Static RAM

Features

■ Ultra-low standby power

 \Box Typical standby current: 1.5 μA

Maximum standby current: 8 μA

■ TSOP I package configurable as 1M × 16 or 2M × 8 SRAM

■ Very high speed: 45 ns■ Temperature ranges

□ Industrial: -40 °C to +85 °C

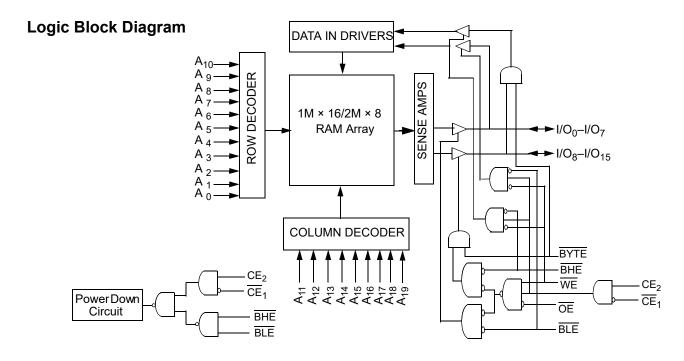
■ Wide voltage range: 2.2 V to 3.6 V

■ Easy memory expansion with CE₁, CE₂, and OE Features

■ Automatic power-down when deselected

■ CMOS for optimum speed and power

■ Offered in Pb-free 48-ball VFBGA and 48-pin TSOP I packages


Functional Description

The CY62167GN30 is a high performance CMOS static RAM organized as 1M words by 16 bits or 2M words by 8 bits. This device features an advanced circuit design that provides an ultra low active current. Ultra low active current is ideal for providing

More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power down feature that reduces power consumption by 99 percent when addresses are not toggling. Place the device into standby mode when deselected ($\overline{CE_1}$ HIGH or $\overline{CE_2}$ LOW or both BHE and BLE are HIGH). The input and output pins (I/O₀ through I/O₁₅) are placed in a high impedance state when: the device is deselected ($\overline{CE_1}$ HIGH or $\overline{CE_2}$ LOW), outputs are disabled (\overline{OE} HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or a write operation is in progress ($\overline{CE_1}$ LOW, $\overline{CE_2}$ HIGH and \overline{WE} LOW).

To write to the device, take Chip Enables ($\overline{\text{CE}}_1$ LOW and CE_2 HIGH) and Write Enable ($\overline{\text{WE}}$) input LOW. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$) is written into the location specified on the address pins (A_0 through A_{19}). If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from the I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A_0 through A_{19}).

To read from the device, take <u>Chip Enables</u> ($\overline{\text{CE}}_1$ LOW and CE_2 HIGH) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins appears on I/O $_0$ to I/O $_7$. If Byte High Enable (BHE) is LOW, then data from memory appears on I/O $_8$ to I/O $_{15}$. See Truth Table on page 12 for a complete description of read and write modes.

CY62167GN30 MoBL

Contents

Pin Configuration	3
Product Portfolio	
Maximum Ratings	
Operating Range	4
Electrical Characteristics	4
Capacitance	5
Thermal Resistance	5
AC Test Loads and Waveforms	5
Data Retention Characteristics	6
Data Retention Waveform	6
Switching Characteristics	
Switching Waveforms	
Truth Table	12

Ordering information	13
Ordering Code Definitions	13
Package Diagrams	14
Acronyms	16
Document Conventions	16
Units of Measure	16
Document History Page	17
Sales, Solutions, and Legal Information	18
Worldwide Sales and Design Support	18
Products	18
PSoC® Solutions	18
Cypress Developer Community	18
Technical Support	

Pin Configuration

Figure 1. 48-ball VFBGA pinout (Top View) [1, 2]

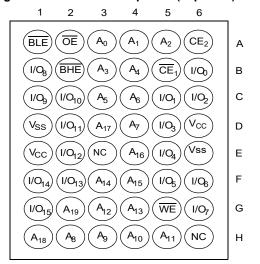
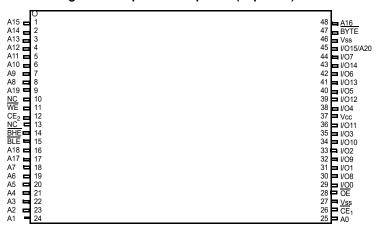



Figure 2. 48-pin TSOP I pinout (Top View) [2, 3]

Product Portfolio

							Power D	issipatio	n		
Product Range		V _{CC} Range (V)		Speed	Operating I _{CC} (mA))	Standby I _{SB2} (μA)			
Troduct	ixalige				(ns)	f = 1 MHz f = f _{max}		max	Gtariaby	'SB2 (μΔ)	
		Min	Typ ^[4]	Max		Typ ^[4]	Max	Typ ^[4]	Max	Typ ^[4]	Max
CY62167GN30 ^[5, 6]	Industrial	2.2	3.0	3.6	45	7	9	29	35	1.5	8

- Ball H6 for the VFBGA package can be used to upgrade to a 32M density.
- NC pins are not connected on the die.
- The $\overline{\text{BYTE}}$ pin in the $\underline{\text{48-pin}}$ TSOP I package has to be tied to V_{CC} to use the device as a $\underline{\text{1M}} \times \underline{\text{16 SRAM}}$. The 48-pin TSOP I package can also be used as a $\underline{\text{2M}} \times 8$ SRAM by tying the $\underline{\text{BYTE}}$ signal to V_{SS} . In the $\underline{\text{2M}} \times 8$ configuration, Pin 45 is A20, while $\underline{\text{BHE}}$, $\underline{\text{BLE}}$ and $\underline{\text{I/O}}_{8}$ to $\underline{\text{I/O}}_{14}$ pins are not used.
- Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25$ °C. This device offers improved I_{CC} , I_{SB1} and I_{SB2} specifications compared to the previous revision with same marketing part number.
- For previous version of this device, kindly refer here. Further details about improvement and comparison between old and new versions can be found in the PCN193805.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature-65 °C to + 150 °C Ambient temperature with power applied-55 °C to + 125 °C Supply voltage

to ground potential^[7, 8]–0.3 V to $V_{CC(max)}$ + 0.3 V

DC voltage applied

to outputs in High Z state^[7, 8]-0.3 V to $V_{CC(max)}$ + 0.3 V

DC input voltage ^[7, 8]	$-0.3 \text{ V to V}_{CC(max)} + 0.3 \text{ V}$
Output current into outputs (LOW)	20 mA
Static discharge voltage (MIL-STD-883, Method 3015)	>2001 V
Latch-up current	>200 mA

Operating Range

Device Range	Ambient Temperature	V cc ^[9]	
Industrial	–40 °C to +85 °C	2.2 V to 3.6 V	

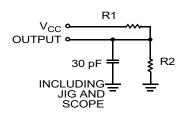
Electrical Characteristics

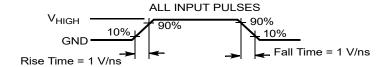
Over the Operating Range

Down of the state of	Description.	T404		45 ns		11!4	
Parameter	Description	lest Cond	Test Conditions			Max	Unit
V _{OH}	Output HIGH voltage	$2.2 \le V_{CC} \le 2.7$	$I_{OH} = -0.1 \text{ mA}$	2.0	_	_	V
		2.7 ≤ V _{CC} ≤ 3.6	$I_{OH} = -1.0 \text{ mA}$	2.4	_	_	
V _{OL}	Output LOW voltage	2.2 ≤ V _{CC} ≤ 2.7	I _{OL} = 0.1 mA	_	_	0.4	V
		2.7 ≤ V _{CC} ≤ 3.6	I _{OL} = 2.1 mA	_	_	0.4	
V _{IH}	Input HIGH voltage	$2.2 \le V_{CC} \le 2.7$		1.8	_	$V_{CC} + 0.3$	V
		2.7 ≤ V _{CC} ≤ 3.6		2	_	$V_{CC} + 0.3$	
V _{IL}	Input LOW voltage	$2.2 \le V_{CC} \le 2.7$		-0.3	_	0.6	V
		2.7 ≤ V _{CC} ≤ 3.6		-0.3	_	0.8	
I _{IX}	Input leakage current	$GND \leq V_1 \leq V_{CC}$		– 1	_	+1	μΑ
I _{OZ}	Output leakage current	GND \leq V _O \leq V _{CC} , Ou	tput disabled	-1	_	+1	μΑ
I _{CC} ^[11, 12]	V _{CC} operating supply current	f = 22.22 MHz (45 ns)	$V_{CC} = V_{CC(max)}$	_	29	35	mA
		f = 1 MHz	I _{OUT} = 0 mA CMOS levels	-	7	9	mA
I _{SB1} [11, 12, 13, 14]	Automatic power down current – CMOS inputs	$\begin{array}{l} \overline{\text{CE}_1} \geq \text{V}_{\text{CC}} - 0.2 \text{ V or} \\ (\text{BHE and BLE}) \geq \text{V}_{\text{CC}} \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V, V}_{\text{IN}} \\ \text{f} = \text{f}_{\text{max}} \text{ (address and f = 0 (OE, and WE), V} \end{array}$	$CE_2 \le 0.2 \text{ V or}$ C = 0.2 V, C = 0.2 V, data only), $CC = V_{CC(max)}$	-	1.5	8	μА
I _{SB2} [11, 12, 14]	Automatic Power-down	$CE_1 \ge V_{CC} - 0.2 \text{ V or } $ $CE_2 \le 0.2 \text{ V } $	25 °C ^[10]	_	1.5	3	μΑ
	Current – CMOS Inputs V _{CC} = 2.2 V to 3.6 V and 4.5 V to 5.5 V	or (BHE and BLE) <u>></u>	40 Ci.ej	_	_	3.5	
	4.5 V to 5.5 V	$V_{CC} - 0.2 \text{ V},$ $V_{IN} \ge V_{CC} - 0.2 \text{ V or}$	70 °C ^[10]	_	_	6.5	
		$V_{IN} \le 0.2 \text{ V}, \\ f = 0, V_{CC} = V_{CC(max)}$	85 °C	_	_	8.0	

- Notes
 7. V_{IL.(min)} = -2.0 V for pulse durations less than 20 ns.
 8. V_{IH.(max)} = V_{CC} + 2V for pulse durations less than 20 ns.
 9. Full Device AC operation assumes a 100 μs ramp time from 0 to V_{CC(min)} and 200 μs wait time after V_{CC} stabilization.
 10. Indicates the value for the center of distribution at 3.0 V, 25 °C and not 100% tested.
 11. This device offers improved I_{CC}, I_{SB1} and I_{SB2} specifications compared to the previous revision with same marketing part number.
 12. For previous version of this device, kindly refer here. Further details about improvement and comparison between old and new versions can be found in the PCN193805.
- 13. This paramete<u>r is guaranteed by design and not tested.</u>
 14. Chip enables (CE₁ and CE₂), byte enables (BHE and BLE) and BYTE must be tied to CMOS levels to meet the I_{SB1}/I_{SB2}/I_{CCDR} spec. Other inputs can be left floating.

Capacitance


Parameter [15]	Description	Max	Unit	
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output capacitance		10	pF


Thermal Resistance

Parameter [15]	Description	Test Conditions	48-ball VFBGA	48-pin TSOP I	Unit
		Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	31.50	57.99	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)		15.75	13.42	°C/W

AC Test Loads and Waveforms

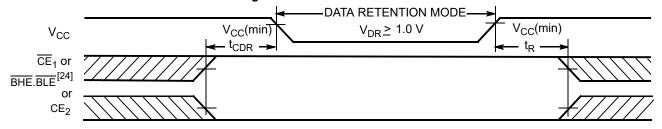
Figure 3. AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Parameters	1.8 V	2.5 V	3.0 V	5.0 V	Unit
R ₁	13500	16667	1103	1800	Ω
R ₂	10800	15385	1554	990	Ω
R _{TH}	6000	8000	645	639	Ω
V _{TH}	0.80	1.20	1.75	1.77	V
V _{HIGH}	1.8	2.5	3.0	5.0	V

Note

^{15.} Tested initially and after any design or process changes that may affect these parameters.


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Typ [16]	Max	Unit
V _{DR}	V _{CC} for data retention		1	_	_	V
I _{CCDR} [17, 18, 19, 20]	Data retention current	V _{CC} = 2.2 V to 3.6 V,	_	_	8	μА
		$\overline{\text{CE}}_1 \ge \text{V}_{\text{CC}} - 0.2 \text{ V or } \text{CE}_2 \le 0.2 \text{ V or}$				
		$(\overline{BHE} \text{ and } \overline{BLE}) \ge V_{CC} - 0.2 \text{ V},$				
		$V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$				
		1.2 V ≤ V _{CC} ≤ 2.2 V,	_	_	16	
		$\overline{\text{CE}}_1 \ge \text{V}_{\text{CC}} - 0.2 \text{ V or CE}_2 \le 0.2 \text{ V or}$				
		(BHE and BLE) ≥ V _{CC} – 0.2 V,				
		$V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$				
t _{CDR} ^[21]	Chip deselect to data retention time		0	-	-	_
t _R ^[22, 23]	Operation recovery time		45	_	_	ns

Data Retention Waveform

Figure 4. Data Retention Waveform

- 16. Indicates the value for the center of distribution at 3.0 V, 25 °C and not 100% tested.
- 17. Chip enables (CE₁ and CE₂), byte enables (BHE and BLE) and BYTE must be tied to CMOS levels to meet the I_{SB1}/I_{SB2}/I_{CCDR} spec. Other inputs can be left floating.

- 18. I_{CCDR} is guaranteed only after the device is first powered up to V_{CC(min)} and then brought down to V_{DR}.

 19. This device offers improved I_{CC}, I_{SB1} and I_{SB2} specifications compared to the previous revision with same marketing part number.

 20. For previous version of this device, kindly refer here. Further details about improvement and comparison between old and new versions can be found in the PCN193805.

- 20. For previous version of this device, kindly felet here. Further details about improvement and comparison between old and new versions can be to 21. Tested initially and after any design or process changes that may affect these parameters.

 22. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{CC(min)} ≥ 100 μs.

 23. These parameters are guaranteed by design and are not tested.

 24. BHE.BLE is the AND of both BHE and BLE. Deselect the chip by either disabling the chip enable signals or by disabling both BHE and BLE.

Switching Characteristics

D (25)	Dona and a street	45	ns	Unit
Parameter	Parameter ^[25] Description		Max	Unit
Read Cycle				
t _{RC}	Read cycle time	45.0	_	ns
t _{AA}	Address to data valid	_	45.0	ns
t _{OHA}	Data hold from address change	10.0	_	ns
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to data valid	_	45.0	ns
t _{DOE}	OE LOW to data valid	_	22.0	ns
t _{LZOE}	OE LOW to Low Z [26, 27]	5.0	_	ns
t _{HZOE}	OE HIGH to High Z [26, 27, 28]	_	18.0	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z [26, 27]	10.0	_	ns
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to High Z [26, 27, 28]	_	18.0	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to power-up ^[29]	0	_	ns
t _{PD}	CE ₁ HIGH and CE ₂ LOW to power-down ^[29]	-	45.0	ns
t _{DBE}	BLE / BHE LOW to data valid	-	45.0	ns
t _{LZBE}	BLE / BHE LOW to Low Z [26, 27]	5.0	_	ns
t _{HZBE}	BLE / BHE HIGH to High Z [26, 27, 28]	_	18.0	ns
Write Cycle ^{[30, 31}]			
t _{WC}	Write cycle time	45	_	ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to write end	35	_	ns
t _{AW}	Address setup to write end	35	_	ns
t _{HA}	Address hold from write end	0	_	ns
t _{SA}	Address setup to write start	0	_	ns
t _{PWE}	WE pulse width	35	_	ns
t _{BW}	BLE / BHE LOW to write end	35	_	ns
t _{SD}	Data setup to write end	25	_	ns
t _{HD}	Data hold from write end	0	_	ns
t _{HZWE}	WE LOW to High Z [26, 27, 28]	-	18	ns
t _{LZWE}	WE HIGH to Low Z [26, 27]	10	_	ns

^{25.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 1 V/ns, timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} as shown in Figure 3 on page 5.

26. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZDE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any device.

27. Tested initially and after any design or process changes that may affect these parameters.

28. t_{HZCE}, t_{HZCE}, t_{HZCE}, t_{HZBE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.

^{29.} These parameters are guaranteed by design and are not tested.

^{30.} The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE or BLE or both = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write 31. The minimum write cycle pulse width for Write Cycle No. 3 (WE Controlled, OE LOW) should be equal to the sum of t_{HZWE} and t_{SD}.

Switching Waveforms

Figure 5. Read Cycle No. 1 (Address Transition Controlled) $^{[32,\ 33]}$

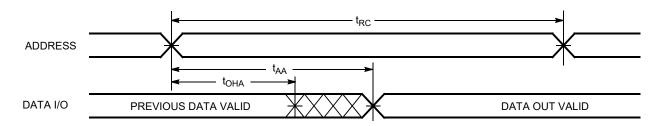
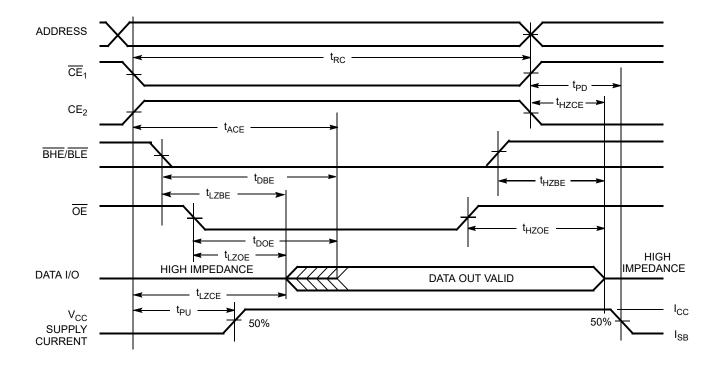
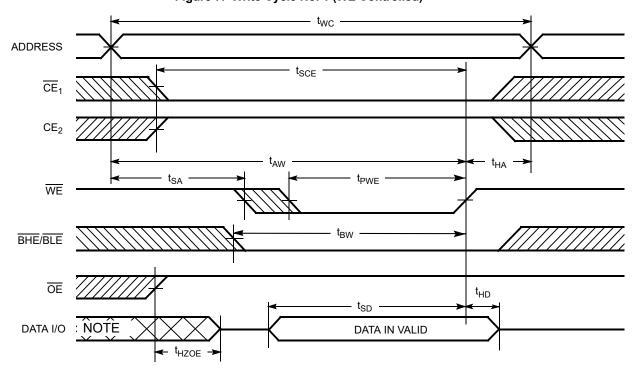



Figure 6. Read Cycle No. 2 (OE Controlled) [33, 34]

^{32.} The device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} , \overline{BLE} or both = V_{IL} , and $CE_2 = V_{IH}$.

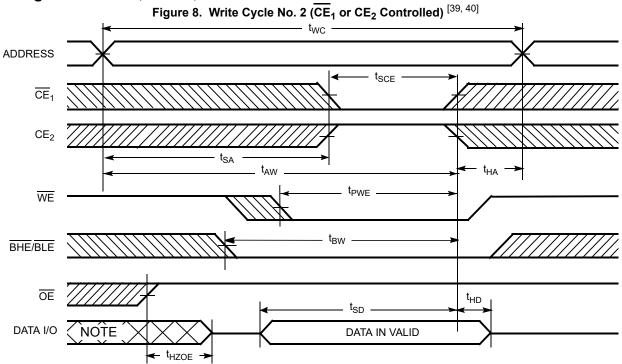

^{33.} WE is HIGH for read cycle.

34. Address valid before or similar to \overline{CE}_1 , \overline{BHE} , \overline{BLE} transition LOW and \overline{CE}_2 transition HIGH.

Switching Waveforms (continued)

Figure 7. Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) $^{[35,\ 36,\ 37]}$

^{35.} The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE or BLE or both = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.


36. Data I/O is high impedance if OE = V_{IH}.

^{37.} If $\overline{\text{CE}}_1$ goes HIGH and CE_2 goes LOW simultaneously with $\overline{\text{WE}}$ = V_{IH} , the output remains in a high impedance state.

^{38.} During this period the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

^{39.} The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE or BLE or both = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.

40. If CE₁ goes HIGH and CE₂ goes LOW simultaneously with WE = V_{IH}, the output remains in a high impedance state.

^{41.} During this period the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Figure 9. Write Cycle No. 3 (WE Controlled, OE LOW) [42, 43]

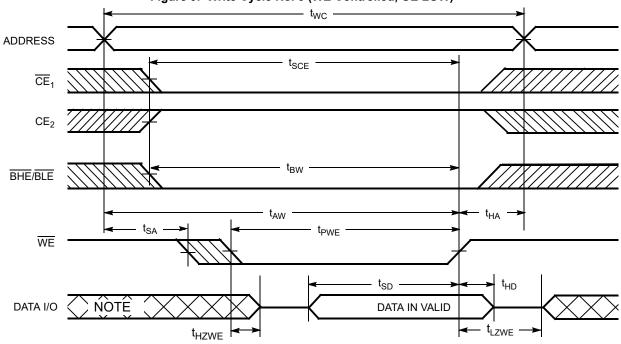
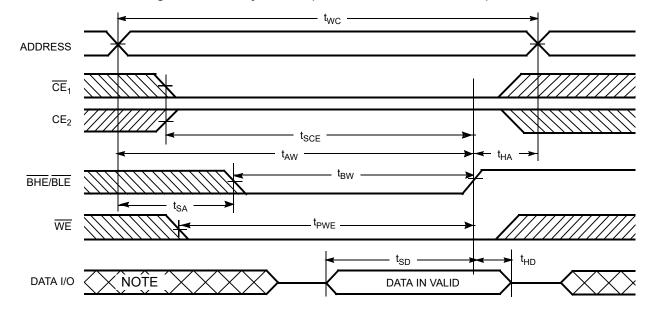
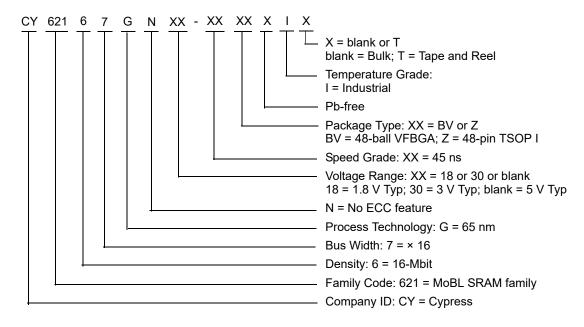



Figure 10. Write Cycle No. 4 (BHE/BLE Controlled, OE LOW) [42, 43]

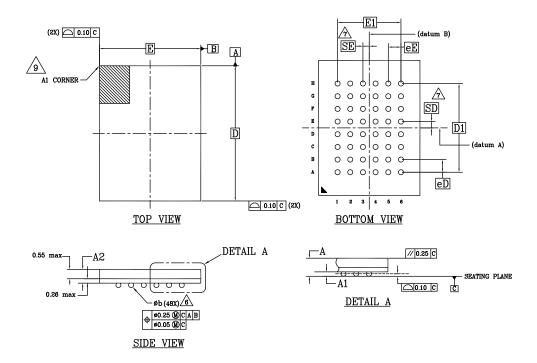
Truth Table

CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	X ^[45]	Χ	Х	X ^[45]	X ^[45]	High Z	Deselect/Power-down	Standby (I _{SB})
X ^[45]	L	Х	Х	X ^[45]	X ^[45]	High Z	Deselect/Power-down	Standby (I _{SB})
X ^[45]	X ^[45]	Х	Х	Н	Н	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (I/O ₀ -I/O ₁₅)	Read	Active (I _{CC})
L	Н	Η	L	Н	L	Data Out (I/O ₀ –I/O ₇); High Z (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	L	Н	High Z (I/O ₀ –I/O ₇); Data Out (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	Н	Х	Х	High Z	Output disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data In (I/O ₀ -I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); High Z (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	L	Н	High Z (I/O ₀ –I/O ₇); Data In (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})


Note
45. The 'X' (Don't care) state for the chip enables and Byte enables in the truth table refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.

Ordering Information

Speed (ns)	Voltage Range	Ordering Code	Package Diagram	Package Type	Operating Range
45	2.2 V-3.6 V	CY62167GN30-45BVXI	51-85150	48-ball VFBGA (6 × 8 × 1 mm),	Industrial
		CY62167GN30-45BVXIT		Package Code: BV48	
		CY62167GN30-45ZXI	51-85183	48-pin TSOP I (Pb-free)	
		CY62167GN30-45ZXIT			


Ordering Code Definitions

Package Diagrams

Figure 11. 48-ball VFBGA (6 × 8 × 1.0 mm) Package Outline, 51-85150

0)(1)(0)	DIMENSIONS			
SYMBOL	MIN.	NOM.	MAX.	
Α			1.00	
A1	0.16	-	•	
A2		-	0,81	
D		8.00 BSC		
E		6.00 BSC		
D1		5.25 BSC		
E1		3,75 BSC		
MD		8		
ME		6		
n		48		
Ø b	0.25	0.30	0.35	
eE		0.75 BSC		
eD		0.75 BSC		
SD		0.375 BSC		
SE	0,375 BSC			

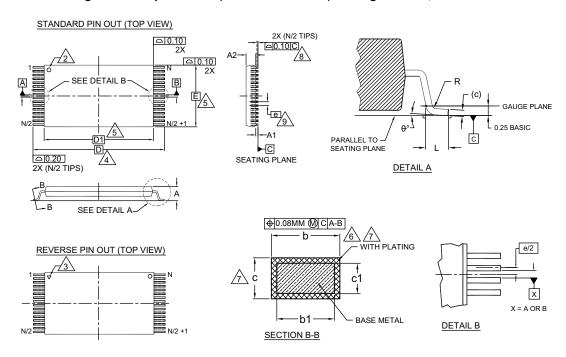
NOTES:

- DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-2009.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS.
- 3. BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.
- 4. PREPRESENTS THE SOLDER BALL GRID PITCH.
- SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.
 SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.
 IN SITHE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.

6. DIMENSION "5" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.

"SD" OR "SE" = 0,
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW,
"SD" = eD/2 AND "SE" = eE/2.

8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.


41 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.

51-85150 *I

Package Diagrams (continued)

Figure 12. 48-pin TSOP I (12 × 18.4 × 1.0 mm) Package Outline, 51-85183

SYMBOL	DIMENSIONS			
STIMBUL	MIN.	NOM.	MAX.	
Α	_	_	1.20	
A1	0.05	1	0.15	
A2	0.95	1.00	1.05	
b1	0.17	0.20	0.23	
b	0.17	0.22	0.27	
c1	0.10	_	0.16	
С	0.10	_	0.21	
D	20.00 BASIC			
D1	18.40 BASIC			
E	12.00 BASIC			
е	0.50 BASIC			
L	0.50	0.60	0.70	
θ	0°	_	8	
R	0.08	_	0.20	
N	48			

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS (mm).

2. PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).

PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN): INK OR LASER MARK.

TO BE DETERMINED AT THE SEATING PLANE [-C-]. THE SEATING PLANE IS
DEFINED AS THE PLANE OF CONTACT THAT IS MADE WHEN THE PACKAGE
LEADS ARE ALLOWED TO REST FREELY ON A FLAT HORIZONTAL SURFACE.

DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION ON E IS 0.15mm PER SIDE AND ON D1 IS 0.25mm PER SIDE.

DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF 6 DIMENSION AT MAX. MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD TO BE 0.07mm.

THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.

& LEAD COPLANARITY SHALL BE WITHIN 0.10mm AS MEASURED FROM THE SEATING PLANE.

DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.

10. JEDEC SPECIFICATION NO. REF: MO-142(D)DD.

51-85183 *F

Acronyms

Acronym	Description	
BHE	Byte High Enable	
BLE	Byte Low Enable	
CE	Chip Enable	
CMOS	Complementary Metal Oxide Semiconductor	
I/O	Input/Output	
ŌĒ	Output Enable	
SRAM	Static Random Access Memory	
TSOP Thin Small Outline Package		
VFBGA	FBGA Very Fine-Pitch Ball Grid Array	
WE	/E Write Enable	

Document Conventions

Units of Measure

Symbol	Unit of Measure	
°C	degree Celsius	
MHz	megahertz	
μΑ	microampere	
μS	microsecond	
mA	milliampere	
mm	millimeter	
ns	nanosecond	
Ω	ohm	
%	percent	
pF	picofarad	
V	volt	
W	watt	

Document History Page

Document Title: CY62167GN30 MoBL, 16-Mbit (1M × 16/2M × 8) Static RAM Document Number: 002-28515			
Rev.	ECN No.	Submission Date	Description of Change
**	6680984	09/24/2019	New data sheet.
*A	6832216	03/16/2020	Updated Product Portfolio: Updated Note 5. Updated Electrical Characteristics: Updated Note 11. Updated Data Retention Characteristics: Updated Note 19. Updated to new template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/mcu

cypress.com/psoc

Products

Arm® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Internet of Things

Cypress.com/automotive

cypress.com/clocks

cypress.com/interface

cypress.com/iot

cypress.com/memory

Microcontrollers

PSoC

Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2019–2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthrorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component o

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-28515 Rev. *A Revised March 16, 2020 Page 18 of 18