

O Hz/DC to 13 GHz, 2.5 kV HBM ESD, **SP4T, MEMS Switch with Integrated Driver**

ADGM1004 Data Sheet

FEATURES

Fully operational down to 0 Hz/dc On resistance: 2.9 Ω (maximum) Off leakage: 0.5 nA (maximum)

-3 dB bandwidth

10.8 GHz (typical) for RF1, RF4 13 GHz (typical) for RF2, RF3 RF performance characteristics

Insertion loss: 0.45 dB (typical) at 2.5 GHz Isolation: 24 dB (typical) at 2.5 GHz

IP3: 67 dBm (typical)

RF input power: 32 dBm (maximum) Actuation lifetime: 1 billion cycles (minimum) Hermetically sealed switch contacts On switching time: 75 µs (maximum)

ESD HBM rating

5 kV for RF1 to RF4 and RFC pins

2.5 kV for all other pins

Integrated driver removes the need for an external driver

Supply voltage: 3.0 V to 3.6 V CMOS/LVTTL compatible Parallel and SPI Interface

Independently controllable switches

Switch is in an open state with no power supply present Requirement to avoid floating nodes on all RFx pins (see the Floating Node section)

5 mm × 4 mm × 1.45 mm, 24-lead LFCSP Operating temperature range: 0°C to +85°C

APPLICATIONS

Relay replacements

Automatic test equipment (ATE): RF, digital, and mixed signals Load and probe boards: RF, digital, and mixed signals

RF test instrumentation

Reconfigurable filters and attenuators High performance RF switching

COMPANION PRODUCTS

Quad PMU: AD5522

SP4T MEMS Switch: ADGM1304

Low Noise, LDO: ADP7142, LT1962, LT3045-1

GENERAL DESCRIPTION

The ADGM1004 is a wideband, single-pole, four-throw (SP4T) switch fabricated using Analog Devices, Inc., microelectromechanical system (MEMS) switch technology. This technology enables a small form factor, wide RF bandwidth, highly linear, low insertion loss switch that is operational from 0 Hz/dc to 13 GHz, making it an ideal solution for a wide range of RF and precision equipment switching needs.

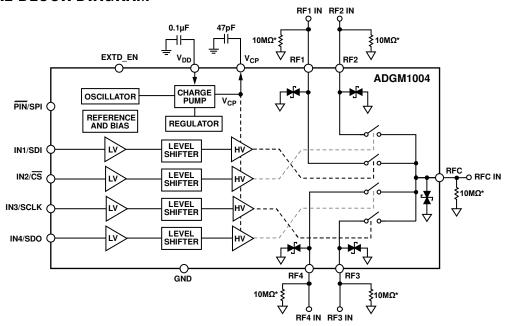
An integrated driver chip generates a high voltage to electrostatically actuate switch that can be controlled by a parallel interface and a serial peripheral interface (SPI). All four switches are independently controllable.

The device is packaged in a 24-lead, $5 \text{ mm} \times 4 \text{ mm} \times 1.45 \text{ mm}$, lead frame chip-scale package (LFCSP).

To ensure optimum operation of the ADGM1004, follow the Critical Operational Requirements section exactly.

The on resistance (R_{ON}) performance of the ADGM1004 is affected by part to part variation, channel to channel variation, cycle actuations, settling time post turn on, bias voltage, and temperature changes.

Note that throughout this data sheet, multifunction pins, such as IN1/SDI, are referred to either by the entire pin name or by a single function of the pin, for example, SDI, when only that function is relevant.


TABLE OF CONTENTS

Features1	Low Power Mode	25
Applications 1	Typical Operating Circuit	26
Companion Products1	Applications Information	27
General Description 1	Power Supply Rails	
Revision History	Power Supply Recommendations	27
Functional Block Diagram4	Switchable RF Attenuator	
Specifications 5	Reconfigurable RF Filter	
Timing Characteristics	Critical Operational Requirements	
Absolute Maximum Ratings	System Error Considerations Due to On-Resistance Drift	
Thermal Resistance 9	On Resistance Shift Due to Temperature Shock Post	27
	Actuations	29
ESD Caution	Floating Node	
Pin Configuration and Function Descriptions10	Cumulative On Switch Lifetime	
Typical Performance Characteristics		
Test Circuits	Handling Precautions	
Terminology	Register Details	32
Theory of Operation22	Switch Data Register	32
Parallel Digital Interface	Outline Dimensions	33
SPI Digital Interface23	Ordering Guide	33
Internal Oscillator Feedthrough25		
Internal Oscillator Feedthrough Mitigation		
REVISION HISTORY		
11/2020—Rev. D to Rev. E	Added Timing Diagrams Section, Figure 2, Figure 3, and	c
Added Companions Products Section	Figure 4; Renumbered Sequentially	ბ
Added Endnote 3, Table 1; Renumbered Sequentially	Changes to Absolute Maximum Rating Section	c
Changes to Figure 12	and Table 3	
Changes to Figure 43	Changes to Figure 5 and Table 5	
Changes to Addressable Mode Section and Figure 45 Caption23	Changes to Typical Performance Characteristics Section	
Added Figure 46; Renumbered Sequentially	Changes to Parallel Digital Interface Section and	20
Changes to Typical Operating Circuit Section	Changes to Parallel Digital Interface Section and Table 6 Title	22
Recommendations Section, Figure 51, and Table 7;	Table 6 Title	22
· ·	Added SDI Digital Interface Section Addressable Made	
Renumbered Sequentially27 Changes to System Error Considerations Due to On Resistance	Added SPI Digital Interface Section, Addressable Mode	22
	Section, and Figure 45	
Drift Section	Added Daisy-Chain Mode Section, Figure 46, Figure 47, and Figure 48	
Added On Resistance Shift Due to Temperature Shock Post Actuations Section	Added Hardware Reset Section and Internal Error Status	24
Moved Figure 6; Renumbered Sequentially	SectionSection and Internal Error Status	25
ivioved rigure of Renambered Sequentiany29	Changes to Internal Oscillator Feedthrough Section and	23
11/2019—Rev. C to Rev. D	Internal Oscillator Feedthrough Mitigation Section and	25
	Changes to Typical Operating Circuit Section and	23
Change to Features Section and General		26
Applications Section 1 Moved Functional Block Diagram Section 4	Figure 49 Deleted Handling Guidelines Section, DC Voltage Range	∠0
Changes to Figure 1	Section, and Voltage Standoff Limit Section	27
Changes to Specifications Section and Table 1	Added Critical Operational Requirements Section, System	41
Added Timing Characteristics Section and Table 2;	Error Considerations Due to On-Resistance Drift Section,	
Renumbered Sequentially 7	Error Considerations Due to On-Resistance Drift Section,	

Figure 52, Table 7, Floating Node Section, Figure 53, Figure	e 54,
Figure 55, Figure 56, and Figure 57	
Added Figure 58, Figure 59, Cumulative On Switch Lifetim	e
Section, Handling Precautions Section, and Figure 61	29
Moved Figure 60 and Electrical Overstress (EOS)	
Precautions Section	29
Added Mechanical Shock Precautions Section and Table 8.	30
Changes to Figure 62	30
Added Register Details Section, Switch Data Register Section	n,
and Table 9	31
Change to Ordering Guide	32
3/2019—Rev. B to Rev. C	
Change to Features Section and Figure 1	
Changes to Specifications Section and Table 1	3
Deleted Endnote 1, Endnote 3, and Endnote 6 in Table 1;	
Renumbered Sequentially	4
Changes to Table 2	5
Changes to Table 4	6
Updated Typical Performance Characteristics Section	
Format	7
Changes to Figure 6 to Figure 8 Captions	7
Added Figure 9 to Figure 12; Renumbered Sequentially	8
Deleted Figure 15	9
Added Figure 19 and Figure 20	9
Added Figure 24 to Figure 26	10
Added Figure 27 to Figure 30	11
Changes to Figure 32 Caption	12
Added Figure 33	
Deleted Figure 27 to Figure 29	12
Changes to Figure 35	
Changes to Figure 37 Caption	13

Added Figure 39, Figure 40, and Figure 42	.4
Changes to Terminology Section1	5
Changes to Theory of Operation Section1	7
Changed Internal Oscillator/EXTD_EN Section to Internal	
Oscillator Section	8
Changes to Internal Oscillator Section, Typical Operating	
Circuit Section	8
Replaced Figure 441	8
Added Oscillator Feedthrough Mitigation Section and Low	
Power Mode Section1	
Changes to Figure 50 and Figure 51	9
Added Voltage Standoff Limit Section2	22
3/2018—Rev. A to Rev. B	
Changes to Features Section	
Changes to Table 1	
Added Endnote 5 to Table 1; Renumbered Sequentially	
Changes to Table 2	5
Added Figure 27, Figure 28, and Figure 29; Renumbered	
Sequentially1	
Changes to Floating Node Avoidance Section and Figure 36 1	.7
Updated Outline Dimensions	<u>!</u> 1
2/2017—Rev. 0 to Rev. A	
Changes to Features Section	. 1
Changes to On Resistance Parameter, Table 1	
Change to Table 2	
Changes to Figure 13 and Figure 14	8
Updated Outline Dimensions	20

FUNCTIONAL BLOCK DIAGRAM

*10MQ RESISTORS ARE REQUIRED TO AVOID ANY FLOATING NODES.
FOR MORE INFORMATION, REFER TO THE CRITICAL OPERATIONAL REQUIREMENTS SECTION NOTES

1. LV = LOW VOLTAGE.
HV = HIGH VOLTAGE.

Figure 1.

SPECIFICATIONS

Supply voltage $(V_{DD}) = 3.0 \text{ V}$ to 3.6 V, GND = 0 V, and all specifications at $T_A = 25^{\circ}\text{C}$, unless otherwise noted. Typical specifications tested at $T_A = 25^{\circ}\text{C}$ with $V_{DD} = 3.3 \text{ V}$.

Table 1.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments ¹
ON-RESISTANCE PROPERTIES						See Figure 54 to Figure 12 for more details
Initial On-Resistance						
Properties						
On Resistance	Ron			2.9	Ω	Drain source current (I _{Ds}) = 50 mA, 0 V input
						bias, at 1 ms after first actuation, maximum
					_	specification from 0°C to 85°C
On-Resistance Match Between Channels	$\Delta R_{ m ON}$ ch_ch			1	Ω	Maximum value tested from 0°C to 85°C
On-Resistance Drift	AD			0.25		D. show and from 1 mas to 100 mas of tour first
Over Time ^{2, 3}	ΔR _{ON} TIME			-0.25	Ω	R _{ON} changed from 1 ms to 100 ms after first actuation, maximum value tested from 0°C to 85°C
Over Actuations ⁴	ΔR_{ON}		0.5		Ω	10° actuations, switch is actuated at 25°C and
Over Actuations	Δhon		0.5		12	R _{ON} is measured at 25°C
				5	Ω	10 ⁹ actuations, switch is actuated at 85°C and R _{ON} is
				3	12	measured at 25°C, 1 kHz actuating frequency,
						220 mA load applied between toggles ⁵
RELIABILITY PROPERTIES						
Continuously On Lifetime			7.2		Years	Median time before failure at 50°C ⁶ , see Figure 60
•						for more details
Actuation Lifetime						
Cold Switched		10 ⁹			Actuations	Load between toggling is 220 mA, tested at 85°C
Hot Switched						RF power = continuous wave (CW), terminated
						into 50 Ω , see Figure 13 for details
10 dBm			5.16 ×		Actuations	50% of test population failure point (T50)
			10 ⁹			
15 dBm			3.21 ×		Actuations	50% of test population failure point (T50)
-			10 ⁶			
20 dBm			390 × 10³		Actuations	50% of test population failure point (T50)
DVALANAC CLIA DA CTEDICTICO			10-			
DYNAMIC CHARACTERISTICS		0/4-		12	GHz	
Operating Frequency	DW	0/dc		13	GHZ	
–3 dB Bandwidth	BW	0.5	10.0		CII-	DE1 to DEC and DE4 to DEC about all
RF1, RF4		9.5	10.8		GHz	RF1 to RFC and RF4 to RFC channels
RF2, RF3		11.5	13	0.6	GHz	RF2 to RFC and RF3 to RFC channels
Insertion Loss	IL		0.45	0.6	dB	At 2.5 GHz, RFC to RFx
			0.63	0.95	dB	At 6.0 GHz, RFC to RFx
Isolation						
RFx to RFC		22	24		dB	At 2.5 GHz, RFx to RFC (all channels off)
		16	19		dB	At 6.0 GHz, RFx to RFC (all channels off)
RF1 to RFC			27			At 6 GHz, RF2 to RFC is on, RF1 to RFC is off
RF2 to RFC			26			At 6 GHz, RF1 to RFC is on, RF2 to RFC is off
Crosstalk		27	30		dB	At 2.5 GHz, RFx to RFx
		22	24		dB	At 6.0 GHz, RFx to RFx
Return Loss	RL	14	17		dB	DC to 6.0 GHz
Third-Order Intermodulation Intercept	IP3		67		dBm	Input: 900 MHz and 901 MHz, input power = 27 dBm
Second-Order Intermodulation Intercept	IP2		95		dBm	Input: 900 MHz and 901 MHz, input power = 27 dBm
Second Harmonic Distortion	HD2		-90		dBc	Input: 5.4 MHz, input power = 0 dBm
			-74		dBc	Input: 150 MHz and 800 MHz, input power = 27 dBm

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments ¹
Third Harmonic Distortion	HD3		-80		dBc	Input: 150 MHz and 800 MHz, input power = 27 dBm
Total Harmonic Distortion plus Noise	THD + N		-102		dBc	Load resistance (R _L) = 300 Ω , f = 1 kHz, RFx = 2.5 V p-p
RF Input Power				32	dBm	Switch in the on state and terminated into 50 Ω , maximum specification tested at 25°C
DC Voltage Range		-6		+6	V	On switch dc voltage operation range, 0°C to 85°C
On Switching Time ⁷	ton	0		75	μs	50% INx to 90% (0.05 dB of final IL value) RFx, 50 Ω termination, 0°C to 85°C
Off Switching Time ⁷	toff	0		75	μs	50% INx to 10% (0.05 dB of final IL value) RFx, 50 Ω termination, 0°C to 85°C
Actuation Frequency				5	kHz	All switches toggled simultaneously, 0°C to 85°C
Power-Up Time			0.75		ms	$C_{CP} = 47 \text{ pF}, 95\% \text{ V}_{DD} \text{ to } 90\% \text{ RFx}, 0^{\circ}\text{C to } 85^{\circ}\text{C}$
Video Feedthrough			16		mV peak	1 MΩ termination at RFx pin
Internal Oscillator Frequency		8	10	12	MHz	0°C to 85°C
Internal Oscillator Feedthrough ⁸			-123		dBm	Spectrum analyzer resolution bandwidth (R_{BW}) = 200 Hz, one switch in on state, all other switches
			146		dD /1 I=-	off with 50 Ω terminations ⁹
CARACITALISE PROPERTIES			-146		dBm/Hz	A. 4 A. 11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .
CAPACITANCE PROPERTIES On Switch Channel Capacitance	C _{RF ON}		3		pF	At 1 MHz, includes LFCSP package capacitance
Off Switch Channel Capacitance	C _{RF OFF}		1.5		pF	
LEAKAGE PROPERTIES						Maximum specification from 0°C to 85°C
On Leakage				5	nA	RFx (off channels) = -6 V, RFC to RFx (on channel) = -6 V
Off Leakage				0.5	nA	RFx = 6 V, RFC = -6 V
DIGITAL INPUTS						Minimum and maximum over 0°C to 85°C
Input High Voltage	V _{INH}	2			V	
Input Low Voltage	V _{INL}			0.8	V	
Input Current	I _{INL} , I _{INH}		0.025	1	μA	Input voltage $(V_{IN}) = V_{INL}$ or V_{INH}
DIGITAL OUTPUTS						Minimum and maximum over 0°C to 85°C
Output Low Voltage	VoL			0.4	V _{MAX}	Sink current (I _{SINK}) = 1 mA
Output High Voltage	Voh	V _{DD} - 0.4			V _{MIN}	Source current (I _{SOURCE}) = 1 mA
POWER REQUIREMENTS						Minimum and maximum over 0°C to 85°C
Supply Voltage	V_{DD}	3.0		3.6	V	
Supply Current	I _{DD}			2.5	mA	Digital inputs = 0 V or V_{DD} , SDO is floating in SPI mode
Low Power Mode Current ¹⁰	I _{DD EXT VCP}			50	μΑ	This value is IDD in low power mode
External Drive Voltage ¹¹	VCP _{EXT}	79.2	80	80.8	V	, and a second point made
External Drive Current	I _{CP EXT VCP}			20	μΑ	

 $^{^{\}rm 1}$ RFx is RF1, RF2, RF3, and RF4. INx is IN1, IN2, IN3, and IN4.

 $^{^2}$ Maximum R_{ON} over time is R_{ON} (max) + $\Delta R_{ON\,TIME}$ (max) = 2.65 $\Omega.$

 $^{^3}$ Typically, the on-resistance over time drifts by $-0.05\,\Omega$ per decade.

⁴ Maximum R_{ON} after 1 billion actuations is R_{ON} (max) + Δ R_{ON} (max) = 7.9 Ω .

Actuating the switch at 85°C and measuring R_{ON} at 25°C is the most severe condition for ADGM1004 R_{ON} drift over actuations.
 Failure occurs when 50% of a sample lot fails. For more details, see the Cumulative On Switch Lifetime section.
 Switch is settled after 75 μs. Do not apply RF power between 0 μs and 75 μs.

⁸ Disable the internal oscillator to eliminate feedthrough. When the internal oscillator and charge pump circuitry is disabled, the V_{CP} pin (Pin 24) must be driven with 80 V dc (VCP_{EXT}) from an external voltage supply required for MEMS switch actuation, as outlined in Table 3.

The spectrum analyzer setup is as follows: $R_{BW} = 200$ Hz, video bandwidth (V_{BW}) = 2 Hz, span = 100 kHz, input attenuator = 0 dB, the detector type is peak, and the maximum hold is off. The fundamental feedthrough noise or harmonic (whichever is higher) is tested.

¹⁰ For more details, see the Low Power Mode section.

¹¹ For more details, see the Internal Oscillator Feedthrough Mitigation section.

TIMING CHARACTERISTICS

 V_{DD} = 3.0 V to 3.6 V, GND = 0 V, and all specifications T_{MIN} to T_{MAX} = 0°C to +85°C, unless otherwise noted.

Table 2.

Parameter	Description	Limit at T _{MIN}	Limit at T _{MAX}	Unit
t ₁	SCLK period	100		ns
t_2	SCLK high pulse width	45		ns
t ₃	SCLK low pulse width	45		ns
t 4	CS falling edge to SCLK active edge	25		ns
t ₅	Data setup time	20		ns
t ₆	Data hold time	20		ns
t ₇	SCLK active edge to CS rising edge	25		ns
t ₈	CS falling edge to SDO data available		20	ns
t_9 ¹	SCLK falling edge to SDO data available		40	ns
t ₁₀	CS rising edge to SDO returns to high impedance		25	ns
t ₁₁	CS high time between SPI commands	100		ns
t ₁₂	SCLK edge rejection to CS falling edge	25		ns
t ₁₃	CS rising edge to SCLK edge rejection	25		ns

 $^{^{1}}$ Measured with a 20 pF load, to determines the maximum SCLK frequency when the SDO pin is used.

Timing Diagrams

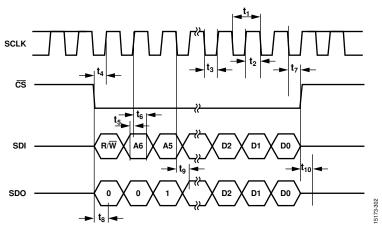


Figure 2. Addressable Mode Timing Diagram

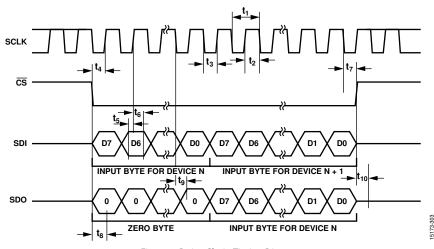


Figure 3. Daisy-Chain Timing Diagram

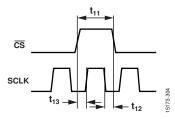


Figure 4. SCLK/CS Timing Relationship

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Table 3.			
Parameter	Rating		
V _{DD} to GND	−0.3 V to +6 V		
Digital Inputs ¹	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V or}$		
	+30 mA (whichever occurs		
DC Valta va Batin v2	first)		
DC Voltage Rating ²	±7 V		
Standoff Voltage ³	20 V		
RFx to AGND	±10 V		
RFC to AGND	±10 V		
RFx to RFC	20 V		
Current Rating ²	250 mA		
RF Power Rating⁴	33 dBm		
Temperature			
Operating Range	0°C to +85°C		
Storage Range	−65°C to +150°C		
Reflow Soldering (Pb-Free)			
Peak	260 (+0/-5)°C		
Time at Peak	10 sec to 30 sec		
Electrostatic Discharge (ESD)			
Human Body Model (HBM)			
RF1 to RF4 and RFC	5 kV		
All Other Pins	2.5 kV		
Field Induced Charged Device			
Model ⁵	1.2511/		
All Pins	1.25 kV		
Group D			
Mechanical Shock (with 0.5 ms Pulse) ⁶	1500 <i>g</i>		
Vibration (Acceleration at 50 g)	20 Hz to 2000 Hz		
Constant Acceleration	30,000 <i>g</i>		

¹ Clamp overvoltages at INx by internal diodes. Limit the current to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 θ_{JA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θ_{JC} is the junction to case thermal resistance.

Table 4. Thermal Resistance

Package Type	θ _{JA}	θις	Unit
CP-24-4 ¹	60	75	°C/W

 $^{^1}$ A simulated θ_{JA} number is evaluated using the maximum junction temperature in the package and the total power being dissipated in the package under operating conditions. For thermal performance calculation purposes at 25°C, a power dissipation of 113 mW per switch can be used. This value is calculated from a typical R_{ON} of 1.8 Ω and an absolute maximum current rating of 250 mA.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² This rating is with respect to the switch in the on position with no radio frequency signal applied.

³ This rating is with respect to the switch in the off position.

 $^{^4}$ This rating is with respect to the switch in the on position and terminated into 50 Ω . The rating is 27 dBm when the switch is unterminated.

⁵ A safe automated handling and assembly process is achieved at this rating level by implementing industry standard ESD controls.

⁶ If the device is dropped during handling, do not use the device.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

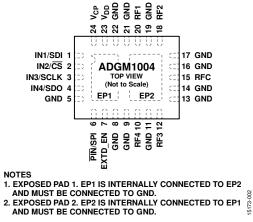


Figure 5. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN1/SDI	Parallel Logic Digital Control Input 1. The voltage applied to this pin controls the gate of the RF1 to RFC MEMS switch. In SPI mode, this pin is the serial data input pin. In parallel mode, if the IN1 pin is low, the RF1 to RFC switch is open (off). If the IN1 pin is high, the RF1 to RFC switch is closed (on). In SPI mode, this pin functions as the serial data input (SDI) pin.
2	IN2/CS	Parallel Logic Digital Control Input 2. The voltage applied to this pin controls the gate of the RF2 to RFC MEMS switch. In parallel mode, if IN2 is low, the RF2 to RFC switch is open (off). If IN2 is high, the RF2 to RFC switch is closed (on). In SPI mode, this pin is the chip select (CS) pin. CS is an active low signal that selects the slave device with which the master device intends to communicate. Typically, there is a dedicated CS signal between the master device and each slave device. The CS pin also functions to synchronize and frame the communications to and from the slave device.
3	IN3/SCLK	Parallel Logic Digital Control Input 3. The voltage applied to this pin controls the gate of the RF3 to RFC MEMS switch. In parallel mode, if IN3 is low, the RF3 to RFC switch is open (off). If IN3 is high, the RF3 to RFC switch is closed (on). In SPI mode, this pin functions as the serial clock (SCLK) pin that synchronizes the slave device(s) to the master device. Typically, the SCLK signal is shared for all slave devices on the serial bus. The SCLK signal is always driven by the master device.
4	IN4/SDO	Parallel Logic Digital Control Input 4. The voltage applied to this pin controls the gate of the RF4 to RFC MEMS switch. In parallel mode, if IN4 is low, the RF4 to RFC switch is open (off). If IN4 is high, the RF4 to RFC switch is closed (on). In SPI mode, this pin functions as the serial data output (SDO) pin. Typically, the SDO pin is shared for all slave devices on the serial bus. The SDO pin is driven by only one slave device at a time, otherwise it is high impedance. The SDO pin is always high impedance when the $\overline{\text{CS}}$ pin is deasserted high.
5, 8, 9, 11, 13, 14, 16, 17, 19, 21, 22	GND	Ground Connection.
6	PIN/SPI	Parallel or Serial Logic Control Enable Pin. The SPI interface is enabled when this pin is high. When this pin is low the parallel digital interface is enabled.
7	EXTD_EN	External Voltage Drive Enable. In normal operation, set EXTD_EN low to enable the built in 10 MHz oscillator, which enables the internal driver IC voltage boost circuitry. Setting EXTD_EN high disables the internal 10 MHz oscillator and driver boost circuitry. With the oscillator disabled, the switch can still be controlled via the logic interface pins (IN1 to IN4) or via SPI interface, but the VcP pin must be driven with 80 V dc from an external voltage supply. In this mode, the ADGM1004 only consumes 50 µA maximum supply current. Disabling the internal oscillator eliminates the associated 10 MHz noise feedthrough from the switch.
10	RF4	RF4 Port. This pin can be an input or an output. If unused, connect the pin to GND or terminate the pin with a 50 Ω resistor to GND.
12	RF3	RF3 Port. This pin can be an input or an output. If unused, connect the pin to GND or terminate the pin with a 50 Ω resistor to GND.
15	RFC	Common RF Port. This pin can be an input or an output.
18	RF2	RF2 Port. This pin can be an input or an output. If unused, connect the pin to GND or terminate the pin with a 50 Ω resistor to GND.
20	RF1	RF1 Port. This pin can be an input or an output. If unused, connect the pin to GND or terminate the pin with a 50 Ω resistor to GND.

Pin No.	Mnemonic	Description
23	V_{DD}	Positive Power Supply Input. The recommended decoupling capacitor to ground value is 0.1 μ F. For the recommended input voltage for this chip, see the Specifications section.
24	V_{CP}	Charge Pump Capacitor Terminal. The recommended shunt capacitor to ground value is 47 pF (100 V rated). If the EXTD_EN pin is high, input an 80 V dc drive voltage into V _{CP} to drive the switches.
	EP1	Exposed Pad 1. EP1 is internally connected to EP2 and must be connected to GND.
	EP2	Exposed Pad 2. EP2 is internally connected to EP1 and must be connected to GND.

TYPICAL PERFORMANCE CHARACTERISTICS

In Figure 13, T50 refers to the number of cycles required for 50% of the population to fail.

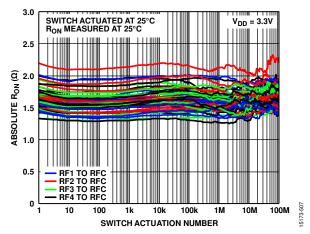


Figure 6. Absolute R_{ON} vs. Switch Actuation Number, Switch Actuated at 25°C and R_{ON} Measured at 25°C

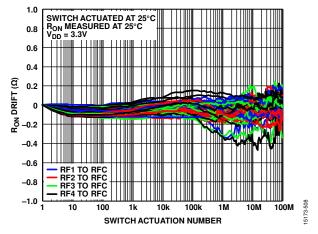


Figure 7. R_{ON} Drift vs. Switch Actuation Number, Normalized at Zero, Switch Actuated at 25°C and R_{ON} Measured at 25°C

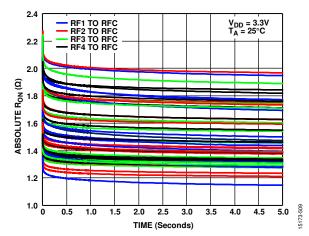


Figure 8. Absolute R_{ON} vs. Time (1 ms to 5 sec) on Linear Scale

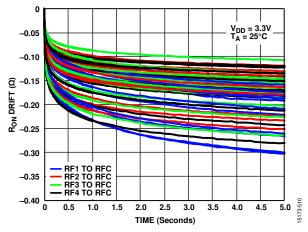


Figure 9. $R_{\rm ON}$ Drift vs. Time (1 ms to 5 sec) on Linear Scale, Normalized at Zero

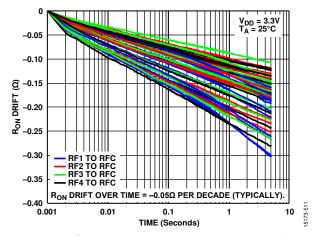


Figure 10. R_{ON} Drift vs. Time (1 ms to 5 sec) on Log Scale, Normalized at Zero

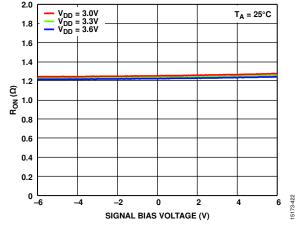


Figure 11. R_{ON} vs. Signal Bias Voltage over Supply Voltages (Measured 5 sec Post Switch Turn On Time, RF1 to RFC on)

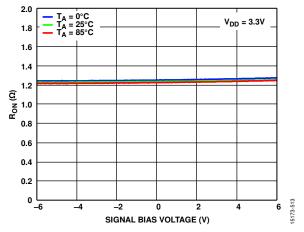


Figure 12. R_{ON} vs. Signal Bias Voltage over Temperature (Measured 5 sec Post Switch Turn On Time, RF1 to RFC on)

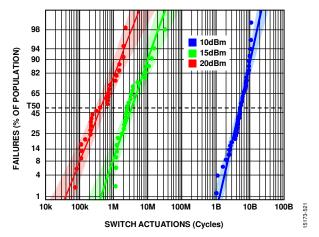


Figure 13. Hot Switching Probability Distribution on Log Normal with 95% Confidence Interval (CI) (RF Power = CW, Terminated into 50 Ω , T_A = 25°C, V_{DD} = 3.3 V)

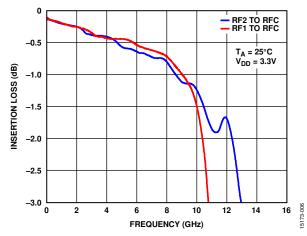


Figure 14. Insertion Loss vs. Frequency, Linear Scale ($V_{DD} = 3.3 V$)

Figure 15. Insertion Loss vs. Frequency over Temperature ($V_{DD} = 3.3 V$, RF1 to RFC)

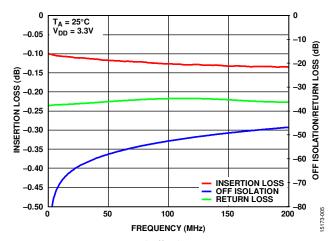


Figure 16. Insertion Loss and Off Isolation/Return Loss vs. Frequency $(V_{DD} = 3.3 \text{ V}, RF1 \text{ to RFC})$

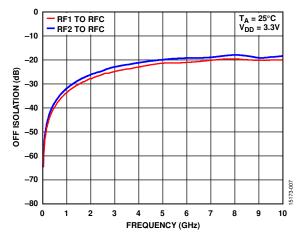


Figure 17. Off Isolation vs. Frequency, All Channels Off ($V_{DD} = 3.3 V$)

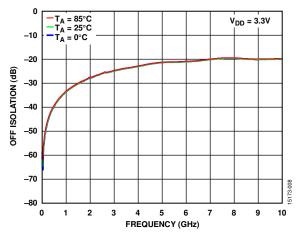


Figure 18. Off Isolation vs. Frequency over Temperature, All Channels Off $(V_{DD} = 3.3 V, RF1 \text{ to } RFC)$

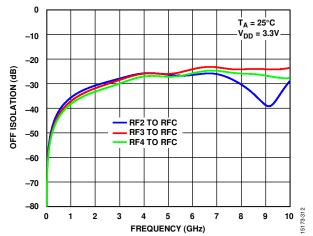


Figure 19. Off Isolation vs. Frequency, RF1 to RFC On $(V_{DD} = 3.3 \text{ V})$

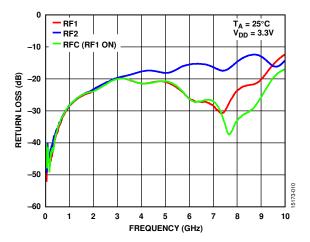


Figure 20. Return Loss vs. Frequency ($V_{DD} = 3.3 V$)

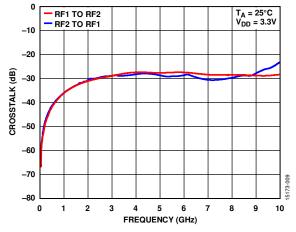


Figure 21. Crosstalk vs. Frequency ($V_{DD} = 3.3 \text{ V}$)

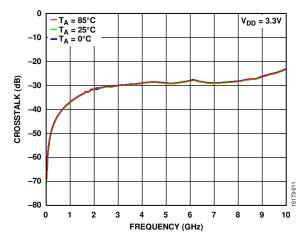


Figure 22. Crosstalk vs. Frequency over Temperature ($V_{DD} = 3.3 \text{ V}$, RF2 to RF1)

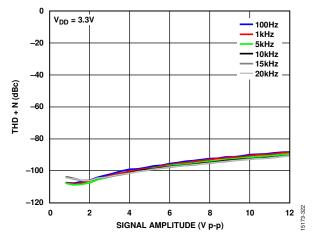


Figure 23. THD + N vs. Signal Amplitude (V_{DD} = 3.3 V, R_{LOAD} = 300 Ω , T_A = 25 °C, Signal Source Impedance = 20 Ω)

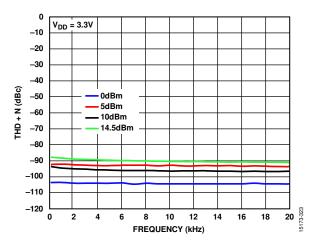


Figure 24. THD + N vs. Frequency (V_{DD} = 3.3 V, R_{LOAD} = 300 Ω , T_A = 25°C, Signal Source Impedance = 20 Ω

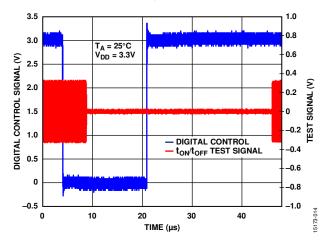


Figure 25. Digital Control Signal and Test Signal vs. Time ($V_{DD} = 3.3 V$)

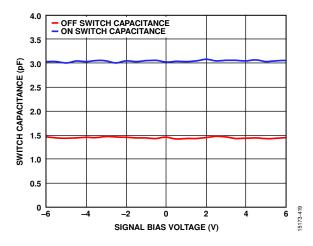


Figure 26. Switch Capacitance vs. Signal Bias Voltage

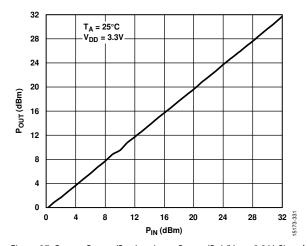


Figure 27. Output Power (P_{OUT}) vs. Input Power (P_{IN}) ($V_{DD} = 3.3 V$, Signal Frequency = 4 GHz)

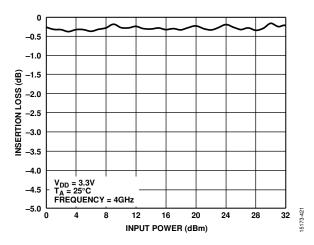


Figure 28. Insertion Loss vs. Input Power

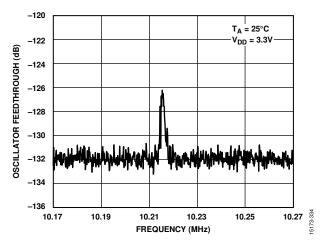


Figure 29. Oscillator Feedthrough vs. Frequency, Zoomed in at 10.2 MHz $(V_{DD}=3.3\ V)$

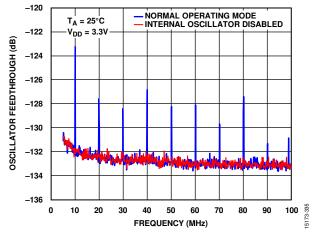


Figure 30. Oscillator Feedthrough vs. Frequency, Wide Bandwidth $(V_{DD} = 3.3 \text{ V})$

TEST CIRCUITS

The test circuits shown in Figure 31 to Figure 42 are applicable to all channels. Additional pins are omitted for clarity and V_S is the source voltage.

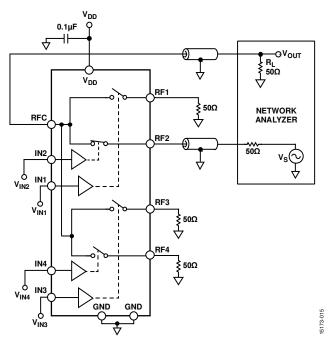


Figure 31. Insertion Loss and Return Loss

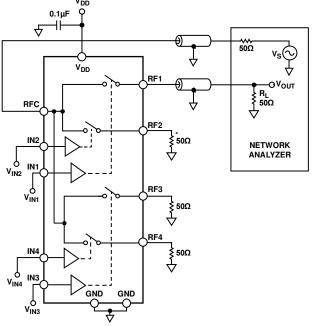


Figure 32. Isolation (All Switches Off)

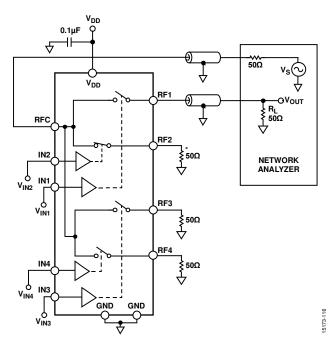


Figure 33. Isolation (RF2 to RFC On, RF1 to RFC Off)

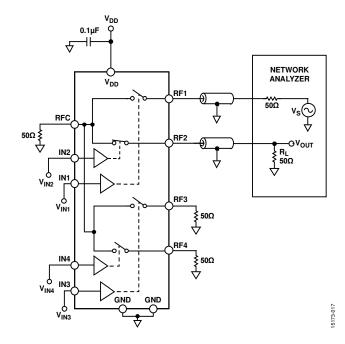


Figure 34. Crosstalk

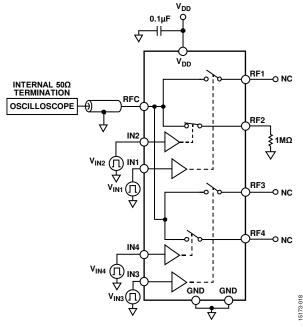


Figure 35. Video Feedthrough

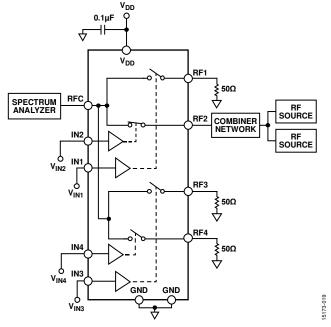


Figure 36. IP2 and IP3

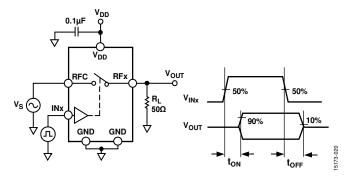


Figure 37. Switch Timing, t_{ON} and t_{OFF} (All RFx Terminals Connected to 50 Ω Termination)

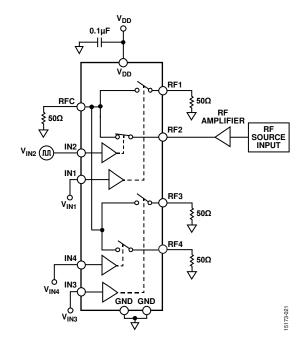


Figure 38. Hot Switching Evaluation Setup, 2 GHz RF Source, 50% Duty Cycle, 5 kHz Switching Actuation Speed

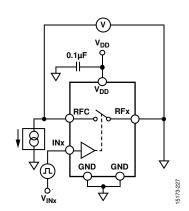
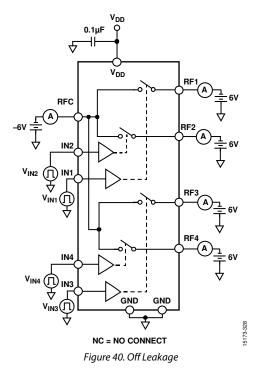



Figure 39. On Resistance

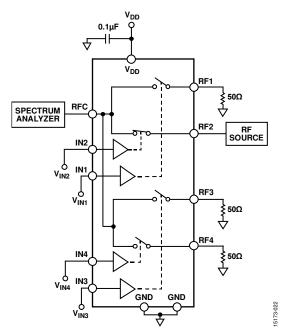


Figure 41. Second and Third Harmonics, RF Power

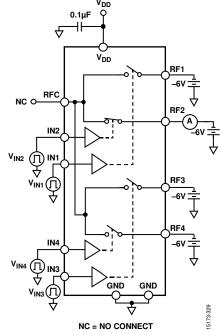


Figure 42. On Leakage

TERMINOLOGY

Insertion Loss

Insertion loss is the amount of signal attenuation between the input and output ports of the switch when the switch is in the on state. Expressed in decibels, ensure that insertion loss is as small as possible for maximum power transfer.

An example calculation of insertion loss based on the setup in Figure 31 is as follows:

Insertion Loss (dB) =
$$-20\log_{10}|S_{RF2RFC}|$$

where S_{RF2RFC} is the transmission coefficient measured from RF2 to RFC with RF2 in the on position. All unused switches are in the off position and terminated in a purely resistive load of 50 Ω .

Isolation

Isolation is the amount of signal attenuation between the input and output ports of the switch when the switch is in the off state. Expressed in decibels, ensure that isolation is as large as possible.

An example calculation of isolation based on the setup in Figure 32 is as follows:

Isolation (dB) =
$$-20\log_{10}|S_{RFCRFI}|$$

where S_{RFCRF1} is the transmission coefficient measured from RFC to RF1 with RF1 in the off position. All unused switches are in the off position and terminated in a purely resistive load of 50 Ω .

Crosstalk

Crosstalk is a measure of unwanted signals coupled through from one channel to another because of parasitic capacitance.

An example calculation of crosstalk based on the setup in Figure 34 is as follows:

$$Crosstalk$$
 (dB) = $-20log_{10}|S_{RF1RF2}|$

where S_{RFIRF2} is the transmission coefficient measured from RF1 to RF2 with RF1 in the off position and RF2 in the on position. All unused switches are in the off position and terminated in a purely resistive load of 50 Ω .

Return Loss

Return Loss is the magnitude of the reflection coefficient expressed in decibels, and the amount of reflected signal relative to the incident signal.

An example calculation of return loss based on the setup in Figure 31 is as follows:

Return Loss (dB) =
$$-20\log_{10}|S_{11}|$$

where S_{11} is the reflection coefficient of the port under test.

Third-Order Intermodulation Intercept (IP3)

IP3 is the intersection point of the fundamental P_{OUT} vs. P_{IN} extrapolated line and the third-order intermodulation products extrapolated line of a two-tone test. IP3 is a figure of merit that characterizes the switch linearity.

Second-Order Intermodulation Intercept (IP2)

IP2 is the intersection point of the fundamental P_{OUT} vs. P_{IN} extrapolated line and the second-order intermodulation products extrapolated line of a two-tone test. IP2 is a figure of merit that characterizes the switch linearity.

Second Distortion Harmonic (HD2)

HD2 is the amplitude of the second distortion harmonic, where, for a signal whose fundamental frequency is f, the second distortion harmonic has a frequency of 2 f. This measurement is a single-tone test expressed with reference to the carrier signal (dBc).

Third Distortion Harmonic (HD3)

HD3 is the amplitude of the third distortion harmonic, where, for a signal whose fundamental frequency is f, the third distortion harmonic has a frequency of 3 f. This measurement is a single tone test expressed with reference to the carrier signal (dBc).

On Switching Time (ton)

 $t_{\rm ON}$ is the time it takes for the switch to turn on. $t_{\rm ON}$ is measured from 50% of the control signal (INx) to 90% of the on level. No power was applied through the switch during this test (cold switched). The switch was terminated into a 50 Ω load.

Off Switching Time (toff)

 t_{OFF} is the time it takes for the switch to turn off. t_{OFF} is measured from 50% of the control signal (INx) to 10% of the on level. No power was applied through the switch during this test (cold switched). The switch was terminated into a 50 Ω load.

Actuation Frequency

The actuation frequency refers to the speed at which the ADGM1004 can be switched on and off. The actuation frequency is dependent on both the settling times and the on and off switching times.

Power-Up Time

The power-up time is a measure of the time required for the device to power up and start to pass 90% of an RF input signal after the $V_{\rm DD}$ pin reaches 95%.

Video Feedthrough

Video feedthrough is a measure of the spurious signals present at the RFx ports of the switch when the control voltage is switched from high to low or from low to high without an RF signal present.

Internal Oscillator Frequency

The internal oscillator frequency is the value of the on-board oscillator that drives the gate control chip of the ADGM1004.

Internal Oscillator Feedthrough

The internal oscillator feedthrough is the amount of internal oscillator signal that feeds through to the RFx and RFC pins of the switch. This signal appears as a noise spur on the RFx and RFC pins of the switch at the frequency the oscillator is operating at and the harmonics thereof.

On Resistance (Ron)

R_{ON} is the resistance of a switch in the closed/on state measured between the RFx and RFC package pins. Measure resistance in 4-wire mode to null out any cabling or PCB series resistances.

On Resistance Drift

On resistance drift is the change in the R_{ON} of the switch over the specified criteria in Table 1.

Continuously On Lifetime

The continuously on lifetime parameter measures how long the switch is left in a continuously on state. If the switch is left in the on position for an extended period, this parameter affects the turn off mechanism of the device.

Actuation Lifetime

Actuation lifetime is the number of consecutive open, close, and open cycles that the device can complete without the $R_{\rm ON}$ exceeding a specified limit and no occurrence of failures to open (FTO) or failures to close (FTC).

Cold Switching

Cold switching operates the switch in a mode so that no voltage differential exists between the source and the drain when the switch is closed and/or no current is flowing from the source to the drain when the switch opens. All switches have longer lives when cold switched.

Hot Switching

Hot switching is operating the switch in a mode where a voltage differential exists between the source and the drain when the switch is closed and/or current is flowing from RFx to RFC when the switch opens. Hot switching results in a reduced switch life, depending on the magnitude of the open circuit voltage between the source and the drain.

Input High Voltage (VINH)

 V_{INH} is the minimum input voltage for Logic 1.

Input Low Voltage (V_{INL})

 V_{INL} is the maximum input voltage for Logic 0.

Input Current (IINL, IINH)

 I_{INL} and I_{INH} are the low and high input currents of the digital inputs.

Low Power Mode Current (IDD EXT VCP)

 $I_{DD\;EXT\;VCP}$ is the amount of supply current used by the gate driver circuity when the internal oscillator and the charge pump circuitry are disabled by setting the EXTD_EN pin high.

External Drive Current (I_{CP EXT VCP})

 $I_{\text{CP EXT VCP}}$ is the amount of current used by the ADGM1004 from the external 80 V power supply when the internal oscillator and the charge pump circuitry are turned off by setting EXTD_EN pin high.

THEORY OF OPERATION

The ADGM1004 is a wideband SP4T switch fabricated using Analog Devices MEMS switch technology. This technology enables high power, low loss, low distortion GHz switches for use in demanding RF applications.

The MEMS switch simultaneously brings together high frequency RF performance and 0 Hz/dc precision performance. This combination, coupled with superior reliability and a tiny surface-mountable form factor, makes the MEMS switch an ideal switching solution for all RF and precision signal instrumentation needs.

Figure 43 shows a cross section of the switch with dimensions. The switch is an electrostatically actuated cantilever beam connected in a 3-terminal configuration. Functionally, the switch is analogous to a field effect transistor (FET). The terminals can be used as a source, gate, or drain.

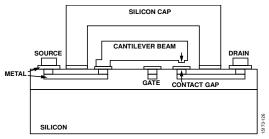


Figure 43. Cross Section of the MEMS Switch Design Showing the Cantilever Switch Beam (Not to Scale)

When a dc actuation voltage is applied between the gate electrode and the source (the switch beam), an electrostatic force is generated, resulting in attracting the beam toward the substrate. A separate on-board driver IC generates the 80 V bias voltage used for actuation.

When the bias voltage between the gate and the source exceeds the threshold voltage of the switch (V_{TH}) the contacts on the beam touch the drain, which completes the circuit between the source and the drain and turns the switch on. When the bias voltage is removed, that is, the 0 V on the gate electrode, the beam acts as a spring generating a sufficient restoring force to open the connection between the source and the drain, thus breaking the circuit and turning the switch off.

The silicon cap covering the switch die is shown in Figure 43. This cap hermetically seals the switch, which improves reliability. The switch contacts do not suffer from dry switching or low power switching lifetime degradation.

PARALLEL DIGITAL INTERFACE

The ADGM1004 is controlled via a parallel digital interface. Standard complimentary metal-oxide semiconductor (CMOS)/ low voltage transistor to transistor logic (LVTTL) signals applied through this interface control the actuation or release of all ADGM1004 switch channels. Gate signals applied are boosted to provide the required voltages required to actuate the MEMS switch.

Setting the PIN/SPI pin low enables the parallel digital interface in 4-wire SP4T mode. In parallel mode, Pin 1 to Pin 4 (IN1 to IN4) control the switching functions of the ADGM1004. When a Logic 1 is applied to one of these pins, the gate of the corresponding switch is activated and the switch turns on. Conversely, when a Logic 0 is applied to one of these pins, the switch turns off. Note that it is possible to connect more than one RFx input to RFC at a time. See Table 6 for the ADGM1004 truth table.

Table 6. Truth Table When in Parallel Digital Interface Mode

IN1	IN2	IN3	IN4	RF1 to RFC	RF2 to RFC	RF3 to RFC	RF4 to RFC
0	0	0	0	Off	Off	Off	Off
0	0	0	1	Off	Off	Off	On
0	0	1	0	Off	Off	On	Off
0	0	1	1	Off	Off	On	On
0	1	0	0	Off	On	Off	Off
0	1	0	1	Off	On	Off	On
0	1	1	0	Off	On	On	Off
0	1	1	1	Off	On	On	On
1	0	0	0	On	Off	Off	Off
1	0	0	1	On	Off	Off	On
1	0	1	0	On	Off	On	Off
1	0	1	1	On	Off	On	On
1	1	0	0	On	On	Off	Off
1	1	0	1	On	On	Off	On
1	1	1	0	On	On	On	Off
1	1	1	1	On	On	On	On

SPI DIGITAL INTERFACE

The ADGM1004 can be controlled via a digital SPI when the $\overline{\text{PIN}}/\text{SPI}$ pin is high. The SPI is compatible with SPI Mode 0 (clock polarity (CPOL) = 0, clock phase (CPHA) = 0) and Mode 3 (CPOL = 1, CPHA = 1) and it operates with SCLK frequencies up to 10 MHz. When the SPI is active, the default mode is addressable, in which, the device registers are accessed by a 16-bit SPI command that is bound by the state of the $\overline{\text{CS}}$ pin. The ADGM1004 can also operate in daisy-chain mode.

The SPI interface pins of the ADGM1004 are $\overline{\text{CS}}$, SCLK, SDI, and SDO. Hold the $\overline{\text{CS}}$ pin low when using the SPI. The data on the SDI pin is captured on the rising edge of SCLK, and data is propagated out on the SDO pin on the falling edge of SCLK. The SDO pin has a push pull output driver architecture. Therefore, the ADGM1004 does not require pull-up resistors. The two modes of SPI operation are: addressable and daisy-chain.

Addressable Mode

Addressable mode is the default mode for the ADGM1004 upon power-up. A single SPI frame in addressable mode is bound by a $\overline{\text{CS}}$ falling edge and the succeeding $\overline{\text{CS}}$ rising edge. The frame is comprised of 16 SCLK cycles. The timing diagram for addressable mode is shown in Figure 44 for SPI mode 0.

The first SDI signal bit indicates if the SPI command is a read or write command. The next seven bits determine the target register address. The remaining eight bits provide the data to the addressed register. The last eight bits are ignored during a read command because the SDO pin propagates out the data contained in the addressed register during these clock cycles.

In Mode 0, during any SPI command, SDO sends out eight alignment bits on the $\overline{\text{CS}}$ falling edge and the first seven SCLK falling edges (in Mode 3, the first SCLK falling edge is ignored as shown in Figure 45). The alignment bits observed at SDO are 0x25.

The target register address of an SPI command is determined on the eighth SCLK rising edge. Data from this register propagates out on the SDO pin from the 8th to the 15th SCLK falling edge during SPI reads. A register write occurs on the 16th SCLK rising edge during SPI writes.

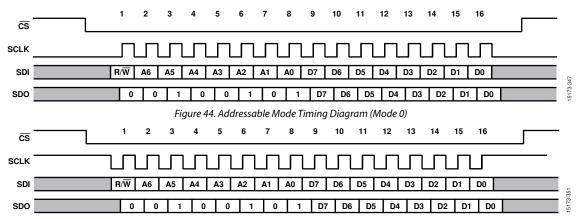


Figure 45. Addressable Mode Timing Diagram (Mode 3)

Daisy-Chain Mode

The connection of several ADGM1004 devices in a daisy-chain configuration is possible. All devices share the same $\overline{\text{CS}}$ and SCLK lines while the SDO pin of one device forms a connection to the SDI pin of the next device, creating a shift register. In daisy-chain mode, the SDO signal is an 8-cycle delayed version of the SDI signal (see Figure 47).

The ADGM1004 can only enter daisy-chain mode from addressable mode by sending the 16-bit SPI command, 0x2500. See Figure 47 for an example of this command. When the ADGM1004 receives this command, the SDO pin of the devices sends out the same command because the alignment bits at the SDO pin are 0x25. This command allows multiple daisy-chained devices to enter daisy-chain mode in a single SPI frame. A hardware reset is required to exit daisy-chain mode.

For the timing diagram of a typical daisy-chain SPI frame, see Figure 48. When the $\overline{\text{CS}}$ pin goes high, Device 1 writes Command 0, Bits[7:0], to the SWITCH_DATA register, Device 2 writes Command 1, Bits[7:0], to the switches, and so on. The SPI block uses the last eight bits received through the SDI pin to update the switches. After entering daisy-chain mode, the first eight bits sent out by the SDO pin are 0x00. When $\overline{\text{CS}}$ goes high, the internal shift register value does not reset back to 0.

An SCLK rising edge reads in data on the SDI pin while data is propagated out of the SDO pin on an SCLK falling edge. The expected number of SCLK cycles are a multiple of eight before the $\overline{\text{CS}}$ pin goes high. When this is not the case, the SPI interface sends the last eight bits received to the SWITCH_DATA register.

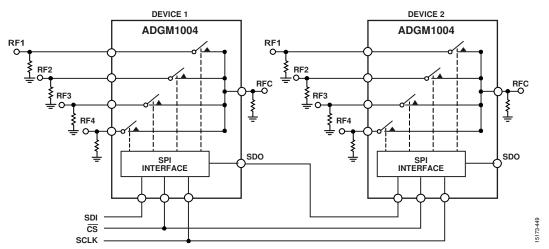


Figure 46. Two SPI Controlled ADGM1004 Switches Connected in Daisy-Chain Configuration

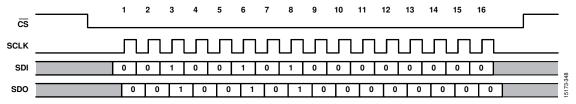


Figure 47. SPI Command to Enter Daisy-Chain Mode

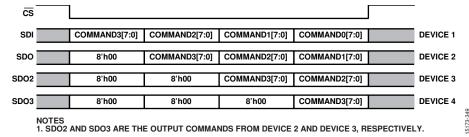


Figure 48. Example of SPI Frame with Three ADGM1004 Switches Connected in Daisy-Chain Mode

Hardware Reset

The digital section of the ADGM1004 goes through an initialization phase during $V_{\rm DD}$ power-up. To hardware reset the device, power cycle the $V_{\rm DD}$ input. After power-up or a hardware reset, ensure that there is a minimum of 10 μs from the time of power-up or reset before any SPI command is issued. Ensure that $V_{\rm DD}$ does not drop out during the 10 μs initialization phase because $V_{\rm DD}$ dropout can result in incorrect operation of the ADGM1004.

Internal Error Status

When an internal error is detected in the device, the internal error is flagged by the INTERNAL_ERROR bits (Bits[7:6]) of the SWITCH_DATA register (Register 0x20), as shown in Table 9. An internal error results from an error in the configuration of the device at power up.

INTERNAL OSCILLATOR FEEDTHROUGH

The ADGM1004 has an internal oscillator running at a nominal 10 MHz. This oscillator drives the charge pump circuitry that provides the actuation voltage for each switch gate electrode. Although this oscillator is low power, the 10 MHz signal is coupled to the switch and is considered a noise spur on the switch channels. The magnitude of this feedthrough noise spur is specified in Table 1 and is typically –123 dBm or –146 dBm/Hz when one switch is on. When all four switches are simultaneously on, the feedthrough goes up to –120 dBm. $V_{\rm DD}$ level and temperature changes affect the frequency of the noise spur. For the maximum and minimum frequency range over temperature and voltage supply range, see Table 1.

INTERNAL OSCILLATOR FEEDTHROUGH MITIGATION

In normal operation, the 80 V actuation voltage is supplied by the driver IC. Setting the EXTD_EN pin low enables the built in 10 MHz oscillator. This setting enables the charge pump circuitry to generate the 80 V required for MEMS switch actuation. The internal oscillator is a source of noise that couples through to the RF ports. The magnitude of this feedthrough noise spur is specified in Table 1 and is typically –123 dBm or –146 dBm/Hz when one switch is on. To eliminate the internal oscillator feedthrough, set the EXTD_EN pin high to disable the internal oscillator and charge pump circuitry. When the internal oscillator and charge pump circuitry is disabled, the $V_{\rm CP}$ pin must be driven with 80 V dc (VCP_EXT) from an external voltage supply required for MEMS switch actuation, as shown in Table 5. The switch can still be controlled via the digital logic interface pins.

LOW POWER MODE

Setting the EXTD_EN pin high shuts down the internal oscillator. The ADGM1004 enters a low power quiescent state, drawing only 50 μA maximum supply current.

TYPICAL OPERATING CIRCUIT

Figure 49 shows the typical operating circuit for the ADGM1004 as used in the EVAL-ADGM1004SDZ evaluation board. A 47 pF (100 V rated) external capacitor ($C_{\mathbb{CP}}$) is required on the $V_{\mathbb{CP}}$ pin. This capacitor is a holding capacitor for the 80 V dc gate drive voltage.

In the circuit shown in Figure 49, $V_{\rm DD}$ is connected to 3.3 V. EP1 connects to EP2 internally. Typically, one large GND pad on the PCB is used to short together EP1 and EP2. Figure 49 shows the ADGM1004 configured to use the internal oscillator as the reference clock to the driver IC control circuit. Alternatively, set the EXTD_EN pin high and apply 80 V dc directly to the $V_{\rm CP}$ pin

to disable the internal oscillator and eliminate all oscillator feedthrough. The switches can then be controlled normally via the logic control interface, IN1 to IN4.

To avoid any floating nodes, connect a 10 M Ω shunt resistor to GND on all RFx pins (RF1 to RF4, and RFC), as shown in Figure 49. See the Floating Node section for more information. An example of 10 M Ω resistor that can be used successfully with the MEMS switch is Multicomp MCRE000262. These resistors are tested with the switch and have a very small (negligible) impact on the RF performance of the MEMS switch.

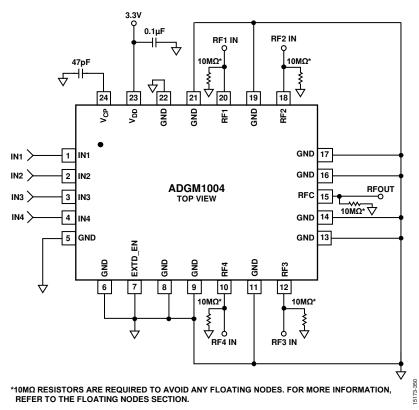


Figure 49. Typical Operating Circuit

APPLICATIONS INFORMATION POWER SUPPLY RAILS

It is recommended that a $0.1 \mu F$ decoupling capacitor is added to the power supply port of the ADGM1004.

The ADGM1004 can operate with unipolar supplies between 3.0 V and 3.6 V.

The device is fully specified at a 3.3 V analog supply voltage range.

POWER SUPPLY RECOMMENDATIONS

Analog Devices has a wide range of power management products to meet the requirements of most high performance signal chains.

An example of a unipolar power solution for the ADGM1004 is shown in Figure 50. The ADP7142 is a low dropout linear regulator that operates from 2.7 V to 40 V and is ideal for regulation of high performance analog and mixed signal circuits operating from 39 V down to 1.2 V rails. The ADP7142 has 11 μV rms output noise independent of the output voltage. The ADP7142 can be used to power the supply rail for the ADGM1004, a microcontroller, and/or other devices in the signal chain.

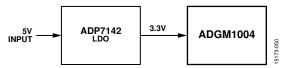


Figure 50. Unipolar Power Solution

If a better noise performance at the power supply is required, the ADP7142 can be replaced by the LT1962 or the LT3045-1.

Table 7. Recommended Power Management Devices

Product	Description
ADP7142	40 V, 200 mA, low noise, CMOS LDO linear regulator
LT1962	300 mA, low noise, micropower, LDO regulator
LT3045-1	20 V, 500 mA, ultralow noise, ultrahigh PSRR linear regulator with VIOC control

SWITCHABLE RF ATTENUATOR

RF attenuator networks are commonly used in RF instrumentation equipment, such as vector network analyzers, spectrum analyzers, and signal generators. Routing RF signals through an attenuator can enable the equipment to accept higher power signals and, therefore, increase the dynamic range of the instrument. In RF attenuation applications like the vector network analyzers, spectrum analyzers, and signal generators, maintaining the bandwidth of the signal after the signal passes through the network is critical. Any degradation of the signal reduces the performance of the equipment. Therefore, the RF characteristics of the switches used for routing are an integral part of the quality of an attenuator network.

The ADGM1004 MEMS switch with low flat insertion loss, wide RF bandwidth, and high reliability is suited for use as a switchable RF attenuator. The ADGM1004, as an SP4T switch, also brings added flexibility. Figure 51 shows an example attenuation network configuration using two ADGM1004 switches and three different attenuators. The fourth channel of the switches is used as a nonattenuated route in Figure 51.

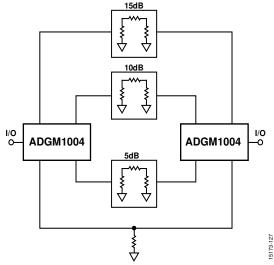


Figure 51. Switching RF Attenuators Using Two ADGM1004 MEMS Switches

RECONFIGURABLE RF FILTER

A reconfigurable RF filter is advantageous in many RF frontend applications. A reconfigurable RF filter provides more saved space. As space becomes more constrained in applications, the option to have an economical reconfigurable RF filter instead of individual frequency dependent filters is preferred.

The ADGM1004 low flat insertion loss, wide RF bandwidth, low parasitic, low capacitance, and high linearity are required to turn on the lump components (capacitor and inductor), which make the MEMS switch suited for reconfigurable filter application.

In applications such as wireless communications or mobile radios, the number of bands and/or modes constantly increases. A reconfigurable RF filter allows more bands and/or modes to be covered using the same components.

Figure 52 shows an example of a reconfigurable band-pass filter. The topology shown is of a generalized, two section, inductively coupled, single-ended band-pass filter, nominally centered on a 400 MHz ultrahigh frequency (UHF) band. The MEMS switches are positioned in series with each shunt inductor.

The function of the switches includes or omits a shunt inductor from the circuit. Changing the shunt inductor value affects the bandwidth and center frequency of the filter. Using inductance values from 15 nH to 30 nH significantly alters the bandwidth

and center frequency, allowing the filter to dynamically configure to operate in the UHF bands or very high frequency (VHF) bands while preserving the 50 Ω match on the input and output ports. The low $R_{\rm ON}$ value and wide bandwidth of the MEMS switch makes the switch an ideal choice for this application. The low $R_{\rm ON}$ reduces the negative effect a series resistance has on the quality factor of the shunt inductor. The large bandwidth enables higher frequency band-pass filters.

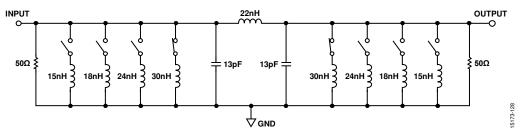


Figure 52. Reconfigurable Band-Pass Filter Achieved Using Two ADGM1004 MEMS Switches

CRITICAL OPERATIONAL REQUIREMENTS SYSTEM ERROR CONSIDERATIONS DUE TO ONRESISTANCE DRIFT

The $R_{\rm ON}$ performance of the ADGM1004 is affected by part to part variation, channel to channel variation, cycle actuations, settling time post turn on, bias voltage, and temperature changes (see Figure 54 to Figure 12).

In a 50 Ω system, the on-resistance drift over switch actuations (ΔR_{ON}) can introduce system inaccuracy. Figure 53 shows the ADGM1004 connected with the load in a 50 Ω system, where R_S is the source impedance. TO calculate the system error caused by the ADGM1004 on-resistance drift, use the following equation:

System Error (%) = $\Delta R/R_{LOAD}$

where:

 ΔR is the ADGM1004 on-resistance drift.

 R_{LOAD} is the load impedance.

The ADGM1004 on-resistance drift also affects insertion loss, which must be considered when using the device. To calculate the on-resistance impact on insertion loss, use the following equation:

Insertion Loss = $10\log(1 + (\Delta R/R_{LOAD}))$

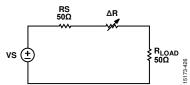


Figure 53. 50 Ω System Representation Where the ADGM1004 is Connected with the Load

Table 8. System Error and Insertion Loss Error Due to ADGM1004 $R_{\rm ON}\,Drift$

On-Resistance Drift	System Error (%)	Insertion Loss Error (dB)
4.75	9.5	0.39
5	10	0.41

The on-resistance drift over time specification is $-0.25~\Omega$ measured after 100 ms, as shown in Figure 8 to Figure 10. According to the plots, the on-resistance drift over time is $-0.12~\Omega$ after 100 ms. The on-resistance of the ADGM1004 typically drifts by $-0.05~\Omega$ per decade. For example, after 100 ms, the on-resistance drifts $-0.12~\Omega$, after 1 sec it drifts $-0.17~\Omega$, and after 10 sec it drifts $-0.22~\Omega$. Therefore, after 1,000 sec, the on-resistance is expected to drift by $-0.32~\Omega$.

ON RESISTANCE SHIFT DUE TO TEMPERATURE SHOCK POST ACTUATIONS

When the switch is actuated multiples times at one temperature, and if there is a sudden shift in this temperature, a large shift is shown in the switch $R_{\rm ON}$. Figure 54 shows the absolute $R_{\rm ON}$ performance of the population of devices over actuation lifetime. Figure 54 shows how the absolute $R_{\rm ON}$ of the device drifts over actuation lifetime. During this measurement, the switch is actuated at 85°C and the switch $R_{\rm ON}$ is measured at 25°C. Actuating the switch at 85°C and measuring $R_{\rm ON}$ at 25°C is the most severe condition for the ADGM1004 $R_{\rm ON}$ drift over actuations.

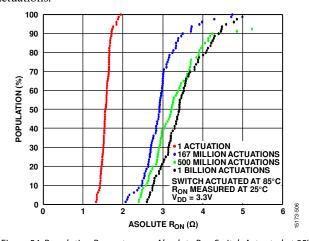


Figure 54. Population Percentage vs. Absolute R_{ON}, Switch Actuated at 85°C and R_{ON} measured at 25°C

FLOATING NODE

The ADGM1004 has no internal impedance to ground, and charges can develop on the switch terminals leading to unreliable switch behavior. To mitigate this behavior, provide a discharge path to all switch nodes. Figure 55 to Figure 58 show examples of cases to avoid where floating nodes can occur when using the switch. Conditions to avoid include the following:

- Leaving the RFx pins open circuit (see Figure 55).
- Connecting a series capacitor directly to the switch (see Figure 56).
- Connecting the RFx pin of two switches together directly or connecting the RFC pin to the RFx pin (see Figure 57 and Figure 58).

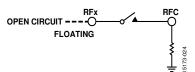


Figure 55. RFx Pins Left Open Circuit

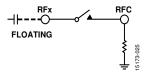


Figure 56. Series Capacitor Directly Connected to MEMS Switch

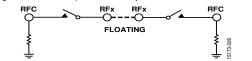


Figure 57. RFx Pins of Two MEMS Switches Directly Connected

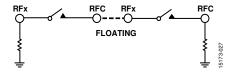


Figure 58. RFC Connected to RFx

Provide a discharge path to the switch nodes to avoid floating nodes. In a typical application, a 50 Ω termination connected to the switch provides this path. Driving switch nodes with a device of adequate impedance (<10 M Ω) provides a discharge path. If there is no discharge path in the application circuit, add a 10 M Ω shunt resistor or inductor on the source RFx pin of the MEMS switch to provide the discharge path. Note that the shunt resistors introduce leakage. Figure 59 shows an example of a configuration providing a discharge path.

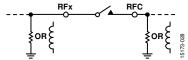


Figure 59. Switch Configuration Providing a Discharge Path

Figure 60 and Figure 61 illustrate typical cascaded switch use cases and the corresponding schemes to mitigate floating node risks.

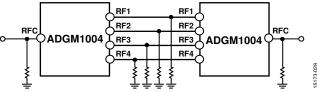


Figure 60. Two ADGM1004 Devices Connected in Path Selection Configuration with 10 M Ω Shunt Resistors to Mitigate Floating Nodes

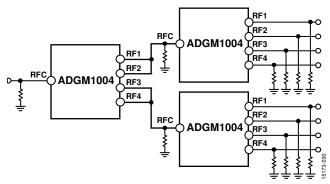


Figure 61. Three ADGM1004 Devices Connected in Fanout Configuration with 10 MΩ Shunt Resistors to Mitigate Floating Nodes

Avoid connecting shunt capacitors directly to the switch. A capacitor can store a charge and potentially lead to hot switching events when the switch opens or closes if there are no alternative discharge paths. These events affect the cycle lifetime of the switch.

CUMULATIVE ON SWITCH LIFETIME

Leaving the switch in an on state for a long period affects the lifetime of the switch because of mechanical degradation effects. These effects can result in the switch failing to turn off. Figure 62 shows a failure rate at 50°C where the mean time to failure is 7.2 years (2628 days), resulting in 50% of the sample lot failing at this point.

Temperatures above 50°C further reduce the switch lifetime. The cumulative on switch lifetime specification is also duty cycle dependent. If the user operates the MEMS switch with a duty cycle of less than 50% the lifetime of the MEMS switch improves.

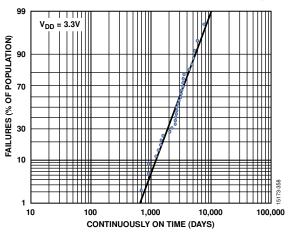


Figure 62. Cumulative On Switch Lifetime at 50° C, $V_{DD} = 3.3 V$, Sample Size 31 Parts

HANDLING PRECAUTIONS

Electrical Overstress (EOS) Precautions

The ADGM1004 is susceptible to EOS. Therefore, take the following precautions:

- The ADGM1004 is an ESD sensitive device. Ensure to take all of the normal handling precautions, including working only on static dissipative surfaces, wearing wrist straps or other ESD control devices, and storing unused devices in conductive foam.
- Avoid running measurement instruments, such as digital multimeters (DMMs), in autorange modes. Some instruments generate large transient compliance voltages when switching between ranges.
- Use the highest practical DMM range setting (the lowest resolution) for resistance measurements to minimize compliance voltages, particularly during switching.
- Discharge coaxial cables before connecting directly to the switch. Note that coaxial cables can store charge and lead to EOS when directly connected to the switch.

 Avoid connecting large capacitive terminations directly to the switch, as shown in Figure 63. A shunt capacitor can store a charge that potentially leads to hot switching events when the switch opens or closes, affecting the lifetime of the switch.

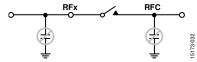


Figure 63. Avoid Having a Large Capacitor Directly Connected to the MEMS Switch

Mechanical Shock Precautions

The ADGM1004 passes extensive mechanical shock qualification tests, as described in Table 9. These tests validate the robustness of the device when exposed to normal mechanical shocks.

Table 9. Mechanical Qualification Summary

,			
Parameter	Qualification		
Mechanical Shock	Powered (PMS) IEC 60068-2-27		
Random Drop	AEC-Q100 Test G5, five drops from 0.6 m		
Vibration Testing	MIL-STD-883, M2007.3, Condition B, 20 Hz to 2000 Hz at 50 g		
Group D, Sub 4, MIL- STD-883, M5005	Mechanical shock, 1500 g, 0.5 ms; vibration 50 g sine sweep, 20 Hz to 2000 Hz; acceleration 30,000 g		

Do not use the ADGM1004 if dropped. Ensure minimal mechanical shocks during the handling and manufacturing of the device.

Figure 64 shows examples of loose device handling situations to avoid for risk of mechanical shock and ESD events.

DEVICES STORED BULK IN BINS DEVICES DUMPED OUT ON BENCHTOP DEVICE DROPPED

Figure 64. Situations to Avoid During Handling

REGISTER DETAILS

SWITCH DATA REGISTER

Address: 0x20, Reset: 0x00, Name: SWITCH_DATA

The switch data register controls the status of the four ADGM1004 switches.

Table 10. Bit Descriptions for SWITCH_DATA

Bits	Bit Name Description		Reset	Access	
[7:6]	INTERNAL_ERROR	Internal Error Detection. These bits determine if an internal error has occurred.	0x0	R	
		00: no error detected.			
		01: error detected.			
		10: error detected.			
		11: error detected.			
[5:4]	RESERVED	Reserved. These bits are reserved. Set these bits to 0.		R	
3	SW4_EN	Enable for Switch 4.	0x0	R/W	
		0: Switch 4 open.			
		1: Switch 4 closed.			
2	2 SW3_EN	Enable for Switch 3.	0x0	R/W	
		0: Switch 3 open.			
		1: Switch 3 closed.			
1 SW2_EN	SW2_EN	Enable for Switch 2.	0x0	R/W	
		0: 00: Switch 2 open.			
		1: Switch 2 closed.			
0	SW1_EN	Enable for Switch 1.	0x0	R/W	
		0: Switch 1 open.			
		1: Switch 1 closed.			

OUTLINE DIMENSIONS

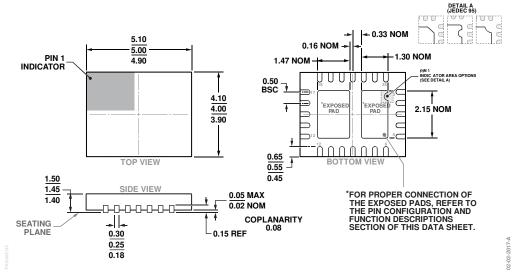


Figure 65. 24-Lead Lead Frame Chip Scale Package [LFCSP] 5 mm × 4 mm Body, and 1.45 mm Package Height (CP-24-4) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	
ADGM1004JCPZ-R2	0°C to 85°C	24-Lead Lead Frame Chip Scale Package [LFCSP]	CP-24-4	
ADGM1004JCPZ-RL7	0°C to 85°C	24-Lead Lead Frame Chip Scale Package [LFCSP]	CP-24-4	
EVAL-ADGM1004SDZ		Evaluation Board		

¹ Z = RoHS Compliant Part.