DGG OR DL PACKAGE

SCAS433A - OCTOBER 1993 - REVISED JULY 1995

- *EPIC* [™] (Enhanced-Performance Implanted CMOS) Submicron Process
- Member of the Texas Instruments Widebus™ Family
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

description

The SN74ALVC16270 is a 12-bit to 24-bit registered bus exchanger, which is intended for use in applications where data must be transferred from a narrow high-speed bus to a wide lower-frequency bus. This device is designed specifically for low-voltage (3.3-V) V_{CC} operation.

The device provides synchronous data exchange between the two ports. Data is stored in the internal registers on the low-to-high transition of the clock (CLK) input when the appropriate CLKEN inputs are low. The select (SEL) line selects 1B or 2B data for the A outputs. For data transfer in the A-to-B direction, a two-stage pipeline is provided in the A-to-1B path,

	TOP VI	EW)	
OEA CLKEN1B 2B3 GND 2B2 2B1 V _{CC} A1 A2 GND GND	1 2 3 4 5 6 7 8 9 10 11	56 OEB 55 CLKE 54 2B4 53 GND 52 2B5 51 2B6 50 V _{CC} 49 2B7 48 2B8 47 2B9 46 GND	ENA2
A4 [A5] A6 [A7] A8 [A9] GND [A10] A10 [A11] A12 [Vcc] 1B1 [1B2] GND [1B3] CLKEN2B [SEL]	12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	45 2B10 44 2B11 43 2B12 42 1B12 41 1B11 40 1B10 39 GND 38 1B9 37 1B8 36 1B7 35 V _{CC} 34 1B6 33 1B5 32 GND 31 1B4 30 CLKE 29 CLK	ENA1

with a single storage register in the A to 2B path. Proper control of the CLKENA inputs allows two sequential 12-bit words to be presented synchronously as a 24-bit word on the B port. Data flow is controlled by the active-low output enables (OEA, OEB). The control terminals are registered to synchronize the bus direction changes with CLK.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVC16270 is available in TI's shrink small-outline (DL) and thin shrink small-outline (DGG) packages, which provide twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN74ALVC16270 is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1995, Texas Instruments Incorporated

SCAS433A - OCTOBER 1993 - REVISED JULY 1995

Function Tables

OUTPUT ENABLE

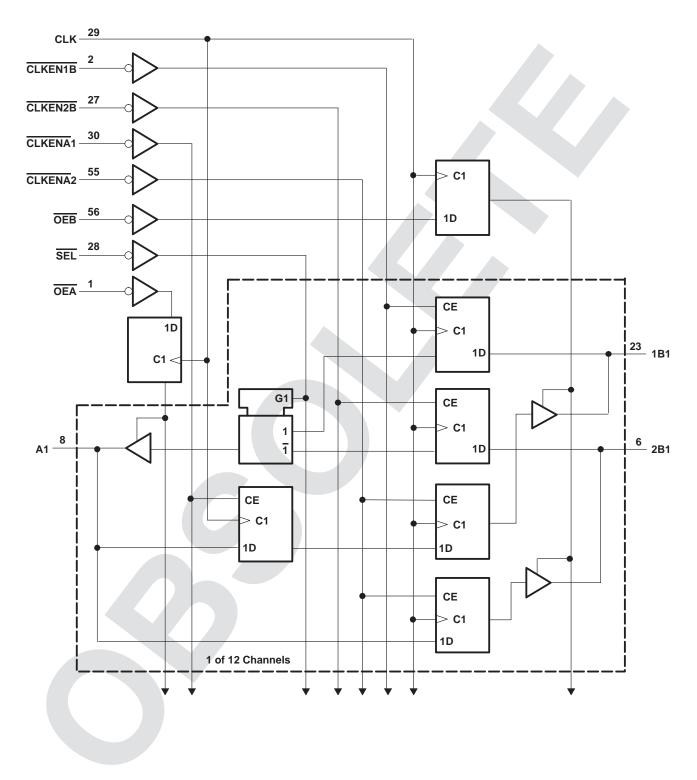
	INPUTS	OUTPUTS		
CLK	OEA	OEB	Α	1B, 2B
\uparrow	Н	Н	Z	Z
\uparrow	Н	L	Z	Active
\uparrow	L	Н	Active	Z
\uparrow	L	L	Active	Active

A-TO-B STORAGE (OEB = L)

	INPUTS			OUTE	PUTS
CLKENA1	CLKENA2	CLK	Α	1B	2B
L	Н	\uparrow	L	Lt.	2B0‡
L	н	\uparrow	н	нt	2B0‡
L	L	\uparrow	L	L†	L
L	L	\uparrow	Н	н†	н
н	L	\uparrow	L	1B0‡	L
н	L	\uparrow	Н	1B0‡	Н
н	Н	Х	Х	1B0‡	2B0‡

[†] Two CLK edges are needed to propagate data. [‡] Output level before the indicated steady-state input conditions were established

B-TO-A STORAGE ($\overline{OEA} = L$)


	OUTPUT					
CLKEN1B	CLKEN2B	CLK	SEL	1B	2B	Α
Н	Х	Х	Н	Х	Х	A0‡
Х	Н	Х	L	Х	Х	А ₀ + А ₀ ‡
L	Х	\uparrow	Н	L	Х	L
L	Х	Ŷ	Н	Н	Х	Н
X	L	↑	L	Х	L	L
X	L	\uparrow	L	Х	Н	Н

[‡]Output level before the indicated steady-state input conditions were established

SN74ALVC16270 **12-BIT TO 24-BIT REGISTERED BUS EXCHANGER** WITH 3-STATE OUTPUTS SCAS433A – OCTOBER 1993 – REVISED JULY 1995

logic diagram (positive logic)

SCAS433A – OCTOBER 1993 – REVISED JULY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Input voltage range, VI: Except I/O ports (see Note 1)	$\dots \dots $
I/O ports (see Notes 1 and 2)	-0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Notes 1 and 2)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I _{IK} (V _I < 0)	-50 mA
Output clamp current, I_{OK} (V _O < 0 or V _O > V _{CC})	±50 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Not	te 3): DGG package 1 W
	DL package 1.4 W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The input and output positive-voltage ratings may be exceeded up to 4.6 V if the input and output clamp-current ratings are observed.

3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the 1994 *ABT Advanced BiCMOS Technology Data Book*, literature number SCBD002B.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
VCC	Supply voltage		2.3	3.6	V
.,		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		
VIH	High-level input voltage	$V_{CC} = 2.7 V \text{ to } 3.6 V$	2		V
	Low low Construction	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V
VIL	Low-level input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	V
VI	Input voltage		0	VCC	V
VO	Output voltage		0	VCC	V
		V _{CC} = 2.3 V		-12	
IОН	High-level output current	V _{CC} = 2.7 V		-12	mA
		$V_{CC} = 3 V$		-24	
		V _{CC} = 2.3 V		12	
IOL	Low-level output current	V _{CC} = 2.7 V		12	mA
		$V_{CC} = 3 V$		24	
$\Delta t/\Delta v$	Input transition rise or fall rate		0	10	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

SN74ALVC16270 **12-BIT TO 24-BIT REGISTERED BUS EXCHANGER**

WITH 3-STATE OUTPUTS SCAS433A – OCTOBER 1993 – REVISED JULY 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

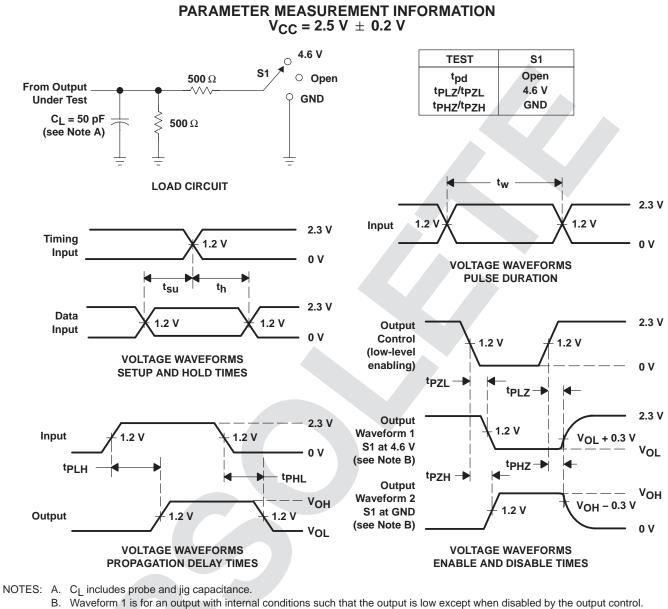
PARAMETER					T _A = -	40°C to	85°C	
		TEST C	ONDITIONS	vcc†	MIN	TYP‡	MAX	UNIT
		I _{OH} = -100 μA		MIN to MAX	V _{CC} -0.	2		
		I _{OH} = -6 mA,	V _{IH} = 1.7 V	2.3 V	2			
			V _{IH} = 1.7 V	2.3 V	1.7			
VOH		I _{OH} = – 12 mA	V _{IH} = 2 V	2.7 V	2.2			V
			V _{IH} = 2 V	3 V	2.4			
		I _{OH} = -24 mA,	V _{IH} = 2 V	3 V	2			
		I _{OL} = 100 μA		MIN to MAX			0.2	
		I _{OL} = 6 mA, V _{IL} = 0.7 V		2.3 V			0.4	
VOL			V _{IL} = 0.7 V	V 2.3 V			0.7	V
		I _{OL} = 12 mA	V _{IL} = 0.8 V	2.7 V		0.4		
		I _{OL} = 24 mA,	3 V	0.55				
Ц		$V_I = V_{CC}$ or GND		3.6 V			±5	μA
		V _I = 0.7 V		0.014	45			
		V _I = 1.7 V		2.3 V	-45			
l(hold)		VI = 0.8 V	V _I = 0.8 V					μA
()		V _I = 2 V	3 V	-75				
		V _I = 0 to 3.6 V		3.6 V			±500	
IOZ§		$V_{O} = V_{CC}$ or GND		3.6 V			±10	μΑ
ICC		$V_I = V_{CC}$ or GND,	IO = 0	3.6 V			40	μA
∆lCC		One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	3 V to 3.6 V			750	μA
Ci	Control inputs	$V_{I} = V_{CC}$ or GND		3.3 V		3.5		pF
Cio	A or B ports	$V_{O} = V_{CC} \text{ or } GND$		3.3 V		9		pF

[†] For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions.

 \ddagger All typical values are at V_{CC} = 3.3 V. \$ For I/O ports, the parameter I_{OZ} includes the input leakage current.

SCAS433A - OCTOBER 1993 - REVISED JULY 1995

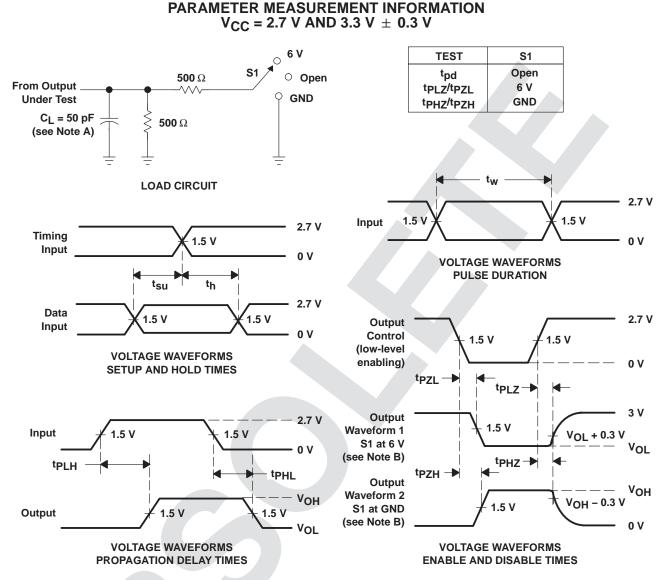
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)


				۲ <mark>0.1 × 0.1</mark> × 0.1		V _{CC} =	2.7 V	۲ <mark>۰۵</mark> × ۲۰۰۵ × ۲۰۵۵ × ۲۰۵۵ × ۲۰۵۵ × ۲۰۵۵ × ۲۰۵۰۵ × ۲۰۰۵ × ۲۰۰۵ × ۲۰۰۵ × ۲۰۰۵ ×		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock fre	quency			150		150		150	MHz
tw	Pulse du	ration, CLK high or low		3.3		3.3		3.3		ns
		A data before CLK1	High or low	4.1		3.8		3.1		
		B data before CLK↑	High or low	0.9		1.2		0.9		
t _{su}	t _{su} Setup	CLKENA1 or CLKENA2 before CLK1	High or low	3.5		3.2		2.7		ns
	ume	CLKEN1B or CLKEN2B before CLK1	High or low	3.4		3		2.6		
		OE data before CLK↑	High or low	4.4		3.9		3.2		
		A data after CLK↑	High or low	0		0		0.2		
		B data after CLK↑	High or low	1.4		1		1.7		
^t h	th Hold	CLKENA1 or CLKENA2 after CLK1	High or low	0		0.1	~	0.3		ns
	une	CLKEN1B or CLKEN2B after CLK↑	High or low	0		0		0.6		
		OE after CLK↑	High or low	0		0		0.1		

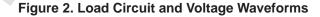
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 and 2)

PARAMETER	FROM	TO	V _{CC} = ± 0.2	2.5 V 2 V	V _{CC} =	2.7 V	= V _{CC} ± 0.3	3.3 V 3 V	UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	
	CLK	В	2	6.5		5.8	1.1	5.1	
^t pd	CLK	А	1.7	6		5.4	1	4.7	ns
	SEL	А	1.9	6.8		6.4	1	5.5	
ten	CLK	A or B	1.6	7.5		6.8	1	6	ns
^t dis	CLK	A or B	2.6	7.4		6.5	1.1	5.8	ns

SCAS433A - OCTOBER 1993 - REVISED JULY 1995



- - Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpHL and tpLH are the same as tpd.


Figure 1. Load Circuit and Voltage Waveforms

SCAS433A - OCTOBER 1993 - REVISED JULY 1995

- NOTES: A. Cl includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as t_{en} .
 - G. t_{PHI} and t_{PIH} are the same as t_{pd} .

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
SN74ALVC16270DL	OBSOLETE	SSOP	DL	56		TBD	Call TI	Call TI	-40 to 85		
SN74ALVC16270DLR	OBSOLETE	SSOP	DL	56		TBD	Call TI	Call TI	-40 to 85		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DL (R-PDSO-G56)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
 - This drawing is subject to change without notice. В.
 - Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). C.
 - D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated