

. . eescale Semiconductor

Technical Data

RF LDMOS Integrated Power Amplifier

The MW6IC2420NB integrated circuit is designed with on-chip matching that makes it usable at 2450 MHz. This multi-stage structure is rated for 26 to 32 Volt operation and covers all typical industrial, scientific and medical modulation formats.

Driver Applications

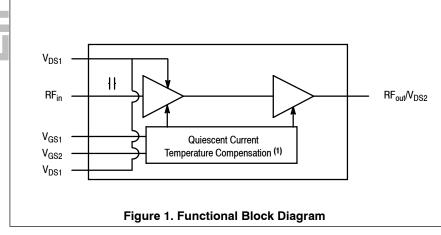
- Typical CW Performance at 2450 MHz: V_{DD} = 28 Volts, I_{DQ1} = 210 mA, I_{DQ2} = 370 mA, P_{out} = 20 Watts
 Power Gain 19.5 dB
 Power Added Efficiency 27%
- Capable of Handling 3:1 VSWR, @ 28 Vdc, 2170 MHz, 20 Watts CW Output Power
- Stable into a 3:1 VSWR. All Spurs Below -60 dBc @ 100 mW to 10 Watts CW P_{out}.

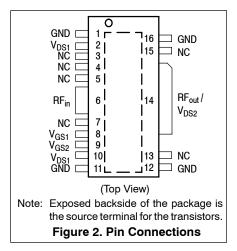
Features

- Characterized with Series Equivalent Large-Signal Impedance Parameters and Common Source Scattering Parameters
- On-Chip Matching (50 Ohm Input, DC Blocked, >3 Ohm Output)
- Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1)
- Integrated ESD Protection
- 225°C Capable Plastic Package
- RoHS Compliant
- In Tape and Reel. R1 Suffix = 500 Units, 44 mm Tape Width, 13 inch Reel

Document Number: MW6IC2420N Rev. 3, 12/2010

011 0, 12,2010


VROHS


MW6IC2420NBR1

2450 MHz, 20 W, 28 V CW RF LDMOS INTEGRATED POWER AMPLIFIER

CASE 1329-09 TO-272 WB-16 PLASTIC

 Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf.
 Select Documentation/Application Notes - AN1977 or AN1987.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +68	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +6	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (1,2)	TJ	225	°C
Input Power	P _{in}	23	dBm

Table 2. Thermal Characteristics

Characteristic		Symbol	Value (2,3)	Unit
Thermal Resistance, Junction to Case		$R_{ heta JC}$		°C/W
W-CDMA Application (P _{out} = 4.5 W Avg.)	Stage 1, 28 Vdc, I_{DQ} = 210 mA Stage 2, 28 Vdc, I_{DQ} = 370 mA		1.8 1	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1A (Minimum)
Machine Model (per EIA/JESD22-A115)	A (Minimum)
Charge Device Model (per JESD22-C101)	III (Minimum)

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD 22-A113, IPC/JEDEC J-STD-020	3	260	°C

■ Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit

Functional Tests (In Freescale Wideband 2110–2170 MHz Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ1} = 210 mA, I_{DQ2} = 370 mA, P_{out} = 4.5 W Avg., f1 = 2157.5 MHz, f2 = 2167.5 MHz, 2-Carrier W-CDMA, 3.84 MHz Channel Bandwidth Carriers. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. IM3 measured in 3.84 MHz Channel Bandwidth @ ±10 MHz Offset. Input Signal PAR = 8.5 dB @ 0.01% Probability on CCDF.

Power Gain	G _{ps}	25.5	28	30	dB
Power Added Efficiency	PAE	13.7	15	_	%
Intermodulation Distortion	IM3	_	-43	-40	dBc
Adjacent Channel Power Ratio	ACPR	_	-46	-43	dBc
Input Return Loss	IRL	_	-15	-10	dB

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
- Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
 Select Documentation/Application Notes AN1955.

(continued)

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
ypical Performances (In Freescale Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ1} = 210 mA, I_{DQ2} = 370 mA, 2110-2170 MHz					
Video Bandwidth @ 20 W PEP P _{out} where IM3 = -30 dBc (Tone Spacing from 100 kHz to VBW) ΔIMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both sidebands)	VBW	_	30	_	MHz
Quiescent Current Accuracy over Temperature with 18 kΩ Gate Feed Resistors (-10 to 85°C) (1)	ΔI_{QT}	_	±5	_	%
Gain Flatness in 30 MHz Bandwidth @ Pout = 1 W CW	G _F	=	0.2	=	dB
Average Deviation from Linear Phase in 30 MHz Bandwidth @ Pout = 1 W CW	Φ	_	2	_	٥
Average Group Delay @ Pout = 1 W CW Including Output Matching	Delay	_	2.8	_	ns
Part-to-Part Insertion Phase Variation @ Pout = 1 W CW, Six Sigma Window	ΔΦ	_	18	_	٥

Table 6. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Typical Performances (In Freescale Test Fixture, 50 ohm system) V _{DD} = 28 Vdc, I _{DQ1} = 110 mA, I _{DQ2} = 370 mA, 2110-2170 MHz					z
Saturated Pulsed Output Power (8 μsec(on), 1 msec(off))	P _{sat}	_	60	_	W

Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf.
 Select Documentation/Application Notes - AN1977 or AN1987.

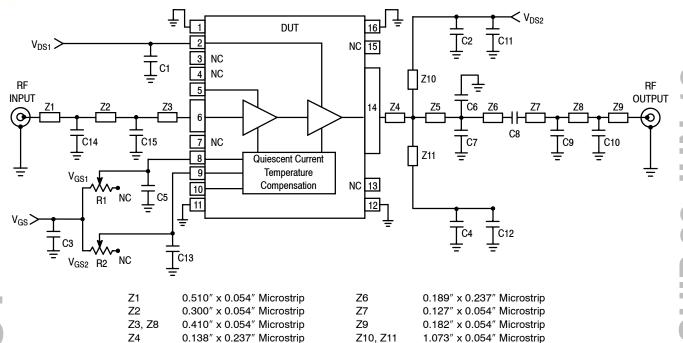


Figure 3. MW6IC2420NBR1 Test Circuit Schematic — 2450 MHz

PCB

Taconic RF35, 0.020", $\epsilon_r = 3.5$

Table 7. MW6IC2420NBR1 Test Circuit Component Designations and Values

0.086" x 0.237" Microstrip

Z5

Part	Description	Part Number	Manufacturer
C1, C2, C3, C4	2.2 μF Chip Capacitors	C32225X5R1H225MT	TDK
C5, C13	100 nF Chip Capacitors	C1206C104K1KAC	Kemet
C6, C7	0.5 pF Chip Capacitors	08051J0R5BS	AVX
C8	6.8 pF Chip Capacitor	08051J6R8BS	AVX
C9	2.2 pF Chip Capacitor	08051J2R2BS	AVX
C10	1 pF Chip Capacitor	08051J1R0BS	AVX
C11, C12	5.6 pF Chip Capacitors	08051J5R6BS	AVX
C14	0.3 pF Chip Capacitor	ATC100B0R3BT500XT	ATC
C15	0.5 pF Chip Capacitor	ATC100B0R5BT500XT	ATC
R1, R2	5 kΩ Potentiometer CMS Cermet Multi-turn	3224W-1-502E	Bourns

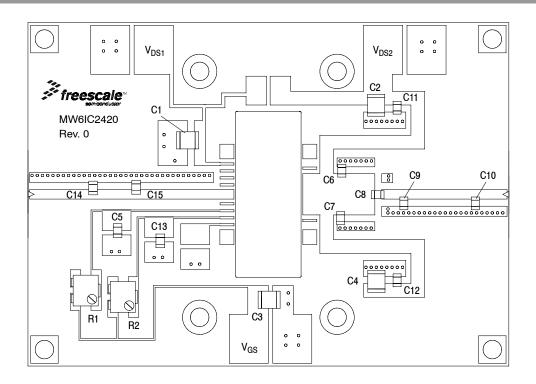


Figure 4. MW6IC2420NBR1 Test Circuit Component Layout — 2450 MHz

TYPICAL CHARACTERISTICS — 2450 MHz

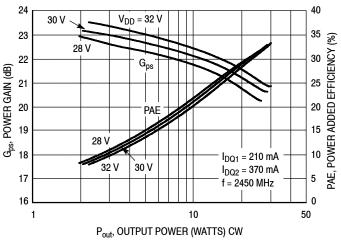


Figure 5. Power Gain and Power Added Efficiency versus CW Output Power as a Function of V_{DD}

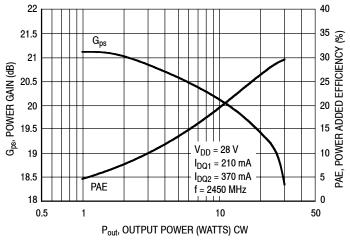


Figure 6. Power Gain and Power Added Efficiency versus CW Output Power

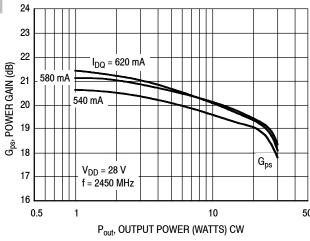
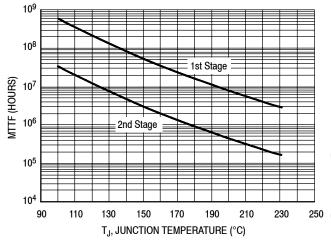
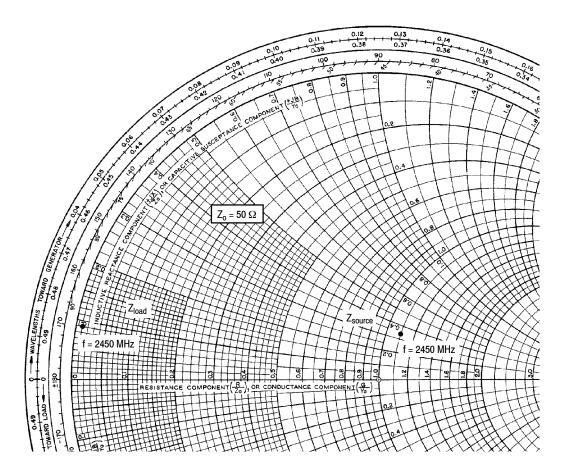



Figure 7. Power Gain and Power Added Efficiency versus CW Output Power as a Function of Total I_{DQ}



This above graph displays calculated MTTF in hours when the device is operated at $V_{DD}=28\ Vdc$, $P_{out}=20\ W\ Avg.$, and PAE=27%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Figure 8. MTTF versus Junction Temperature

 V_{DD} = 28 Vdc, I_{DQ1} = 210 mA, I_{DQ2} = 370 mA, P_{out} = 20 W CW

f MHz	$Z_{source} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Z _{load} Ω
2450	54.8 + j16.6	0.42 + j4.3

 $Z_{source} \ = \ Test \ circuit \ impedance \ as \ measured \ from \\ gate \ to \ ground.$

Z_{load} = Test circuit impedance as measured from drain to ground.

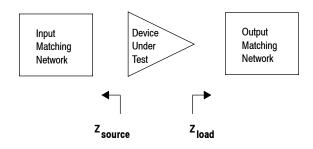
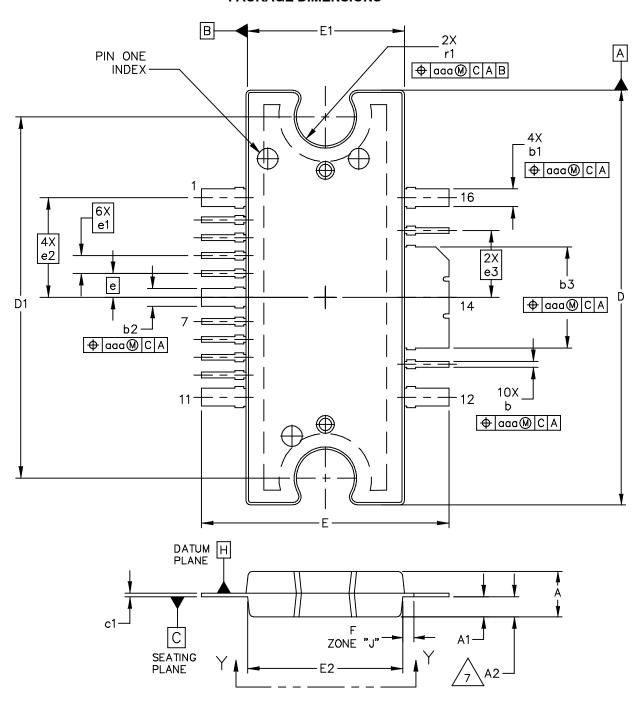
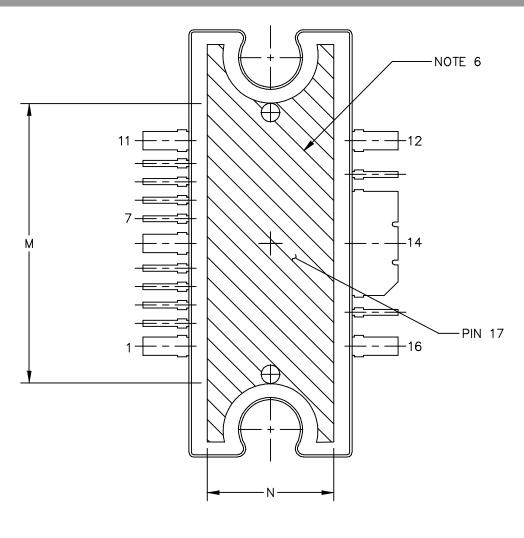



Figure 9. Series Equivalent Source and Load Impedance



PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	TO-272 WIDE BODY): 98ARH99164A	REV: M
MULTI-LEAD			R: 1329–09	23 AUG 2007
WOETT EEAD		STANDARD: NO	DN-JEDEC	

VIEW Y-Y

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	WIDE DODY): 98ARH99164A	REV: M
TO-272 WIDE BODY MULTI-LEAD		CASE NUMBER	R: 1329–09	23 AUG 2007
MOLTI-ELAD		STANDARD: NO	N-JEDEC	

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. HATCHING REPRESENTS THE EXPOSED AREA OFTHE HEAT SLUG. HATCHED AREA SHOWN IS ON THE SAME PLANE.
- 7. DIM A2 APPLIES WITHIN ZONE "J" ONLY.

	INCH		MILLIMETER			INCH		MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
Α	.100	.104	2.54	2.64	Ь	.011	.017	0.28	0.43
A1	.038	.044	0.96	1.12	ь1	.037	.043	0.94	1.09
A2	.040	.042	1.02	1.07	b2	.037	.043	0.94	1.09
D	.928	.932	23.57	23.67	b3	.225	.231	5.72	5.87
D1	.810 BSC		20.57 BSC		c1	.007	.011	.18	.28
E	.551	.559	14.00	14.20	е	.054 BSC		1.37 BSC	
E1	.353	.357	8.97	9.07	e1	.040 BSC		1.02 BSC	
E2	.346	.350	8.79	8.89	e2	.224 BSC		5.69 BSC	
F	.025 BSC		0.64 BSC		e3	.150 BSC		3.81 BSC	
М	.600		15.24		r1	.063	.068	1.6	1.73
N	.270		6.86						
					aaa	.004		.10	
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECH/				MECHANICA	AL OUTLINE PRINT VERS			SION NOT TO SCALE	
TITLE:					DOCUMENT NO: 98ARH99164A RE			REV: M	

TO-272 WIDE BODY MULTI-LEAD DOCUMENT NO: 98ARH99164A REV: M

CASE NUMBER: 1329-09 23 AUG 2007

STANDARD: NON-JEDEC

PRODUCT DOCUMENTATION

Refer to the following documents to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
- · AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
- · AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

REVISION HISTORY

The following table summarizes revisions to this document.

	Revision	Date	Description	1
	0	Mar. 2007	Initial Release of Data Sheet	
	1	Apr. 2008	Changed 220°C to 225°C in Capable Plastic Package bullet, p. 1	1
M			Added Footnote 1 to Quiescent Current Temperature bullet under Features section and to callout in Fig. 1, Functional Block Diagram, p. 1	
			Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 2	
Ш			Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related "Continuous use at maximum temperature will affect MTTF" footnote added, p. 2	1
			Replaced Case Outline 1329-09, Issue L, with 1329-09, Issue M, p. 8-10. Added pin numbers 1 through 17.	
	2	Feb. 2009	Changed Storage Temperature Range in Max Ratings table from -65 to +200 to -65 to +150 for standardization across products, p. 2	
FET			Modified data sheet to reflect RF Test Reduction described in Product and Process Change Notification number, PCN13232, p. 2	1
	3	Dec. 2010	Corrected data sheet to reflect RF Test Reduction described in Product and Process Change Notification number, PCN13232, and Product Discontinuance Notification number, PCN14260, adding applicable overlay, p. 1, 2	

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan

Freescale Semiconductor Japan Ltd. Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007–2010. All rights reserved.

